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Abstract 

Background:  Alzheimer’s disease (AD) is a complex neurodegenerative disorder and the most common type of 
dementia. AD is characterized by a decline of cognitive function and brain atrophy, and is highly heritable with esti-
mated heritability ranging from 60 to 80% . The most straightforward and widely used strategy to identify AD genetic 
basis is to perform genome-wide association study (GWAS) of the case-control diagnostic status. These GWAS studies 
have identified over 50 AD related susceptibility loci. Recently, imaging genetics has emerged as a new field where 
brain imaging measures are studied as quantitative traits to detect genetic factors. Given that many imaging genetics 
studies did not involve the diagnostic outcome in the analysis, the identified imaging or genetic markers may not be 
related or specific to the disease outcome.

Results:  We propose a novel method to identify disease-related genetic variants enriched by imaging endopheno-
types, which are the imaging traits associated with both genetic factors and disease status. Our analysis consists of 
three steps: (1) map the effects of a genetic variant (e.g., single nucleotide polymorphism or SNP) onto imaging traits 
across the brain using a linear regression model, (2) map the effects of a diagnosis phenotype onto imaging traits 
across the brain using a linear regression model, and (3) detect SNP-diagnosis association via correlating the SNP 
effects with the diagnostic effects on the brain-wide imaging traits. We demonstrate the promise of our approach 
by applying it to the Alzheimer’s Disease Neuroimaging Initiative database. Among 54 AD related susceptibility loci 
reported in prior large-scale AD GWAS, our approach identifies 41 of those from a much smaller study cohort while 
the standard association approaches identify only two of those. Clearly, the proposed imaging endophenotype 
enriched approach can reveal promising AD genetic variants undetectable using the traditional method.

Conclusion:  We have proposed a novel method to identify AD genetic variants enriched by brain-wide imaging 
endophenotypes. This approach can not only boost detection power, but also reveal interesting biological pathways 
from genetic determinants to intermediate brain traits and to phenotypic AD outcomes.
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Background
Alzheimer’s Disease (AD) is a complex neurodegenera-
tive disorder, and the most common type of dementia 
[1]. Today, approximately 5.8 million people are suf-
fering from AD-related dementia in the United States, 
and it is expected to exceed 13.8 million by 2050 [2]. 
AD is characterized by a decline of cognitive function 
and brain atrophy, and it is highly heritable with esti-
mated heritability ranging from 60 to 80% [3]. The most 
straightforward and widely used strategy to identify 
AD-related genetic markers such as single-nucleotide 
polymorphisms (SNPs) is to perform genome-wide 
association studies (GWAS) or GWAS-based meta-
analyses on a case-control diagnostic phenotype. Using 
this strategy, recent studies (e.g., [1, 4, 5]) have identi-
fied over 50 AD related susceptibility loci. This method 
faces a major burden for multiple comparison correc-
tion and thus requires a large sample size to detect 
SNPs with small effect sizes.

To address this challenge, imaging genetics [6] is 
emerging as a new promising field, where imaging 
quantitative traits (QTs) are used as phenotypes to 
identify relevant genetic markers. Of note, imaging 
QTs are quantitative measures, statistically more pow-
erful than binary case-control status, and thus have 
greater potential to identify subtle genetic signals with 
small effect sizes from study cohorts of moderate sam-
ple sizes [7]. For example, Shen et al. [8] used cortical 
thickness, volume, and gray matter density measures as 
QTs to examine genetic effects in AD. Given that many 
imaging genetics studies did not involve the diagnostic 
outcome directly in the analyses, the identified imaging 
or genetic markers may not be related or specific to dis-
ease outcomes such as AD.

To bridge this gap, we propose an innovative method 
to identify disease-related genetic variants enriched by 
imaging endophenotypes, which are the imaging traits 
associated with both genetic factors and disease status. 
We demonstrate the promise of our method by apply-
ing it to the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) database [9]. Our major contributions are 
twofold: (1) We propose a novel approach to identify 
AD genetic variants enriched by brain-wide imaging 
endophenotypes. This approach can not only boost 
detection power, but also reveal interesting biological 
pathways from genetic determinants to intermediate 
brain traits and then to phenotypic AD outcomes. (2) 
We show the effectiveness of our approach in an empir-
ical study to link genetics with three disease outcomes 

[i.e., early mild cognitive impairment (EMCI), late MCI 
(LMCI), and AD] via mapping and correlating their 
associations with region-based amyloid imaging QTs 
across the brain.

