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Abstract 

Background:  Tumor microenvironment plays pivotal roles in carcinogenesis, cancer development and metastasis. 
Composition of cancer immune cell subsets can be inferred by deconvolution of gene expression profile accurately. 
Compositions of the cell types in cancer microenvironment including cancer infiltrating immune and stromal cells 
have been reported to be associated with the cancer outcomes markers for cancer prognosis. However, rare studies 
have been reported on their association with the response to preoperative radiotherapy for rectal cancer.

Methods:  In this paper, we deconvoluted the immune/stromal cell composition from the gene expression profiles. 
We compared the composition of immune/stromal cell types in the RT responsive versus nonresponsive for rectal 
cancer. We also compared the peripheral blood immune cell subset composition in the stable diseases versus pro-
gressive diseases of rectal cancer patients with fluorescence-activated cell sorting from our institution.

Results:  Compared with the non-responsive group, the responsive group showed higher proportions of CD4+ T 
cell (0.1378 ± 0.0368 vs. 0.1071 ± 0.0373, p = 0.0215), adipocytes, T cells CD4 memory resting, and lower proportions 
of CD8+ T cell (0.1798 ± 0.0217 vs. 0.2104 ± 0.0415, p = 0.0239), macrophages M2, and preadipocytes in their can-
cer tissue. The responsive patients showed a higher ratio of CD4+/CD8+ T cell proportions (mean 0.7869 vs. 0.5564, 
p = 0.0210). Consistently, the peripheral blood dataset showed higher proportion of CD4+ T cells and higher ratio of 
CD4+/CD8+ T cells, and lower proportion of CD8+ T cells for favorable prognosis. We validated these results with a 
pooled dataset of GSE3493 and GSE35452, and more peripheral blood data, respectively. Finally, we imported these 
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Background
10% of estimated 19.3 million new cancer cases in 2021 
are colorectal cancer, which is ranked 3rd, with a mortal-
ity rate of 9.4%, ranked 2nd, in estimated 10 million new 
cancer deaths [1]. Among the colorectal cancer, about 1/3 
are rectal cancer. For the local advanced rectal cancer, the 
clinical guideline for treatment recommends preopera-
tive chemoradiotherapy or radiotherapy (RT) as standard 
treatment [2]. Preoperative RT has advantages in down-
staging tumor, increasing resectability, decreasing tumor 
viability, and possible sparing sphincter procedure. How-
ever, patients have different response to RT even classi-
fied as the same clinic TNM stages. Some patients’ local 
cancer may be under control without progression and 
metastasis, but this may not be the case for other patients 
[3].

The tumor microenvironment (TME) is the environ-
ment around the cancer cells within the cancer tis-
sue, including the surrounding blood vessels, infiltrated 
immune cells, surrounding fibroblasts, etc. Cell types in 
cancer microenvironment include cancer infiltrating/
resident immune cells and stromal cells [4]. Stromal cells 
mainly arise from pericytes, adipocytes, preadipocytes, 
endothelial cells, fibroblasts and myofibroblasts, etc. [5]. 
The cancer and its microenvironment are closely related 
and interact constantly, where interactions between 
cancer cells and other cell types elicit immune editing: 
immune elimination, immune equilibrium, and immune 
escape [6]. A hallmark of cancer is immune destruction 
or pro-tumor inflammation. A large amount of evidence 
demonstrates that cancer cells actively restrain or re-edu-
cate tumor-infiltrating or resident leukocytes (TILs) and 
stromal cells. Uncontrolled cancer cells induce anergy of 
T cells or apoptosis of activated T cells [7] and turn off 
the normal cytotoxic response of natural killer cells (NK 
cells) by secreting exosomes containing death ligands, 
such as FasL and TRAIL [8]. On the other hand, immune 
and stromal cells provide growth factors to support the 
survival of the cancer cells. Therefore, in vitro studies on 
cancer cells without considering the TME cannot neces-
sarily reflect the in vivo response to cancer treatment.

Cancer immune microenvironment has recently been 
recognized to play an important role in the efficacy of 
RT [9, 10]. The cancer immune microenvironment is 
classified into infiltrated-excluded, infiltrated-inflamed, 
and infiltrated-TLS (tertiary lymphoid structure), which 
is usually associated with known or unknown cancer 
molecular subtypes and relates to therapy responses 
[11]. Tumor heterogeneity control the outcome of the 
radiotherapy treatment, where non cancer cells in the 
tumor environment can attribute to the resistance of the 
cancer de novo or recur with a worse prognosis follow-
ing therapy by interacting with the cancer cells. Com-
positions of cell types in the cancer microenvironment, 
which represent the cellular level of inflammatory and 
immune circuit niche of cancer immunity, is related to 
the RT outcome [12]. Radiotherapy-mediated immuno-
genic cell death (ICD) elicited immune response may be 
limited by the presence of radioresistant suppressor cell 
types in the TME. Hypoxia plays a crucial role in radi-
oresistance due to reduced oxygen-mediated DNA dam-
age and hypoxia induced factor-1α (HIF-1α)-mediated 
cell survival. Attempts to prevent the recruitment of 
bone marrow derived cells (BMDCs) required for vascu-
logenesis are all being tested to reduce tumour hypoxia, 
improve radiotherapy responses and prevent tumour 
recurrence after therapy [13]. Antiagiogenisis drugs tar-
get endothelial cells and its interaction with tumor cells 
increase the radiosensitivity of tumors [14]. Increased 
tumor responses to neoadjuvant therapy were observed 
among rectal cancer patients taking angiotensin-convert-
ing enzyme inhibitors or angiotensin receptor blockers 
[15], possibly by vascular remodeling and modulating 
deregulated inflammation and macrophage activity [16]. 
In another study to the resistance to immune checkpoint 
blockade and to combinations of radiation plus ant-
CTLA4, researchers found that IFGN drives high levels 
of PDL1 on both melanoma cells and CD45+ cells. The 
highest level was observed on tumor-associated mac-
rophages among the immune cells, which augmented 
expression of interferon-stimulated genes and ligands 
for multiple T cell inhibitory receptors [17] in tumors. 
Tumor irradiation induces a wound healing response 

eight cell features including eosinophils and macrophage M1 to Support Vector Machines and could predict the pre-
radiotherapy responsive versus non-responsive with an accuracy of 76%, ROC AUC 0.77, 95% confidential interval of 
0.632–0.857, better than the gene signatures.

