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Abstract 

Background:  The aim of this study was to identify the underlying genetic defect in a family segregating autosomal 
recessive asymmetric hereditary motor neuropathy (HMN). Asymmetric HMN has not been associated earlier with 
SORD mutations.

Methods:  For this study, we have recruited a family and collected blood samples from affected and normal individu-
als of a family. Detailed clinical examination and electrophysiological studies were carried out. Whole exome sequenc-
ing was performed to detect the underlying genetic defect in this family. The potential variant was validated using the 
Sanger sequencing approach.

Results:  Clinical and electrophysiological examination revealed asymmetric motor neuropathy with normal nerve 
conduction velocities and action potentials. Genetic analysis identified a homozygous mononucleotide deletion 
mutation (c.757delG) in a SORD gene in a patient. This mutation is predicted to cause premature truncation of a pro-
tein (p.A253Qfs*27).

Conclusions:  Interestingly, the patient with homozygous SORD mutation demonstrates normal motor and nerve 
conduction velocities and action potentials. The affected individual describes in this study has a unique presenta-
tion of asymmetric motor neuropathy predominantly affecting the right side more than the left as supported by the 
clinical examination. This is the first report of SORD mutation from Saudi Arabia and this study further expands the 
phenotypic spectrum of SORD mutation.

Keywords:  Hereditary neuropathy, Nerve conduction, Electromyography, SORD mutation

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Distal hereditary motor neuropathy (dHMN) is a clini-
cally and genetically heterogeneous disorder affecting the 
muscles of distal limbs. Individuals with dHMN experi-
ence progressive weakness and atrophy of the muscles 
of the distal limbs [1]. In dHMN, generally, there is no 
involvement of sensory neurons, however, in some cases 
minimal involvement of sensory neurons is reported [2]. 

Based on the inheritance pattern and the clinical fea-
tures, dHMN has been divided into seven subgroups [3]. 
Autosomal recessive dHMN may appear early in life with 
mild as well as severe clinical features. dHMN and Char-
cot-Mare-Tooth (CMT) diseases are clinically and geneti-
cally overlapping disorders and in some cases, they share 
the underlying genetic defects [4, 5]. For instance, muta-
tions in HSPB1, IGHMBP2, and DYNC1H1 cause both 
CMT and dHMN [1, 6–15]. Moreover, mutations in the 
sorbitol dehydrogenase (SORD) gene have recently been 
associated with the autosomal recessive form of Char-
cot-Mare-Tooth disease type 2 (CMT2) and dHMN [1, 
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8, 16, 17]. Although, a clinical and genetic overlap exists 
between CMT2 and dHMN, however, motor nerves are 
predominantly or exclusively involved in dHMN [2].

We recruited a family segregating autosomal reces-
sive dHMN. Clinical and genetic analysis was performed 
and a homozygous nonsense mutation in the SORD gene 
(c.757delG; p.Ala253GlnfsTer27) was identified. The 
mutation has been shown to cause a complete loss of 
SORD protein resultantly an increased sorbitol level in 
the cells.

Methods
Ethical approval
All study protocols were approved by the scientific 
research ethics committee of the College of Medicine, 
Taibah University Medina. The ethical approval ID is 
036-1441. All experimental work was performed in 
accordance with the declaration of Helsinki. Written 
informed consents were obtained from all the partici-
pants for genetic analysis of the DNA samples and publi-
cation of the genetic data.

Genetic studies
Genomic DNA was extracted from the peripheral blood 
of a proband (II:3), unaffected parents (I:1 and I:2), a 
healthy individual (II:4), and an affected sibling (II:6) 
(Fig.  1). The complete coding regions (~ 22,000 genes) 
of the human genome was captured by xGen Exome 
Research Panel v2 (Integrated DNA Technologies, Cor-
alville, Iowa, USA). The captured region of the human 
genome was sequenced with NovaSeq 6000 system 
(Illumina, San Diego, CA, USA). The raw sequencing 
data analysis, including alignment to the GRCh37/hg19 
human reference genome, variant calling, and annota-
tion, was conducted with open-source bioinformatics 
tools and in-house software. A variant interpretation was 
performed with in-house software to prioritize variants 
based on ACMG guidelines considering the phenotype 

of the patient. This system has three major steps; vari-
ant filtration, classification, and similarity scoring for 
patient’s phenotype. The following steps were used to 
filter and prioritize candidate variants. First, gnomAD 
(http://​gnomad.​broad​insti​tute.​org/) as a population 
genome database were used for estimating allele fre-
quency. Common variants with a minor allele frequency 
of > 5% were filtered out in accordance with BA1 of the 
ACMG guideline. Second, scientific literature and dis-
ease databases including ClinVar (https://​www.​ncbi.​nlm.​
nih.​gov/​clinv​ar/) and UniProt (https://​www.​unipr​ot.​org/) 
were searched and evidence data on the pathogenicity of 
variants was extracted. The pathogenicity of each vari-
ant was evaluated according to the recommendations of 
the ACMG guideline. Third, the clinical features of the 
patient were coded as standardized human phenotype 
ontology terms (https://​hpo.​jax.​org/) and accessed to 
measure the similarity with each of ~ 7000 rare genetic 
diseases (https://​omim.​org/ and https://​www.​orpha.​net/​
consor/​cgi-​bin/​index.​php). The similarity score was cal-
culated for the patient’s phenotype and the prioritized 
variants. Finally, medical geneticists manually evalu-
ated the candidate variants and associated diseases. The 
variant of interest was Sanger sequenced in the proband, 
both parents, a healthy family member, and an affected 
sibling (Fig. 1).