Results
We first report the results of our first experiment. In this 
experiment, to demonstrate the promise of our approach, 
we performed a comparative study with a few conven-
tional genetic association methods. The benchmark algo-
rithms used in this work include: (1) conventional GWAS 
analysis controlled for relevant covariates including age, 
sex and education (implemented in PLINK v1.90), (2) 
Pearson’s correlation analysis between each SNP and 
each diagnosis outcome, and (3) the partial correlation 
analysis between each SNP and each diagnosis outcome 
while controling for relevant covariates. We performed 
empirical comparison on the real imaging genetics data 
from the ADNI cohort. On the genetics side, we analyzed 
54 AD SNPs identified in recent landmark AD GWAS 
studies [1, 4, 5]. On the imaging QT side, we analyzed 
the AV-45 PET data due to its high sensitivity and speci-
ficity for distinguishing AD from MCI and CN [10, 11]. 
Three case-control comparisons (i.e., CN vs EMCI, CN 
vs LMCI, CN vs AD) were studied to explore imaging 
genetic effects on different disease stages.

Identification of genetic variants associated with diagnosis 
based on GWAS analysis
Conventional GWAS analysis was applied to identify 
genetic variants for three diagnostic outcomes (i.e., CN 
vs. AD, CN vs. LMCI, and CN vs. EMCL), respectively. 
APOE-rs429358 ( corrected-p = 6.23× 10−13 ) and 
PVRL2-rs41289512 ( corrected-p = 2.09× 10−4 ) were 
significantly associated with AD diagnosis, and 2) APOE-
rs429358 ( corrected-p = 2.51× 10−3 ) was also signifi-
cantly associated with LMCI diagnosis. No significant 
SNPs were identified to be associated with EMCI diagno-
sis. Table 1 shows the detailed results.

Identification of genetic variants associated with diagnosis 
based on correlation analysis
The Pearson’s correlation and partial correlation analyses 
were applied to identify genetic variants related to three 
diagnostic outcomes. These two correlation analyses 
yielded very similar genetic findings. The detailed results 
are shown in Tables 1 and 2.

For Pearson’s correlation analysis, we 
observed that APOE-rs429358 was significantly 
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correlated with all three diagnoses (i.e., r = 0.42 and 
corrected-p = 1.15× 10−18 for AD diagnosis, r = 0.18 
and corrected-p = 5.40× 10−3 for LMCI diagno-
sis, and r = 0.26 and corrected-p = 1.04 × 10−6 for 
EMCI diagnosis), and PVRL2-rs41289512 was sig-
nificantly correlated with AD diagnosis ( r = 0.22 and 
corrected-p = 2.75× 10−4).

For partial correlation analysis, we observed 
that APOE-rs429358 was significantly corre-
lated with all three diagnoses (i.e., r = 0.44 and 
corrected-p = 1.20× 10−20 for AD diagnosis, r = 0.28 
and corrected-p = 6.15× 10−8 for LMCI diagno-
sis, and r = 0.20 and corrected-p = 2.32× 10−4 
for EMCI diagnosis), and PVRL2-rs41289512 was 

significantly correlated with AD diagnosis ( r = 0.23 and 
corrected-p = 6.66× 10−5).

Identification of genetic variants associated with diagnosis 
via correlating their effect maps on brain
Step 1. Imaging‑diagnosis association analysis
The linear regression model was applied to examine 
the diagnostic effect on AV-45 imaging QTs. Figure  1 
shows the resulting p-value maps for three comparisons 
(i.e., CN vs. EMCI, CN vs. LMCI, CN vs. AD), where 
−log10(p) values are shown. On average, CN versus AD 
yielded the most significant diagnostic effects on imaging 
QTs, and CN versus EMCI yielded the least significant 

Table 1  The comparison of identified genetic variants.