Conclusions:  Our results showed that the proportions of tumor-infiltrating subsets and peripheral blood immune 
cell subsets can be important immune cell markers and treatment targets for outcomes of radiotherapy for rectal 
cancer.

Keywords:  Cancer immune microenvironment, gene expression profile deconvolution, Cancer infiltrated immune 
cell subset, Peripheral blood immune cell subset, Response to radiotherapy
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characterized by inflammation, cancer-associated fibro-
blast (CAF) modulation and ECM remodeling, which 
may facilitate tumor recurrence. Locally active neutro-
phils were key drivers of the tumor-supportive precon-
ditioning of the lung microenvironment by enhanced 
regenerative Notch signaling [18]. Inflamatory fibroblasts 
mediate resistance to neoadjuvant therapy in rectal can-
cer [19]. A recent study [20] reports that a large portion 
of cancer resident T cells survives the clinically relevant 
radiation dose. Compared with the circulating T cells, 
cancer reprogrammed T cells are more resistant to radia-
tion. The cancer-associated T cells can lead to a response 
to RT without need of recruiting new or additional infil-
trating T cells. These T cells experienced reprogramming 
in the cancer microenvironment and resembled tissue-
resident memory T cells in transcription profiles. The 
up-regulation of the TGF beta regulator conferred this 
reprogramming and resistance to radiation [20].

Although immune cells present in blood might not 
reflect directly the components of the TME, its pres-
ence might indirectly reflect the regulators or modu-
lators present in TME [21]. Indeed, some studies have 
correlated some inflammatory biomarkers, such as T 
cells, DC or NK cells, in blood and tumor tissue samples 
and found a good correlation between both sites [22, 
23]. Resident and circulating memory T cells persist 
for years in melanoma patients with durable responses 
to immunotherapy. Paired T-cell receptor sequencing 
identified dispersed clonotypes throughout tumor, skin 
and blood highly expressed IFNG/TNF signature and 
have a strong prognostic value for patients with mela-
noma. Clonotypes from tumors were found in patient 
skin and blood up to 9 years later [24]. In another study, 
circulating immune cell phenotype dynamics, includ-
ing increased cytotoxic differentiation and strong acti-
vation of interferon signaling in peripheral T cells in 
responder patients reflected the strength of the tumor-
immune cell interactions in patients during immu-
notherapy [25]. Increased expression of CD161+ on 
CD4+ T cells, which may represent a specific subpopu-
lation of TH17, was seen in papillomavirus-related cer-
vical carcinoma patients with progressive disease, but 
not in patients with partial response or stable disease 
[26]. Peripheral white blood cell subsets in metastatic 
colorectal cancer patients treated with cetuximab have 
a potential clinical relevance to the response to therapy 
[27].

With the progress of high throughput technology, gene 
expression profiles of cancer tissues accumulated rap-
idly. Cell type deconvolution overcomes the limited small 
number of cell type-specific markers of the fluorescence-
activated cell sorting (FACS) and immunohistochemis-
try (IHC) on investigating the cell type composition of 

cancer tissue. Cell type composition of the cancer tis-
sues can be accurately inferred from the deconvolution 
of gene expression profiles [28–30]. Prediction of the 
responsiveness of rectal cancer to radiotherapy will help 
patients to gain greatest benefits from the RT. Sensitiv-
ity of cancer cells to RT [31, 32] and efficient doses[33] 
have been reported based on genomic or genetic molecu-
lar radiosensitivity markers [32, 34–36] from cancer cell 
lines. These approaches may be more accurate by consid-
ering the cell type compositions of the tumor microenvi-
ronment in predicting cancer type-specific outcomes of 
RT.

Cytolytic activity [37] has been reported to be impor-
tant for cytolytic T cells’ function in anti-cancer immu-
nity and clinical outcomes in colorectal cancer [38]. 
However, the respective contribution of the statistically 
significant differential cell types to the overall cytolytic 
activity is unknown. Less is known whether it is associ-
ated with outcomes of rectal cancer radiotherapy, and if 
yes, favorable or unfavorable. By evaluating the correla-
tion of significant tissue-resident immune/stromal cell 
fractions and cytolytic activity markers, and comparing 
the expression levels of representative cytolytic activity 
markers, cytokines and chemokines important in cancer 
immunity in RT responsive and non-responsive patients, 
we explored these questions.

This study uses deconvolution methods to infer the 
cell type composition and the immune/cytolytic activity 
from the gene expression profile of patients with rectal 
cancer before preoperative radiotherapy. We use statisti-
cal tests and machine learning to study the relationship 
between the cell type composition of rectal cancer and 
the outcome of RT. Furthermore, we explore the relation-
ship between the composition of peripheral blood white 
blood cell subsets and the prognosis of rectal cancer. We 
validated our results on combined datasets. Our results 
will provide potential markers of infiltrating/resident leu-
kocytes (TIL) and stromal cells in the prognosis of rectal 
cancer with RT. Our research may provide inspiration for 
the development of new sensitization or immunotherapy 
combinations for rectal cancer radiotherapy.

Methods
Gene expression profiles
We downloaded the microarray expression profiles 
(GSE3493 https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​
cgi?​acc=​GSE34​93) of rectal cancer from Gene Expres-
sion Omnibus (GEO). The dataset includes 46 sam-
ples consisting of 35 nonresponsive and 11 responsive 
patients. As reported in [34], response to RT was deter-
mined by histopathologic examination of surgically 
resected specimens based on a semiquantitative classifi-
cation system as described in [39]. Tumors were classified 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3493
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3493
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as “responder” when assigned to the regression grade 
2 or 3, and “nonresponder” when grade 0 or 1. Grade 0 
and Grade 1 were assigned when there were no (Grade 
0) or less than two-thirds (Grade 1) tumor cell necro-
sis or degeneration observed in response to treatment, 
respectively. Grade 2 and 3 were assigned when promi-
nent tumor cell necrosis, degeneration, lytic change, and/
or disappearance present in more than two-thirds (Grade 
2), and throughout (Grade 3) the entire lesion without 
viable tumor cells observed. Assessment was performed 
on as many pathological specimens as possible, including 
those prepared from the section of the whole tumor at its 
largest diameter [40]. The downloaded data were in nor-
malized data file format for direct analysis unless other-
wise stated. When multiple probesets correspond to one 
gene, we averaged expression levels of the probesets for 
each unique gene.