Results
Clinical description of the patient
A 26 years old patient (II:3) presented with a history of 
progressive right leg weakness was examined. Initially, 
he was diagnosed with a distal myopathy. He has been 
complaining of right knee pain and limping to the right 
side after long-distance walks. He was free of any other 
neurological symptoms including muscle cramping, 
abnormal twitching, muscle fasciculation, and tingling 
or numbness. He was examined by a consultant neurolo-
gist. Motor nerve conduction (MNC) and sensory nerve 
conduction (SNC) studies have been performed. Moreo-
ver, electromyography (EMG) was also carried out. The 
proband has informed us about another sibling (II:6) with 
a similar clinical picture.

On physical examination, the patient (II:3) was found 
to have a clear picture of distal neuropathy as evident 
from a foot deformity, including the common pes cavus, 
hammer toes, and twisting of the ankle on both sides, 
more severe on the right side. There was a mild weak-
ness (graded as + 4) on the right foot dorsiflexion and 
the right ankle reflex was absent. Also, the pinprick and 
temperature sensation were mildly reduced in the right 
foot. The posterior column tract examination was intact 
as well as the gait was within a normal limit (Table 1).

Fig. 1  Pedigree of a family recruited for this study. A star indicates 
the family member whose DNA was available for the sequencing. 
Females are represented by circles and males by squares, those 
individuals with solid symbols have hereditary motor neuropathy 
while those with clear symbols are unaffected

http://gnomad.broadinstitute.org/
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.uniprot.org/
https://hpo.jax.org/
https://omim.org/
https://www.orpha.net/consor/cgi-bin/index.php
https://www.orpha.net/consor/cgi-bin/index.php
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Motor nerve conduction (MNC) studies
Bilateral tibial MNC studies of the abductor halluces 
revealed a normal distal nerve latency, compound mus-
cle action potential (CMAP) amplitude, and conduction 
velocity. Moreover, minimal F wave latency was also in 
the normal range. Right and left peroneal MNC studies 
recording from the extensor digitorum brevis revealed 
normal distal motor latency, CMAP amplitude (at 
2.3  mV), and conduction velocity. However, comparing 
the peroneal nerve amplitude of the right side with the 
left side, the right side amplitude was 50% less than the 
left side, although, both were within the normal limits.

Sensory nerve conduction (SNC) studies
Bilateral superficial peroneal sensory nerve conduc-
tion studies reveal normal peak latencies, sensory nerve 
action potentials (SNAP) amplitudes, and conduction 
velocities. Moreover, bilateral sural SNC studies reveal 
normal peak latencies, SNAP amplitudes and conduction 
velocities.

Needle electromyography (EMG)
Needle examination of the right first dorsal interosseous 
(FDIO) space, deltoid and extensor digitorum communis 
(EDC) revealed normal insertional activity with no spon-
taneous activity. Motor unit potentials were broad and 
of high amplitude with a slightly reduced interference 

pattern. Moreover, the right medial gastrocnemius and 
left tibialis anterior revealed normal insertional activity. 
2 + fibs (fibrillation/positive sharp waves) and positive 
sharp waves with occasional runs of complex repetitive 
discharges (CRDs) were observed. The right tibialis ante-
rior, and right vastus lateralis revealed normal insertional 
activity without any spontaneous activity. The motor unit 
potentials were of high amplitude (polyphasic) and of 
broad duration with a slightly reduced interference pat-
tern (Table 2).

Overall it is concluded from the electrophysiologi-
cal studies that the patient has active denervation in the 
right lower extremities. His clinical presentation is asym-
metrical. In general, the patient has a CMT neurological 
score of 3 based on the physical and neurophysiological 
examination [18].

A frameshift variant in the SORD gene was identified
A high-quality exome data with more than 100 × cover-
age was obtained (Table 3). Exome data analysis includ-
ing variants annotation, filtration, and prioritization 
identified a homozygous deletion variant (c.757del) in the 
SORD gene. CG dinucleotides were found deleted which 
consequently lead to a frameshift in the protein coding 
sequence. This frameshift is predicted to cause premature 
protein truncation. This variant is classified as patho-
genic according to the recommendation of the ACMG/
AMP guideline.