We compare the significance of the identified genetic variants using the GWAS, Pearson’s correlation, partial correlation, and our model. Corrected-p values are 
reported in the format of −log10(p)
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Table 2  The comparison of the identified genetic variants.
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We compare correlation coefficients of identified genetic variants using Pearson’s correlation, partial correlation, and our model. We removed all non-significant 
genetic variants (corrected-p > 0.05). We also removed GWAS results because it is based on the regression model. Red and blue colors correspond to identified genetic 
variants with positive and negative correlation coefficients, respectively

Fig. 1  The significance heat map for imaging-diagnosis analysis. The effect of the diagnosis outcome on AV-45 imaging QT data is estimated at 
each ROI. For each ROI-diagnosis pair, −log10(p) is color-coded and shown in the heat map
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ones. This matches our intuition about the abnormal-
ity change of the amyloid imaging QTs over the disease 
progression. Table 3 shows the top 10 significant regions 
for the three analyses. Eight regions are common across 
the three disease stages, including left and right medial 
orbital superior frontal gyrus, rectus and middle orbital 
frontal gyrus, right superior orbital frontal gyrus, and left 
middle temporal gyrus.

Step 2. Imaging‑genetics association analysis
We performed an univariate imaging genetics analysis 
to examine genetic effects of each studied SNP on each 
AV-45 imaging QT. Figure 1 shows the resulting p-value 
maps for three groups (i.e., CN vs. EMCI, CN vs. LMCI, 
CN vs. AD), where −log10(p) values are shown. The imag-
ing genetic patterns appear to be similar among these 
three groups, while CN versus AD and CN versus LMCI 
yielded slightly stronger imaging genetic associations 
than CN versus EMCI. In all three cases, APOE-rs429358 
and PVRL2-rs41289512 have significant effects on most 
of the ROIs. Specifically, most of the 116 brain ROIs (i.e., 
97 ROIs for CN vs. AD, 98 ROIs for CN vs. LMCI, and 89 
ROIs for CN vs. EMCI) were significantly associated with 
APOE-rs429358. The PVRL2-rs41289512 had significant 
genetic effects on 79 ROIs for CN versus AD, 68 ROIs for 
LMCI versus AD, and 65 ROIs for CN versus EMCI. The 
full list of SNP-ROI findings for the three comparisons 
are available in Additional file 1: Table S1.

Step 3. Correlation analysis between brain maps 
of diagnostic effect vs genetic effect
After estimating genetic and diagnostic effects on the 
AV-45 imaging QTs, we performed the Pearson’s corre-
lation analysis to identify the genetic variants associated 
with the diagnosis outcomes via correlating the genetic 

and diagnostic maps in the brain. In Tables 1 and 2, we 
observed that APOE-rs429358 obtained the highest 
correlations with all three diagnoses (i.e., r = 0.88 and 
corrected-p = 1.35× 10−36 for AD diagnosis, r = 0.90 
and corrected-p = 1.99× 10−41 for LMCI diagno-
sis, and r = 0.88 and corrected-p = 1.53× 10−35 for 
EMCI diagnosis), and PVRL2-rs41289512 obtained 
the second highest correlations (i.e., r = 0.80 and 
corrected-p = 5.82× 10−25 for AD diagnosis, r = 0.74 
and corrected-p = 1.72× 10−19 for LMCI diagnosis, 
and r = 0.86 and corrected-p = 1.33× 10−33 for EMCI 
diagnosis). According to Tables 1 and 2, we observed that 
our newly proposed method identified a lot more signifi-
cant SNPs in all three comparisons than the convectional 
GWAS and Pearson’s correlation and partial correlation 
analyses. This shows the promise of our method, which 
identifies SNP-diagnosis associations through mapping 
their effects on the imaging QTs across the brain. Many 
of these QTs can serve as endophenotypes linking genetic 
factors to disease outcomes. This approach can not only 
boost detection power, but also reveal interesting biologi-
cal pathways from genetic determinants to intermediate 
brain traits and to phenotypic AD outcomes.

Comparison with analyzing “non‑AD” SNPs
Now we report the results of our second experiment, 
which is designed to compare the findings between the 
analysis of the above 54 AD susceptibility loci versus the 
analysis of a same number of random “non-AD” SNPs 
that have not been linked to AD before. As mentioned in 
the “Methods” section, we ran our pipeline 10,000 times, 
and each time it was applied to 54 randomly selected 
“non-AD” SNPs. Figure  2 shows the distribution of the 
number of significant findings across these 10,000 anal-
yses on the random “non-AD” SNPs. For comparison 

Table 3  Top 10 significant ROIs from imaging-diagnosis analysis.