Cell type deconvolution and statistical analysis
To deconvolute the rectal cancer tissue expression pro-
files (GSE3493) into cell type composition, TIMER 
(Tumor Immune Estimation Resource) [29], CIBERSORT 
[30] and xCell [28] were run with default parameters and 
signature matrices. To keep the statistical power, we only 
kept the stromal cells inferred by the xCell while kept 
all the TILs inferred from TIMER and CIBERSORT and 
resulted in 40 cell types. The proportion of each cell type 
between RT responder and non-responders was tested 
by two-sample t-test function with the equal or unequal 
variance, or a Wilcoxon rank sum test (Mann–Whitney 
U-test) if appropriate (Matlab). The variances of clinical 
parameters were tested by the Chi-square variance test 
between RT responders and non-responders if necessary.

Stratification of T cells into cytotoxic, exhausted 
and inflammatory categories and differential analysis
We further stratified the T cells into cytotoxic, exhausted, 
and inflammatory subtypes. Activated CD8+ T cells and 
nature killer T cells represent the T cells cytotoxic. Th17, 
Th22 cells and CD8 T effector memory cells represented 
the inflammatory subtypes. We collected cell markers 
from [41] for cytotoxic and inflammatory T cell sub-
types and [42] for exhausted CD8+ T cells, respectively, 
and applied single sample Gene Set Enrichment Analy-
sis [43]. We then compared the enrichment scores of the 
gene markers of each cell types and performed differen-
tial analysis between responders and non-responders on 
GSE3493.

Validation of the cell type statistical analysis results
To validate the cell type statistical analysis results from 
GSE3493, we downloaded another dataset of rectal can-
cer gene expression profiles before chemoradiotherapy 

(GSE35452, https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​
acc.​cgi?​acc=​GSE35​452). We performed the cell type 
deconvolution as procedures mentioned above and 
pooled the deconvoluted cell type result with that from 
radiotherapy dataset GSE3493, resulting in 92 samples 
with 35 responders and 57 non-responders. Differen-
tially analysis between the two groups were performed as 
above.

Cytolytic activity calculation
Gene expression levels of cytolytic activity includ-
ing GZMA, GZMB, and PRF1, cytokine IFNG, and 
chemokine CXCL10 were compared between respon-
sive versus non-responsive rectal cancer patients based 
on t-test with equal and unequal variance or a Wilcoxon 
rank sum test (Mann–Whitney U-test) if appropriate. A 
p value < 0.05 was considered significant. Similarly, cyto-
lytic activity (CYT) score [44] was calculated as the geo-
metric mean of GZMA and PRF1 and compared between 
responsive and non-responsive rectal cancer patients.

Correlation analysis between the significant cell type 
proportions and the cytolytic activity
Association studies of the significant infiltrating immune/
stromal cell fractions with the cytolytic/immune activ-
ity molecular markers were performed based on the 
gene expression correlation pair-wise analysis across all 
patients. The analyzed significant cell types consist of 
CD4+ T cells, CD8+ T cells, preadipocyte, adipocyte, T 
cells CD4 memory resting, and macrophages M2. The 
cytolytic/immune activity molecular markers include 
GZMA, GZMB, PRF1, INFG, and CXCL10. For this anal-
ysis, we used the Matlab function corr(C, M, “type”, “ken-
dal”) of the kendal rank level correlation. C represents 
the matrix of the immune/stromal cell compositions 
with columns of cell types and rows of patient samples. 
M represents the matrix of gene expression profiles of 
cytolytic/immune activity molecular markers as columns 
and patient samples as rows. Similarly, the pair-wise cor-
relation analysis of the significant infiltrating/resident cell 
fractions between themselves were done by Matlab func-
tion corr(C, C, “type”, “kendal”) of the Kendal tau coef-
ficient, where the C represents the matrix of the cancer 
tissue-resident immune/stromal cell compositions with 
columns of cell types and rows of patient samples. The 
function corr output a r value and a p value. A p value < 
0.05 was considered significant.

Prediction of the RT outcomes
The 11 RT responsive patients were defined as posi-
tive samples and the 35 non-responsive patients were 
defined as negative samples as mentioned above in this 
section [34]. The significant cell proportion values were 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE35452
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE35452
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put together as the input vector for the support vec-
tor machine classifier. The fitcsvm and predict function 
in Matlab with default parameters were adopted in the 
training, leave one out cross-validation and independ-
ent assessments. Each significant cell type proportion 
corresponds to one element of each input vector, and all 
the proportions compose all the elements of each vector 
for each patient. Support vector machines (SVM) were 
trained on the original training dataset with one hold-out 
sample and evaluated with leave one out cross-validation 
(see Fig. 1). The influence of the imbalance of the positive 
and negative samples was mitigated by quadrupling the 
11 responsive samples.

The performance of the above eight-cell-type-propor-
tion predictors for the RT outcomes of the rectal cancers 
was compared with previously reported 33-gene radio-
sensitivity signature [34]. SVM was used as the common 
classifiers to ascertain an objective comparison, which 
is suitable for the small sample dataset in this study. The 
cell type proportions and gene expression profiles of the 

33 genes, respectively, composed the input vectors. Leave 
one sample out cross-validation (LOOCV) was used to 
estimate the performance of the SVM models. The accu-
racy, ROC, true positive rate (TPR), false positive rate 
(FPR), specificity, sensitivity, and F-score were respec-
tively calculated and compared. Specifically, the true 
positive rate equals the number of true positives (TP) 
over the sum of the true positives (TP) and false negatives 
(FN), i.e., TPR = TP/(TP + FN). The false positive rate 
equals the number of false positives (FP) over the sum 
of the number of false positives (FP) and true negatives 
(TN), i.e., FPR = FP/(FP + TN). The specificity equals 
1-FPR, while the sensitivity (or precision, PE) equals TP/
(TP + FP), and the F-score is 2 × PE × TPR/(PE + TPR).