Table 1  Clinical features observed in the proband

Clinical features Comments

Age of onset (years) 23

Age at examination (years) 26

Family history Brother has the same symptoms

CMT subtype dHMN

Foot deformities Pes caves, hammer toes, callosities

Upper-limb weakness *Normal upper limb examination

  Proximal muscle groups *Lower limb examination: by inspection looks inverted champagne bottle

  Distal muscle groups Bilateral distal weakness including knee flexion and extension and ankle 
dorsal flexion and planter flexion, however, it is more in right than left

Reduce vibratory sensation No

Reduced pinprick superficial sensation Mild in the right foot

Disease severity Mild

Use of ankle–foot orthoses No

Other walking aids No

Nerve conduction study
  Reduced motor conduction velocity No

  Reduced sensory action potentials No

Compound muscle action potential Reduced

Charcot-Marie-Tooth disease examination score 2

Tendon reflexes Absent in ankle
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Sanger validation of variant
DNA of the proband, an affected sibling, both parents 
as well as an unaffected member of the family was PCR 
amplified using primer pair flanking SORD variant. The 
amplicons were sequenced using the Sanger approach. 
BioEdit sequence alignment tool was used to align the 
patient sequence reads with the reference sequence. The 
patient and an affected sibling were found homozygous 
for the deletion variant. However, both parents were 
found heterozygous and an unaffected member of the 
family has a wild-type sequence.

Discussion
dHMN accounted for a small proportion of inherited 
peripheral neuropathy. Considering the wide phenotypic 
and genetic heritability the diagnostic rate in dHMN 
ranges from 14 to 39% [1, 5, 11, 19, 20]. Low diagnostic 
rate in dHMN indicates the presence of an unidentified 

mutation in novel candidate genes. Large scale studies 
are needed to identify new causative mutations which 
would ultimately help in delineating the molecular mech-
anism underlying dHMN pathogenesis.

We studied a family segregating dHMN in an auto-
somal recessive manner. Electrophysiological studies 
including MNC, SNC, and EMG revealed velocities and 
amplitudes in the normal range. Clinically patient is 
showing abnormal features specifically the right side of 
the body is asymmetrically affected. The proband showed 
overlapping clinical features of both CMT type 2 and 
dHMN. However, his neurological phenotype was asym-
metrical. Due to the heterogeneous nature of the disease, 
we performed whole-exome sequencing and identified 
a homozygous dinucleotide deletion (c.757delG) in the 
SORD gene. This mutation has recently been reported as 
the most frequent cause of autosomal recessive heredi-
tary neuropathy [1, 17]. This study supports the hypoth-
esis that the specific SORD mutation (c.757delG) is the 
most common cause of childhood-onset mild form of 
the autosomal recessive dHMN. This is the first report 
of SORD mutation from Saudi Arabia and broadens the 
mutation continuum of SORD and phenotypic hetero-
geneity of the dHMN. The specific allele (c.757delG) of 
SORD is wide spread and has been reported by a group 

Table 2  Motor (MNC) and sensory nerve conduction (SNC) studies. (a) Motor nerve conduction studies. (b) Sensory nerve conduction 
studies

Nerve Lat (ms) Amp (mV) CV (m/s) F Lat (ms)

(a)

Peroneus motor right
Ankle-EDB 4.33 2.7 49.0

Fib. Hand-Ankle 10.6 2.3 47.8

Pop-Fib. head 12.6 2.3 50.0

Peroneus motor left
Ankle-EDB 4.27 4.0 46.6

Fib. Hand-Ankle 10.9 3.4 46.0

Pop-Fib. head 12.4 3.1 63.3

Tibialis motor right
Med. Mal –Abd hal 3.06 5.1 48.9

Bl. Knee-Med. mal 10.6 3.4 49.1

Tibialis motor left
Med. Mal Abd hal 3.11 6.3 46.6

Bl. Knee-Med. mal 10.6 5.6 49.4

Nerve Peak Lat (ms) Amp (uV) CV (m/s) XXXX

(b)
Suralis sensory right
Mid. Lower leg—Ext Saph 2.56 16.4 57.9

Suralis sensory left
Mid. Lower leg—Ext Saph 2.79 11.2 53.4

Table 3  Target region coverage statistics

Mean depth (x) Target base pairs covered (%)

 ≥ 1x  ≥ 5x  ≥ 10x  ≥ 20x  ≥ 50x

114.48 99.4 99.2 99.1 99.0 95.2
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from different populations including Chinese, UK, USA, 
and Turkey [17, 19–21]. This support the notion that this 
allele is of an ancient origin.

Sorbitol dehydrogenase deficiency with peripheral neu-
ropathy is associated with mutations in the SORD gene. 
To our knowledge, around 16 bi-allelic mutations in the 
SORD gene have been identified [16–20]. SORD-related 
neuropathy has been reported as one of the most fre-
quent causes of autosomal recessive CMT2 and dHMN 
[17]. The deletion mutation c.757delG (p.A253Qfs*27), 
identified in this study, is the only reported variant in 
SORD-related dHMN [16, 17, 21]. An exception is a Chi-
nese patient with dHMN harboring the compound het-
erozygous c.404 A > G and c.9081 + G > C mutation [22]. 
Almost all mutations in SORD are predicted to cause 
loss of function of sorbitol dehydrogenase, which is a key 
enzyme in sorbitol to fructose conversion. The molecular 
pathway underlying motor-predominant peripheral neu-
ropathy due to sorbitol dehydrogenase deficiency is not 
well understood.
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