We examine the spatial effect of diagnosis outcomes (i.e., CN vs. AD, CN vs. LMCI, CN vs. EMCI) on the Av-45 imaging data. The significant level of the diagnostic effect 
on the ROI is reported in the format of −log10(p)

Rank CN versus AD CN versus LMCI CN versus EMCI

ROI p-value ROI p-value ROI p-value

1 Frontal_Med_Orb_L 28.26 Frontal_Mid_Orb_L 11.94 Frontal_Mid_Orb_L 8.31

2 Rectus_L 26.92 Rectus_L 11.83 Frontal_Mid_Orb_R 7.94

3 Frontal_Med_Orb_R 25.86 Frontal_Mid_Orb_R 11.78 Frontal_Mid_L 7.83

4 Frontal_Mid_Orb_R 25.06 Frontal_Med_Orb_R 11.63 Frontal_Mid_R 7.45

5 Rectus_R 23.87 Frontal_Sup_Orb_R 11.57 Frontal_Sup_Orb_R 7.36

6 Temporal_Mid_R 23.48 Frontal_Sup_Orb_L 11.47 Frontal_Sup_Orb_L 7.32

7 Frontal_Mid_Orb_L 23.39 Rectus_R 11.38 Frontal_Med_Orb_L 6.77

8 Frontal_Sup_Orb_R 23.37 Frontal_Med_Orb_L 11.12 Rectus_L 6.75

9 Cingulum_Mid_L 23.16 Temporal_Mid_L 10.55 Frontal_Sup_R 6.70

10 Temporal_Mid_L 22.73 Frontal_Sup_Medial_R 10.39 Frontal_Sup_L 6.69
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purposes, the number of significant findings from analyz-
ing the 54 AD susceptibility loci is plotted as a red dash 
line in Fig. 2; and the details of these findings are shown 
in Table  1. Specifically, using this pipeline, our analysis 
on 54 AD susceptibility loci yielded 19 findings for the 
CN versus AD comparison, which outperformed 86.88% 
analyses on the random “non-AD” SNPs (Fig. 2a); yielded 
28 findings for the CN vs LMCI comparison, which out-
performed 99.35% analyses on the random “non-AD” 
SNPs (Fig. 2b); and yielded 20 findings for the CN versus 
EMCI comparison, which outperformed 81.45% analyses 
on the random “non-AD” SNPs (Fig. 2c). These findings 
indicate that our pipeline has a higher probability to iden-
tify AD susceptibility loci than random SNPs that have 
not yet been linked to AD before. Of note, our pipeline is 
not designed to directly examine SNP-diangosis associa-
tions. However, the above observation demonstrates the 
promise of our proposed strategy to identify AD-related 
SNPs through mapping brain imaging endophenotypes.

Discussion
A major challenge in AD genetics is how to effectively 
detect weak signals such as SNPs with small effect 
sizes. Various strategies have been proposed to increase 
detection power in genetic association studies [6]. For 
example, one approach could be to focus on analyzing 
a small number of prioritized SNPs with relevant func-
tional annotation (e.g., those from the amyloid pathway, 
or expression QT loci related to brain tissues) to reduce 
burden for multiple comparison correction. Another 
approach could be to use enrichment analysis to look for 
stronger collective effects at the pathway or network level 
instead of the individual effect from each single SNP.

In this work, we have proposed an innovative pipeline 
to identify interesting SNP-disease associations sup-
ported or enriched by the intermediate imaging QTs 
(endophenotypes) across the entire brain. To the best of 

our knowledge, this is the first approach to enrich genetic 
variants associated with AD via mapping their asso-
ciation patterns with imaging QTs in the brain. In our 
empirical study on the ADNI data, we confirmed multi-
ple genetic variants estimated by conventional models, 
such as APOE ( corrected-p = 1.35× 10−36 , rs429358) 
and PVRL2 ( corrected-p = 5.82× 10−25 , rs41289512), 
as well as other AD-related genetic variants shown in 
Tables 1 and 2. Furthermore, we demonstrated our anal-
ysis could identify a lot more SNPs than conventional 
approaches. In addition, the significant imaging QTs 
identified in Figs.  1, 2, 3 have the potential to serve as 
imaging endophenotypes linking the genetic variant with 
the disease outcome.