A recent report [45] demonstrated that both nested CV 
and parameter tuning partially nested cross-validation 
produced robust and unbiased performance estimates 
regardless of the small sample size for SVM. The SVM 
nested CV and partial nested CV are defined, respec-
tively, as feature selection (t-test in this study) on pooled 

Fig. 1  The workflow of this study
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training and test data and on training data only. The per-
formance was estimated by LOOCV as above.

Fluorescence‑activated cell sorting data of peripheral 
blood cells
Data of the proportions of the peripheral blood immune 
cell subsets from fluorescence-activated cell sorting 
(FACS) of rectal cancer patients hospitalized from 2018 
through 2019 were downloaded from our institution 
system (The Center of Medical Pathology, Hefei Cancer 
Hospital, Chinese Academy of Sciences). Briefly, fast-
ing venous blood was drawn before inpatient treatment 
into anticoagulant EDTA-K2 tubes. 20 µL of CD3/CD8/
CD45/CD4 mono-antibody kit solution were added to 
the bottom of the FACS tube, and then 50  µL of fast-
ing venous blood was added to the bottom of the FACS 
tube avoiding touching the wall of the FACS tube. The 
tube cap was screwed, vortexed for 3 s, and incubated for 
15–25 min at room temperature. 1 mL buffered ammo-
nium chloride (ACK) solution was added to lyse the red 
blood cells. Tube cap were then screwed, vortexed for 
10  s, and incubated for 10  min at room temperature. 
Next, 4  mL of buffered PBS solution were added and 
centrifuged for 5  min at 500g to wash the leukocytes. 
The supernatant was discard quickly to avoid cell loss 
with about 200 µL cell solution left and the solution were 
mixed with vortex for 3  s. The above wash steps were 
repeated once and finally 200 µL PBS buffer were added 
to suspend the cells, which was ready for flow cytome-
ter (Beckman Counter Biotechnology, Suzhou Co., Ltd). 
Beijing Datong Biotech Company LTD provided all the 
reagents. Treatment records, prognostic and pathologi-
cal parameters were manually collected retrospectively 
from the Hospital Information System (HIS). Patients 
were grouped into RT and chemotherapy. According to 
response to therapies, patients were further grouped into 
progressive disease and stable disease, respectively, based 
on the Response Evaluation Criteria in Solid Tumors 
(RECIST v1) criteria.

To validate the results from the above blood dataset, 
we merged the peripheral blood data of patients hos-
pitalized in 2020 and 2021 with the above blood data-
set of 2018 through 2019. We then performed the same 
analysis on the data of all rectal cancer patients, includ-
ing pre-chemotherapy, pre-radiation and pre-chemora-
diation rectal patients.

Results
Differential tumor immune/stromal cell proportions in RT 
responders versus non‑responders
Eight of forty tested cell proportions were significantly 
different in responders (R) versus non-responders (NR) 

of RT for rectal cancer patients. Two (The propor-
tion values of macrophage M1 and eosinophils) were 
zeros in most samples (see Additional file  1). Among 
the remaining six statistically significant cell types (see 
Fig. 2 and Table 1), three cell types had higher propor-
tions in R versus NR. These cell types were CD4+ T cells 
(mean proportion R vs. NR: 0.1378 vs. 0.1071, p < 0.05, 
see Table  1), adipocytes (mean proportion R vs. NR: 
0.0479 vs. 0.0314, p < 0.05) and T cells CD4 memory 
resting (mean proportion R vs. NR: 0.0864 vs. 0.0293, 
p < 0.05). Three cell types had lower proportions in R 
versus NR. These cell types were CD8+ T cell (mean 
proportion R vs. NR: 0.1798 vs. 0.2104, p < 0.05), pread-
ipocyte (mean proportion R vs. NR: 0.0129 vs. 0.0363, 
p < 0.05), and macrophage M2 (mean proportion R vs. 
NR: 0.0144 vs. 0.0346, p < 0.05, see Table 1). The ratio of 
CD4+/CD8+ T cell proportions was significantly higher 
in R versus NR (0.7869 vs. 0.5564, p = 0.021).

Stratification of T cell subtypes
We further stratified the T cells into cytotoxic, 
exhausted, and inflammatory subtypes. The repre-
sentative T cell cytotoxic include activated CD8+ T 
cells, CD8 T effector memory cells and nature killer 
T cells. The inflammatory subtypes include Th17 and 
Th22 cells. We collected cell markers from [41] for 
cytotoxic and inflammatory T cell subtypes and [42] 
for exhausted CD8+ T cells, respectively, and applied 
single sample Gene Set Enrichment Analysis [43]. As 
detailed in Methods section, we then performed dif-
ferential analysis of responders versus nonresponders 

Fig. 2  Representative cell subtype proportions with p < 0.05 
between responders (R) versus. non-responders (NR) to RT for 
rectal cancer patients by using student t-test with equal or unequal 
variance if appropriate
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for the functional categories on GSE3493. We found 
no statistical significant cell subtypes except lower acti-
vated CD8+ T cells in RT responsive groups(p = 0.038), 
which was consistent with the lower CD8+ T cells from 
TIMER.

Validation of the cell type statistical analysis results
Microarray data are known for having larger data noise 
thus requiring a larger sample sizes to perform prog-
nostic analysis. To validate the results of the cell type 
statistical analysis from GSE3493, we downloaded 
another dataset, GSE35452, of rectal cancer pre-chem-
oradiotherapy. We performed the cell type deconvolu-
tion separately and pooled the deconvoluted cell type 
result with that from radiotherapy dataset GSE3493, 
resulting in a relatively bigger dataset of 92 samples 
with 35 responders and 57 non-responders. Differen-
tially analysis between the two groups demonstrate five 
of the six statistically significant cell types overlapping. 
Specifically, CD8+ T cell, preadipocyte, adipocyte, 
fibroblast, macrophage M2 in Table 1 were also found 
statistically significant from the pooled data (see Addi-
tional file  2). Although CD4+ T cell is not significant 
statistically, its main subset Th1 is. The difference may 
result from the treatment difference between the two 
datasets. The results demonstrated these cell types may 
be involved in regulating the response of rectal cancer 
to radiotherapy.