The traditional strategy for identifying genetic variants 
related to diagnosis is GWAS analysis, which tests the 
effect of SNP on the diagnostic outcome. Although it has 
been widely used, a conventional GWAS analysis does 
not have enough power to identify weak signals from 
moderately sized study samples. Joint mapping of SNP 
and diagnostic effects via neuroimaging data, which pro-
vide quantifiable traits of disease, can potentially reveal 
new insights to identify weak but meaningful endophe-
notype-backed genetic signals for the disease outcome. 
Compared to traditional strategy, our approach obtained 
much stronger signals of significance as well as correla-
tion coefficients and identified a lot more interesting 
genetic variants missed by traditional methods, as shown 
in Table  1. For example, our approach yielded a much 
more significant APOE-rs429358 signal than traditional 
methods. Even though all 54 SNPs have been associated 
with AD in prior large-scale GWAS studies, applying 
traditional methods to our moderately sized ADNI sam-
ple only yielded two significant SNPs. However, using 
the proposed method, we obtained 41 significant SNPs. 
These findings suggest that the proposed method has the 
potential to boost the detection power.

Fig. 2  The distribution of the number of SNPs identified from applying the proposed pipeline to randomly selected 54 SNPs (across 10,000 runs). 
a–c show the histograms of the number of SNPs identified for three different diagnostic comparisons (i.e., CN vs. AD, CN vs. LMCI, and CN vs. EMCI) 
respectively. The red dashed line indicates the number of SNPs identified from the pipeline using 54 AD susceptibility loci
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In our analysis, the following 16 SNPs were found 
significantly correlated with two or three diagnos-
tic outcomes: rs4574098, rs35349669, rs6448453, 
rs2718058, rs1859788, rs1476679, rs12539172, rs867611, 
rs17125924, rs17125944, rs12590654, rs28394864, 
rs28394864, rs6014724 and rs6024870. Furthermore, 
the following five SNPs were significant and positively 
correlated with all diagnosis outcomes: rs9271058, 
rs3752246, rs4147929, rs41289512, and rs429358. These 
identified SNPs have the same sign of correlation coef-
ficients. Our findings are in accordance with previous 
studies [12–20]. For example, rs9271058 was associated 
with higher expression levels of HLA-DRB1 in various 
brain regions  [15]. The rs3752246 G allele carriers were 
observed to have an increased risk for developing AD 
considering C/C genotype as reference category  [21]. A 
recent study showed that the rs4147929 variant minor A 
allele could significantly increase ABCA7 expression, and 
ABCA7 showed significantly increased gene expression 
in AD patients compared with controls [22]. These find-
ings demonstrate the effectiveness of our model on iden-
tifying biologically meaningful genetic findings.

Interestingly, we found that only one SNP (i.e., CD33, 
rs3865444) reported mixed signs of correlation coeffi-
cients (i.e., -0.40 for AD diagnosis, 0.45 for LMCI diagno-
sis, -0.41 for EMCI diagnosis). A previous study showed 
a bidirectional modulation of CD33 genotype associated 
cognitive performance [23]. The CD33 genotype had 
a positive correlation with cognitive function than the 
CD33 when the precuneus gFCD is lower than 0.04 a. 
However, the relationship became negative when gFCD 
in precuneus increased to 0.58. With these observations, 
it warrants further investigation on independent cohorts 
to have a better understanding of the mixed directional-
ity on the association between CD33 rs3865444 and dif-
ferent diagnostic stages.