Correlation analysis of significant tissue‑resident immune/
stromal cell fractions and the tumor/cancer local cytolytic/
immune activity molecular markers
We analyzed previously well-characterized cytolytic/
immune activity related genes corresponding to gran-
zyme A (GZMA), granzyme B (GZMB), perforin (PRF1) 
and interferon-gamma (IFNG) and CXCL10. Chemokine 

10 (CXCL10) attracts leukocytes to infiltrate the cancer 
tissue. Gene expression levels of GZMA, GZMB, PRF1, 
IFNG and chemokine CXCL10 were compared between 
responsive versus non-responsive rectal cancer patients. 
Unexpectedly, GZMA was significantly lower in respon-
sive group (R vs. NR, 43.3 ± 21.1 vs. 90.9 ± 89.6, p = 0.006, 
t-test with unequal variance). We further calculated the 
cytolytic activity (CYT) as represented by the geometric 
mean of the expression of GZMA and PRF1 gene. Simi-
larly, the CYT was significantly higher in nonrespond-
ers than in responders (143.4 ± 77.5 vs. 99.4 ± 42.4, 
p = 0.022). Correlation analysis was performed  between 
each proportion of significant differentially distributed 
cell types and the gene expression levels of each surro-
gate gene across patients. As stated in Methods section, 
corr function output a r value, representing the extent of 
the correlation, where a higher r absolute value means a 
greater extent of the correlation and the sign of r repre-
sents the positive or negative correlation, and a p-value 
indicating the significance of the correlation. A p-value 
< 0.05 was considered significant and marked bold in 
Table  2. Results showed that CD4+ T was most signifi-
cantly and positively associated with interferon-gamma 
gene (IFNG) expression, consistent with their favorable 
role in predicting RT outcome (see Table  2). As unfa-
vorable predicting factors for RT outcome, proportions 
of preadipocyte were most negatively associated with 
perforin gene expression and proportions of macrophage 
M2 negatively correlate with PRF1 and IFNG but not 
reach the significant level. CD8+ T cellsdid not show a 
significant correlation with the expression of any of these 
five genes, only with marginal significant with PRF1 and 
INFG. Adipocyte and T cells CD4 memory resting were 
negatively and significantly associated with IFNG and 
PRF1 expression, respectively.

Table 1  Significant differential proportions of tumor immune/stromal cell types between the non-responsive and responsive rectal 
cancer tissues

SD: standard deviation; (R): propotion of respornsive; (NR): proportion of non-respondive

Cell types Methods (R) Mean ± SD (NR) Mean ± SD p value Variance type

CD4+ cells TIMER 0.1378 ± 0.0368 0.1071 ± 0.0373 0.0215 Equal

CD8+ cells TIMER 0.1798 ± 0.0217 0.2104 ± 0.0415 0.0239 Equal

0.0031 Unequal

CD4+/CD8+ ratio TIMER 0.7869 ± 0.2696 0.5564 ± 0.2813 0.0210 Equal

Preadipocytes xCell 0.0129 ± 0.0195 0.0363 ± 0.0286 0.0154 Equal

Adipocytes xCell 0.0479 ± 0.0249 0.0314 ± 0.0230 0.0210 Equal

T cells CD4 memory resting CIBERSORT 0.0864 ± 0.1149 0.0293 ± 0.0583 0.0330 Equal

Macrophages M2 CIBERSORT 0.0144 ± 0.0199 0.0346 ± 0.0380 0.0280 Unequal
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Correlation analysis of significant tissue‑resident immune/
stromal cell proportions between themselves
We performed the pair-wise correlation analysis on each 
significant tissue-resident immune/stromal cell fraction 
across patients. The results were demonstrated in Table 3. 
A p-value < 0.05 was considered significant and marked 
bold in Table 3. Results showed that CD4+ T cells had the 
most significant and negative correlation with CD8+ T 
cells, consistent with their genesis process and their roles 
in predicting RT outcome. However, the proportion of 
adipocytes as a favorable factor had a negative correla-
tion with that of CD4+ T cells. This negative relationship 
may be irrelevant to their function in mediating the out-
come of RT. Preadipocyte was relatively most independ-
ent as suggested by no significant association with any 
of the other significantly and differently distributed cell 
types. Contrary to their roles in predicting RT outcome, 
T cell CD4 memory resting was significantly and posi-
tively associated with macrophage type 2 (M2), which 
may be irrelevant to their functions in the RT efficacy.

Immune cell type based RT response prediction
The two cell types of our previously mentioned eight sig-
nificant cell types, i.e., macrophage M1 and eosinophils 
deconvoluted by CIBERSORT are zero inflated in our 
dataset, which is not suitable for t-tests as suggested. 
However, a truncated rank sum test is suitable to these 
inflated non-negative samples [46]. CIBERSORT has 
been reported to have a detection limit of 1% for samples 
with tumor content greater than 50% and 0.1% for sam-
ples with tumor content less than 50% [30]. We consider 
the first scenario where the tumor content is greater than 
50% with 1% detection limit of a cell type proportion. 
Considering the non-zero-samples are all greater than 
1% (see Additional file 1) with three exceptions of 0.76%, 
0.4% and 0.18%, and those with proportions greater than 
1% are not equally distributed in RT responders versus 
non responders. Specifically, all the non-zero-samples 
great than 1% for macrophage M1 are from 35 RT non-
responders with an averaged value of 2.55%, while non-
zero samples for eosinophils are all greater than 1% and 
from 11 RT responders, although only marginally signif-
icant as tested by using a truncated rank sum test duet 
to our sample size. Although the cell types macrophage 
M1 and eosinophils only identified in a very few sam-
ples, they are differentially distributed. Our previous 
study suggested that these features provided information 
for SVM prediction, or at least was not harmful for the 
prediction (data not shown here), with a discretization 
like effect, which is usually helpful in removing noise for 
machine learning methods. We still included the propor-
tions of these two cell types as the input into the SVM 
prediction.