In our second experiment, we performed compara-
tive studies through applying the proposed pipeline to 
random “non-AD” SNPs. It is promising that our pipe-
line has been able to to identify a lot more AD suscep-
tibility loci than random SNPs that have not yet been 
linked to AD before. However, these random SNP anal-
yses have also yielded some significant findings, which 
warrant further investigation towards a few interesting 

Fig. 3  The significance heat map for imaging-genetics analysis. Sub-figures (a), (b), (c) show the p-value significance of imaging-genetics analysis 
for all SNP-ROI pairs on three data sets (i.e., CN vs. AD, CN vs. LMCI, and CN vs. EMCI), respectively. For each ROI-SNP pair, −log10(p) is color-coded 
and shown in the heat map
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directions. First, some of these findings could be true 
signals missed by the existing studies (e.g., due to small 
effect sizes). Thus, our findings could provide valuable 
guidance for subsequent replication studies in independ-
ent cohorts. Second, some of the findings may not have 
a direct effect on the diagnosis. However, by the design 
of our pipeline, these findings are indirectly connected 
to the diagnostic phenotype via being related to a same 
set of imaging endophenotypes. Such a mechanism war-
rants a more detailed further investigation. Third, some 
of these findings could be false discoveries. One potential 
limitation of our method is that we include all the ROIs 
in the brain while correlating the genetic map with the 
diagnostic map. It is likely that some ROIs are irrelevant 
to the pathway from genetics to phenotypical outcomes. 
They may introduce noises and biases, leading to pos-
sible false discoveries. Thus, an interesting future direc-
tion could be to identify only relevant ROIs for mapping 
genetic and diagnostic effects. Another interesting direc-
tion could be to explore different and improved mapping 
strategies. For example, the current pipeline employs a 
linear regression model in both Step 1 and Step 2. This 
simple modeling strategy coupled with the existence of 
irrelevant ROIs could lead to false positive or negative 
discoveries. Expanding to a nonlinear model, such as pol-
ynomial regression or a fully connected neural network 
model, has the potential to capture complex associations 
and improve biomarker identification. This remains as an 
interesting future topic to explore.

Conclusion
We have proposed an innovative method to identify dis-
ease-related genetic variants enriched by imaging endo-
phenotypes, which are the imaging quantitative traits 
(QTs) associated with both genetic factors and disease 
status. Our approach consists of three steps: (1) asso-
ciation analysis between imaging QTs and diagnosis, 
(2) association analysis between imaging QTs and each 
genetic variant, and (3) correlation analysis between two 
brain maps produced in Step 1 (i.e., map of diagnostic 
effect) and Step 2 (i.e., map of genetic effect). We applied 
our method to the ADNI cohort to identify genetic mark-
ers enriched by amyloid imaging endophenotypes in 
AD. Among 54 AD related susceptibility loci reported in 

prior large-scale AD GWAS, our approach identified 41 
of those from a much smaller study cohort (i.e., ADNI) 
while the standard genetic assocation approaches identi-
fied only two of those. Our method yielded not only a lot 
more AD genetic variants undetectable using the tradi-
tional method but also a set of imaging QTs significantly 
associated with both the genetic variant and the diag-
nostic outcome. Such QTs have the potential to serve as 
imaging endophenotypes linking genetics with AD out-
comes. These promising findings demonstrate that our 
approach can not only boost detection power, but also 
provide valuable information for revealing interesting 
biological pathways from genetics to brain traits and to 
AD outcomes. An interesting future topic is to perform 
an in-depth investigation to explore the detailed relation-
ships between the identified genetic markers and brain 
imaging traits for different disease stages.

Methods
Data description
Data used in the preparation of this article were obtained 
from the ADNI database (adni.loni.usc.edu) [9]. The 
ADNI was launched in 2003 as a public-private partner-
ship, led by Principal Investigator Michael W. Weiner, 
MD. The primary goal of ADNI has been to test whether 
serial magnetic resonance imaging (MRI), positron emis-
sion tomography (PET), other biological markers, and 
clinical and neuropsychological assessment can be com-
bined to measure the progression of MCI and early AD. 
For up-to-date information, see www.adni-info.org. In 
this work, participants (N=971) include 202 AD, 218 
LMCI, 296 EMCI, and 255 cognitively normal (CN) 
subjects with complete baseline data including [ 18F]flor-
betapir (AV-45) PET scans (measuring amyloid burden), 
genotyping data, demographic information, and clinical 
assessments downloaded from the ADNI database (adni.
loni.usc.edu). Demographic and clinical assessments of 
the participants are shown in Table 4.

Data preprocessing
Preprocessed AV-45 PET scans are collected and aligned 
to the Montreal Neurological Institute space as 2× 2× 2 
mm voxels. Standard uptake value ratio is computed 
by intensity normalization based on a cerebellar crus 

Table 4  Demographic information

CN EMCI LMCI AD Total

Number of subject 255 296 218 202 971

Age 76.35 ± 6.54 71.78 ± 7.28 74.71 ± 8.39 75.85 ± 7.67 74.48 ± 7.67

Sex (Male/Female) 132/123 167/129 129/89 123/79 551/420

Education (Year) 16.37 ± 2.64 12.12 ± 2.64 16.12 ± 2.94 15.83 ± 2.81 16.13 ± 2.75
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reference region. We then extract regional neuroimag-
ing measurements from 116 regions-of-interests (ROIs) 
based on the automated anatomical labeling (AAL) atlas. 
The genotyping data are downloaded and analyzed using 
PLINK v1.90 [24]. We perform quality control using the 
following criteria: genotyping call rate > 95% , minor 
allele frequency > 5% , and Hardy Weinberg Equilibrium 
> 1.00× 10−6 . Then, we select 54 susceptibility loci iden-
tified by recent AD GWAS or GWAS meta-analysis [1, 4, 
5]. The full list of susceptibility loci are shown in Table 5. 
In addition, we also perform some comparison analyses 
on “non-AD” related SNPs, which are randomly selected 
from loci with p-values larger than 0.05 using the sum-
mary statistics in a recent landmark AD GWAS study [1].

Proposed pipeline for linking SNPs with diagnosis 
via mapping their regional associations with amyloid 
imaging QTs across the brain.
The proposed pipeline aims to identify genetic markers 
enriched by amyloid imaging endophenotypes in AD. The 

pipeline consists of three steps: (1) association analysis 
between imaging QTs and diagnosis, (2) association analy-
sis between imaging QTs and each genetic variant, and (3) 
correlation analysis between two brain maps produced in 
Step 1 (i.e., map of diagnostic effect) and Step 2 (i.e., map of 
genetic effect).

Step 1. Imaging‑diagnosis association analysis
Let x be a diagnostic outcome (i.e., case vs. control) and Y 
be a set of AV-45 imaging QTs. We perform the following 
simple linear regression model to examine the diagnostic 
effect on each imaging QT y ∈ Y .

where Z = (z1, . . . , zk)
T includes the variables whose 

effects we want to exclude, such as age, sex, and educa-
tion; β and Ŵ = (γ1, . . . , γk) are the coefficients; and ǫ is 
the error term. Our goal is to estimate β and also test if 
the diagnosis x has a significant effect (i.e. β  = 0 ) on each 

(1)y = βx + ŴZ + ǫ,

Table 5  Selected AD-related SNPs.

These include 54 susceptibility loci identified by recent landmark AD genetic studies [1, 4, 5]