Prediction of the RT outcome was performed and eval-
uated as shown in the flowchart of Fig. 1. Support vector 
machine (SVM) classifiers were used to classify patients 
into responsive and non-responsive groups based on the 

Table 2  Correlation analysis between significant cell type 
proportions and cytolytic activity molecular signatures

r, correlation coefficient; p, significance of the correlation

Correlation PRF1 IFNG

r p r p

CD4+ T cells − 0.018 0.865 0.341 0.00070
CD8+ T cells 0.192 0.061 − 0.194 0.058

Preadipocyte − 0.236 0.023 − 0.097 0.352

Adipocyte − 0.152 0.147 − 0.224 0.033
T cells CD4 
memory resting

− 0.221 0.049 − 0.019 0.873

M2 − 0.211 0.087 − 0.227 0.065

Table 3  Correlation analysis between the proportions of significant cell types

r, correlation coefficient; p,significance of the correlation

Correlation CD4+ T cells CD8+ T cells Pre-adipocyte adipocyte T cell CD4 
memory 
resting

CD8+ T cells

 r − 0.544
 p 2.00E−8

Adipocyte

 r − 0.222 0.033 0.030

 p 0.034 0.760 0.781

M2

 r 0.092 − 0.087 0.176 − 0.089 0.346
 p 0.463 0.491 0.160 0.488 0.010
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proportions of cell types. Thus, eight tumor-infiltrating 
immune cell proportions inferred from gene expression 
deconvolution were used as the input (Additional file 3, 
Table S1). Leave one out cross-validation (LOOCV) was 
used to estimate the SVM performance. We achieved an 
accuracy of 72.15% and an AUC of 0.7610. By centralizing 
the training variables with a mean of zero and unit vari-
ance, we further increased the AUC to 0.771, decreased 
the false positive rate, and increased in Specificity, Pre-
cision, and F-score (see Table 4). We then compared the 
performance of the eight significant cell type propor-
tions as markers with previously reported 33-probe sig-
nature on predicting the response to the RT for rectal 
cancer based on the same SVM model. Results showed 
a comparable or better predictive performance of the 
eight-cell-type composition markers (Additional file  3: 
Tables S1–S2). Moreover, cross-validation (CV) of both 
the SVM partial nested and completely nested CV [45] 
resulted in similar performance (see Additional file  3: 
Table  S3), suggesting no over-fitting for evaluating the 
performance of predictors and the classifier in this study.

Association of peripheral blood circulation leukocyte 
subpopulation and the outcome of RT
Patients were grouped according to response to thera-
pies (see “Method” section). We compared the average 

levels of peripheral blood circulation leukocyte subsets 
in patients with progressive disease (PD) versus stable 
disease (SD) by using the student’s t-test of equal vari-
ance for RT. The compared groups included six samples 
of stable disease and one incomplete response ver-
sus seven of progressive disease in RT. The compared 
peripheral blood circulation leukocyte subpopulation 
included CD3-CD19+ (B cells), CD3+ CD4+ (CD4+ 
T cells), CD3+ CD8+ (CD8+ T cells), CD3-CD16+ 
CD56+ (nature killer cells), CD3+ cells (CD4+ T cells 
plus CD8+ T cells), and ratio of CD4+/CD8+ T cells. 
Our results showed that CD4+ T cells and CD4+/
CD8+ T cell ratio were significantly higher on aver-
age for better prognostic in RT (Table  5). We noticed 
a significant over representation in age older than 60 
in progressive disease (Additional file 3: Table S4). We 
further examined if there was a significant difference 
between the patients older than 60 and younger than 
60. Results showed no significant difference in CD4+ 
T cells and CD4+/CD8+ T cell ratio and other tested 
cell types (Additional file  3: Table  S5), indicating the 
significant difference was not caused by the difference 
of age. This was consistent with the favorable prognos-
tics of a higher level of CD4+ T cells and CD4+/CD8+ 
T cell ratio infiltrated into the rectal cancer tissue. Our 
result demonstrated that the tissue infiltrating immune 
cell types and the blood circulation leukocyte subpopu-
lation had consistent prognostic values, suggesting the 
possible association between tissue infiltrating immune 
cell composition and blood circulation immune cell 
subset composition for radiotherapy response.

For comparison, we also compared nine patients 
with progression disease versus eight patients with 
stable diseases in chemotherapy. The statistical 
characteristics of the rectal chemotherapy patients 
showed a balanced age, sex and cancer stages (see 
Additional file  3: Table  S6). Lower levels of CD8+ T 
cells and CD3+ T cells, and a higher level of NK cells 
(CD3−CD16+CD56+) were better prognostic mark-
ers in chemotherapy (Additional file  3: Table  S7). The 

Table 4  Predictive performance of the cell type proportions 
based on support vector machine classifiers with balanced data 
of RT

Performance 8 compositions Z-score of 8 
compositions

Accuracy 0.722 0.759

AUC​ 0.761 0.771

TPR 0.727 0.727

FPR 0.286 0.200

Specificity 0.714 0.800

Precision 0.762 0.821

F-score 0.744 0.771

Table 5  Comparison of the proportions of peripheral immune cell subsets between the evaluated progressive and stable rectal 
cancer patients of RT

RT p value Progresive (mean ± sd) Stable (mean ± sd)

CD3−CD19+ 0.502 6.53 ± 4.22 7.36 ± 3.26

CD3+ CD4+ 0.00569 21.2 ± 13.7 44.4 ± 12.3

CD3+ CD8+ 0.941 27.5 ± 8.5 25.6 ± 6.49

CD3−CD16+ CD56+ 0.0634 28 ± 11.4 17.3 ± 9.81

CD3+ 0.0284 60.5 ± 12 73.2 ± 7.83

CD4+/CD8+ 0.0254 0.83 ± 0.566 1.88 ± 0.803
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results indicate that composition of the peripheral 
immune cell subset have different association with 
prognostics of different treatment modalities.

We validated the prognosis result with a total num-
ber of 255 blood samples before or during the beginning 
of regular treatment in our hospital for rectal cancer to 
mitigate the effect of the small number of samples. Char-
acteristic of the patients are shown in Additional file  3: 
Table  S8 with balanced age and sex distribution. CD4 
over CD8 ratio is still a favorable factor for the rectal 
cancer prognosis (Additional file 3: Table S9). The results 
indicate that CD4/CD8 ratio may be a marker for rectal 
cancer prognosis.

Discussion
We studied the association of the immune/stromal cell 
type compositions in the tumor microenvironment 
with the outcome of RT cancer treatment. Combing 
the results of the cell type proportions from three well-
known cell type deconvolution methods, TIMER, CIB-
ERSORT, and xCell may uncover significant cell types 
that each method cannot. Six cell types were found sig-
nificant by comparing the 40 cell type proportions in 
responsive (R) versus non-responsive (NR) rectal cancer 
tissues, i.e., CD4+ T cells, adipocyte, and CD4 memory 
cells resting as favorable prognosis factors, while CD8+ T 
cells, preadipocyte, and macrophage M2 as unfavorable 
prognosis factors. Our results are reminiscent of a recent 
study which shows the more radioresistant infiltrating 
resident immune cells than their circulating counterparts 
may elicit the efficacy of the RT treatment for the cancers 
[20].

Higher CD4+/CD8+ ratios are favorable in response to RT 
for rectal cancer
This study showed favorable CD4+/CD8+ ratios and 
unfavorable CD8+ T cell component in predicting the 
response of preoperative RT for rectal cancer. Consist-
ently, Diederichson, et al. (2003) showed a higher ratio of 
tumor infiltrating CD4+/CD8+ T cells predicts a higher 
5-year survival rate independent of Dukes stage and 
age from 41 cases [47]. Our study show reverted ratios 
of CD4+/CD8+ T cells in rectal cancer tissues and pro-
gressive disease (R vs. NR: 0.787 vs. 0.556, p < 0.05; pro-
gressive vs. stable: 0.83 vs. 1.83, p < 0.05) than normal 
value of around 2.0, which were also observed in cervi-
cal cancer [48] and breast cancer [49]. Conflicting results 
also showed that high density of CD4+ and CD8+ T cell 
in tumor were independent favorable prognostic fac-
tors for chemoradiotherapy [50] on 48 cases of rectal 
cancer. We propose that the discrepancy is due to dif-
ferent treatments. The unfavorable higher CD8+ T cells 
for radiotherapy for rectal cancer may be due to the 

cancer-educated properties of these special infiltrated 
CD8+ T cells, which is very different from the normal 
CD8+ T cells in function.

The favorable CD4+ T cells and unfavorable CD8+ 
T cells in predicting preoperative RT response of rec-
tal cancer may relate to the much higher frequency of 
tumor-specific MHC class II epitopes versus MHC class 
I epitopes, and the relative paucity of the dendritic cells 
more required for the priming of CD8+ T cells. Specifi-
cally, CD8+ T cells are MHC class I dependent, which 
is frequently downregulated in tumor immune evasion 
since it is essential for CTL-mediated tumor elimination 
[51]. CD4+ T cells are MHC class II dependent. MHC 
Class II expresses at various levels in cancers and can be 
inducible. A recent study showed that spontaneous and 
immunotherapy-induced anti-tumor responses require 
the activity of tumor-antigen-specific CD4+ T cells, 
even in tumors that do not express major histocompat-
ibility complex (MHC) class II molecules, which may be 
relevant with our finding that the higher level of CD4+ 
T cells was beneficial in RT responders of rectal cancer 
prognostics. Actually, researchers reported the cytolytic 
CD4+ T cells mediated immunity against cancer [52].

Adipocytes and T cell CD4 memory resting are 
associated with favorable prognosis, but preadipocytes 
and tumor‑associated macrophagemacrophage M2 are 
associated with unfavorable prognosis
We showed that adipocytes and preadipocytes as stro-
mal cell types were favorable and unfavorable signs, 
respectively, for RT outcomes. One study reported 
that the direct interaction between adipocytes and epi-
thelial cancer cells promoted phenotypic changes of 
cancer-associated adipocytes, which led to “adipocyte 
dedifferentiation” and ultimately to an accumulation of 
fibroblast-like preadipocytes and cancer progression. 
Another in vitro study showed that the exomes secreted 
by preadipocytes (3T3L1 cells) influenced the differentia-
tion, stemness, and migration of the cancer cells through 
miR-140/SOX2/SOX9 axis [53], which promote the pro-
gression of cancer.

A high density of tumor-associated macrophages 
(TAMs) which resembled M2 macrophages in cancer 
often correlated with poor prognosis [54]. TAMs were 
reported to be associated with poor prognostics for 
colorectal cancer [55]. Consistently, our results showed 
macrophage M2 were lower for radiosensitive than radi-
oresistant patients.

T cell CD4 memory resting was reported to correlate 
with poor outcome in colorectal cancer [56]. We found 
that T cell CD4 memory resting was favorable in predict-
ing RT outcome. T cell CD4 memory resting can gener-
ate secondary effector CD4 T cells, with a much higher 
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secondary response to neoantigen than primary effector 
CD4 T cells, which may be relevant to its favorable role 
in RT efficacy. T cell CD4 memory resting has a positive 
association with neoantigen load in many cancer types 
[57]. The discrepancy of our findings with the previous 
reports in outcome prognosis may be caused by the dif-
ferent cancer types and treatment modalities adopted.

Association study between cell type proportions 
and cytolytic activity and between themselves
Among the eight cytolyic and immune genes tested in 
this study,i.e., GZMA, GZMB, PRF1, IFNG, CXCL10, 
SCGB2A2, PDCD1, SCGB2A1, our results demon-
strated that only GZMA was significantly different, spe-
cifically lower in responsive group (R vs. NR, 43.3 ± 21.1 
vs. 90.9 ± 89.6, p = 0.006, t-test with unequal variance). 
Consistently, recent research showed that GZMA pro-
mote the colorectal cancer progression by inducing IL-6 
production through NF-κB and activating pSTAT3 in 
colorectal cancer [58]. Similarly, results showed that 
the cytolytic activity (CYT) represented by the geomet-
ric mean of the expression of GZMA and PRF1 gene 
was significantly higher in nonresponders (NR) than in 
responders (R) (143.4 ± 77.5 vs. 99.4 ± 42.4, p = 0.022). 
Contrary to our results, other study showed higher CYT 
is a favorable prognosis for colorectal cancer [38]. Since 
our result showed no significant difference of PRF1 
expression in R versus NR group, the difference in CYT 
is due to GZMA, which may be an unfavorable factor as 
reported in [58].