rs-ID Chromosome Position Gene Symbol rs-ID Chromosome Position Gene Symbol

rs4575098 chr1 161155392 ADAMTS4 rs7920721 chr10 11720308 ECHDC3

rs6656401 chr1 207692049 CR1 rs3740688 chr11 47380340 SPI1

rs2093760 chr1 207786828 CR1 rs10838725 chr11 47557871 CELF1

rs4844610 chr1 207802552 CR1 rs983392 chr11 59923508 MS4A6A

rs4663105 chr2 127891427 BIN1 rs7933202 chr11 59936926 MS4A2

rs6733839 chr2 127892810 BIN1 rs2081545 chr11 59958380 MS4A6A

rs10933431 chr2 233981912 INPP5D rs867611 chr11 85776544 PICALM

rs35349669 chr2 234068476 INPP5D rs10792832 chr11 85867875 PICALM

rs6448453 chr4 11026028 CLNK rs3851179 chr11 85868640 PICALM

rs190982 chr5 88223420 MEF2C-AS1 rs17125924 chr14 53391680 FERMT2

rs9271058 chr6 32575406 HLA-DRB1 rs17125944 chr14 53400629 FERMT2

rs9473117 chr6 47431284 CD2AP rs10498633 chr14 92926952 SLC24A4

rs9381563 chr6 47432637 CD2AP rs12881735 chr14 92932828 SLC24A4

rs10948363 chr6 47487762 CD2AP rs12590654 chr14 92938855 SLC24A4

rs2718058 chr7 37841534 GPR141 rs442495 chr15 59022615 ADAM10

rs4723711 chr7 37844263 GPR141 rs59735493 chr16 31133100 KAT8

rs1859788 chr7 99971834 PILRA rs113260531 chr17 5138980 SCIMP

rs1476679 chr7 100004446 ZCWPW1 rs28394864 chr17 47450775 ABI3

rs12539172 chr7 100091795 NYAP1 rs111278892 chr19 1039323 ABCA7

rs10808026 chr7 143099133 EPHA1 rs3752246 chr19 1056492 ABCA7

rs7810606 chr7 143108158 EPHA1-AS1 rs4147929 chr19 1063443 ABCA7

rs11771145 chr7 143110762 EPHA1-AS1 rs41289512 chr19 45351516 PVRL2

rs28834970 chr8 27195121 PTK2B rs3865444 chr19 51727962 CD33

rs73223431 chr8 27219987 PTK2B rs6024870 chr20 54997568 CASS4

rs4236673 chr8 27464929 CLU rs6014724 chr20 54998544 CASS4

rs9331896 chr8 27467686 CLU rs7274581 chr20 55018260 CASS4

rs11257238 chr10 11717397 ECHDC3 rs429358 chr19 45411941 APOE
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QT y ∈ Y  . As a result, we generate an ROI-based p-value 
map to quantify the significance of diagnostic effect on 
imaging data. In this work, each element of the signifi-
cance map records the “negative log p-value” −log10(p) at 
the corresponding ROI.

Step 2. Imaging‑genetics association analysis
Let G be a set of SNPs and Y be a set of AV-45 imaging 
QTs. We perform a linear regression model to estimate 
the additive effect of each SNP g ∈ G on each QT y ∈ Y  . 
The analysis is performed for all possible SNP-QT pairs, 
and thus is repeated 54 × 116 = 6, 264 times. The linear 
regression model is defined as follows.

where Z = (z1, · · · , zk)
T includes the variables whose 

effects we want to exclude, such as age, sex, and educa-
tion; α and Ŵ = (γ1, · · · , γk) are the coefficients; and ǫ is the 
error term. Our goal is to estimate α and also test if the SNP 
g has a significant effect (i.e. α  = 0 ) on each QT y ∈ Y .

Thus, we generate an ROI-based p-value map to quan-
tify the significance of genetic effects on imaging data. 
Specifically, in this work, each element of the significance 
map records the “negative log p-value” −log10(p) at the 
corresponding ROI.

Step 3. Correlation analysis between two brain maps (i.e., 
diagnostic effect vs genetic effect)
In this step, the correlation analysis is applied to score 
the similarity between two significance maps generated 
in Steps 1-2. Specifically, Step 1 results in a brain map of 
the significance level for diagnostic effects in the format of 
−log10(p) , and Step 2 results in multiple brain maps (one 
for each SNP) containing the significance level for genetic 
effects in the format of −log10(p) . We perform Pearson’s 
correlation analysis between these two maps to score their 
similarity. To identify significant correlations, we employ 
the Bonferroni method to correct for multiple comparison.

Empirical study on the ADNI data
We conduct an empirical study on the ADNI data to 
evaluate the promise of the proposed pipeline for identi-
fying novel SNPs related to AD. Our study includes two 
experiments. In the first experiment, we perform a tar-
geted analysis on 54 AD susceptibility loci (see Table 5) 
using the proposed pipeline. We compare our findings 
with those derived from conventional genetic associa-
tion methods. In the second experiment, we perform 
a comparative study exploring a same number of ran-
domly selected “non-AD” SNPs that have not yet been 
linked to AD previously. Specifically, we randomly select 
54 “non-AD” SNPs (i.e., p > 0.05 ) based on the sum-
mary statistics of a landmark AD genetics study [1], 

(2)y = αg + ŴZ + ǫ,

apply our pipeline to this SNP set, and report the num-
ber of significant findings. We repeat the above analysis 
10,000 times with a different set of 54 randomly selected 
“non-AD” SNPs in each analysis, and report the distri-
bution of the number of significant findings across all 
these analyses. We compare the number of significant 
findings from analyzing 54 AD susceptibility loci (see 
Table 5) in the first experiment with those from analyz-
ing random “non-AD” SNPs in the second experiment.
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