To characterize the cytolytic activity and functional-
ity of the six significant cell type proportions, correlation 
analysis was performed between proportions of the tis-
sue infiltrated cell subsets and the expression of cytolytic 
activity related genes including GZMA, GZMB, PRF1, 
IFNG, and CXCL10, where GZMA, GZMB and PRF1 are 
expected to be produced by cytolytic T cells and NK cells. 
Our results demonstrate consistency with their biological 
and favorable roles in RT outcome. CD4+ T cell propor-
tions were most significantly and positively associated 
with interferon-gamma gene expression. This was con-
sistent with the reports of prolonged neoadjuvant chem-
oradiotherapy leading to higher CD4+ T cells and higher 
IFN gamma level [59]. As for unfavorable predicting fac-
tors, proportions of preadipocyte were most negatively 
associated with perforin gene expression. Proportions 
of macrophage M2 negatively correlate with PRF1 and 
IFNG although not reach a significant level. As unfavora-
ble factors in predicting RT outcome, CD8+ T cells only 
show a marginal significant correlation with the expres-
sion of PRF1 and INFG. Consistent with [49] in terms of 
similar granzyme B expression in higher and lower CD8+ 
T cells distributed normal and cancer tissues reflecting 

repressed cytolytic activity. We propose that the CD8+ T 
cells are cancer-educated with changed functions in rec-
tal cancer microenvironment. Adipocyte and T cells CD4 
memory resting were negatively and significantly associ-
ated with IFNG and PRF1 expression, respectively. The 
relevance of this relationship with the rectal cancer RT 
outcome needs further study. An anti-intuitive positive 
correlation between T cell CD4 memory resting and M2, 
and a negative correlation between proportions of adipo-
cytes and CD4+ T cells were also found. The functional 
interpretation of these correlations need further study.

Stratification of T cell subtypes
We further stratified the T cells into cytotoxic, exhausted, 
and inflammatory subtypes. The representative T cell 
cytotoxic include activated CD8+ T cells and nature 
killer T cells. The inflammatory subtypes include CD8+ 
T effector memory cells. We collected cell markers from 
[41] for cytotoxic and inflammatory T cell subtypes 
and from [42] for exhausted CD8+ T cells, respectively, 
and applied single sample Gene Set Enrichment Analysis 
[43]. We then characterized these functional categories 
on GSE3493. The results from the differential analysis 
on the cytotoxic, exhausted, and inflammatory subtypes, 
showed no statistical significant cell subtypes except 
activated CD8+ T cells (p = 0.038), lower in RT respon-
sive groups, which was consistent with the results from 
TIMER, where the total CD8+ T cells was lower in RT 
responsive groups. The levels of the exhausted CD8+ T 
cells and these T cells inflammatory subtypes may not be 
relevant to the response to RT for rectal cancer, whereas 
the activated and total level of CD8+ T cells may be rel-
evant. The mechanism behind it needs further study.

Immune cell type based RT response prediction
We developed an SVM model based on significant 
immune cell type proportions only. Results from the 
leave one out cross-validation demonstrated that this 
model was better in performance compared with the 
SVM models based on previously reported RT outcome 
signatures of 33 probes. The AUC of 0.77 obtained from 
the leave one out cross-validation on the RT dataset has a 
95% confidence interval with lower and upper bound val-
ues of 0.63 and 0.86 respectively, suggesting it was signifi-
cantly better than random guess with p < 0.05. This AUC 
score is not satisfactory for clinical application. However, 
it is significantly better than random guess with a 95% 
confidential intervals of [0.632, 0.857], which is meaning-
ful for a machine learning method.

High dimensional data with a small number of samples, 
which is common for clinical gene expression data, can 
lead to over-fitting and biased machine learning (ML) 
performance estimates [45]. However, both the SVM 
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nested cross-validation (CV) and the SVM parameter 
tuning partial nested CV produced robust and unbiased 
performance estimates regardless of the small sample 
size. Our study also demonstrated that SVM parameter 
tuning partially nested leave one out cross-validation 
(LOOCV) where the t-test feature selection was con-
ducted on pooled training and test data resulted in simi-
lar performance with the SVM nested LOOCV where the 
t-test feature was conducted on training data only. That 
suggested that our LOOCV was not over-fitting.

Association between proportions of peripheral blood 
immune cell subunits and RT prognosis
Finally, we compared the peripheral blood leukocyte sub-
sets between progressive diseases and those with stable 
disease on the clinical data obtained from our institution 
(Hefei Cancer Hospital, Chinese Academy of Sciences) 
from 2018 through 2019. Higher CD4+/CD8+ ratios of 
peripheral blood were still favorable for the prognosis 
of radiotherapy and regular treatment for rectal cancer 
patients based on our combined institutional periph-
eral blood data from 2018 through the March of 2021. 
Therefore, there are consistency between compositions 
of peripheral blood immune subsets and tissue infiltrated 
immune cells. The results may suggest that the composi-
tions of immune cell subsets in peripheral blood and can-
cer immune microenvironment are predictive factors for 
RT outcome for rectal cancer.

Conclusion
Although larger datasets are required for further vali-
dation, our results indicate that tissue residue/infil-
trated immune/stromal cell types in pre-radiotherapy 
bulk cancer tissue are potential predictive markers for 
response to preoperative RT for rectal cancer. We show 
their consistency with the peripheral immune cell types 
in the prognosis of the RT response for rectal cancer in 
our independent dataset. This study suggests the possible 
important functions of pre-infiltrated/resident immune/
stromal cells in efficacy of RT and as potential combina-
tional immunotherapy drug targets, and peripheral blood 
cell composition as potential low-invasive predictive 
markers.
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