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A pyroptosis‑associated signature plays 
a role in prognosis prediction in clear cell renal 
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Abstract 

Background:  Approximately 90% of renal malignancies are RCCs (renal cell carcinomas), and the primary subtype in 
histology is ccRCC (clear cell RCC). In recent years, pyroptosis has been considered a kind of inflammation-related pro-
grammed cell death that participates in the invasion, metastasis, and proliferation of tumour cells, thereby influencing 
tumour prognosis. Nonetheless, the expression level of pyroptosis-associated genes in RCCs and their relationship 
with prognosis remain obscure.

Results:  In our research, 44 regulators of pyroptosis that were differentially expressed between normal kidney and 
ccRCC tissues were identified. ccRCC cases were categorized into 2 subgroups according to prognostic-related DEGs 
(differentially expressed genes), and there was a significant difference in OS (overall survival) between them. The prog-
nostic value of pyroptosis-associated genes was assessed as a signature based on a cohort from TCGA (The Cancer 
Genome Atlas). Following Cox regression with DEGs and LASSO (least absolute shrinkage and selection operator), 
a 6-gene signature was established, and all ccRCC cases in the cohort from TCGA were categorized into an LR (low-
risk) or HR (high-risk) group (P < 0.001). In combination with clinical features, risk scores were considered a predictive 
factor of OS in ccRCC. KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO (Gene Ontology) analyses suggest 
increased immunity and enrichment of genes related to immunity in the HR group.

Conclusions:  Our findings indicate that genes related to pyroptosis have an important role in tumour immunity and 
may be used to predict the prognosis of ccRCC.
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Introduction
RCCs (renal cell carcinomas) develop from renal tubular 
epithelial cells and account for approximately ninety per-
cent of all kinds of renal malignancies. The main histo-
logical type is clear cell RCC (ccRCC) [1]. The incidence 

of RCCs in most countries has increased recently, with 
400,000 new cases every year globally and over 175,000 
deaths. The mortality rate and incidence of RCC rank 3rd 
among urological malignancies worldwide [2, 3]. Radi-
cal nephrectomy is the first-line treatment for regional 
renal cancer in the early stage, though distant metas-
tasis or tumour recurrence occurs after surgery in over 
20% of patients [4]. Moreover, RCC is characterized by 
tolerance to chemotherapy and traditional radiother-
apy. Despite breakthrough advances in early diagno-
sis and comprehensive treatment of tumours in recent 
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years, surgery remains the optimal treatment for ccRCC 
patients. Developing a specific prognostic strategy is of 
great importance to improve therapeutic effects.

Pyroptosis is a novel method of programmed cell death 
that is recognized as inflammation-related necrosis of 
cells [5] and is induced by a variety of stimuli, includ-
ing heart attack, bacterial or virus infection, cancer, and 
stroke [6]. In addition to autophagy, apoptosis, and fer-
roptosis, this kind of cell death has attracted much atten-
tion recently.

The characteristics of pyroptosis are cell swelling, large 
bubbles moving from the membrane, and lysis [7]. Cas-
pase-1 [ICE for IL (interleukin)-converting enzyme], a 
member of the inflammatory caspase family, was the 
first kind of caspase discovered to be involved in facili-
tating pro-IL-1b to form mature IL-1b [8, 9]. Caspase-
1-dependent plasma membrane pores require gradients 
of cellular ions, contributing to an increase in osmotic 
pressure, which results in cell swelling and water influx 
[10]. Caspase-1 dependence, which regulates cell lysis, 
is a specific characteristic of pyroptosis but not apopto-
sis [11–13]. The gasdermin family is a major executor in 
pyroptosis and contains pejvakin (PJVK or DFNB59) and 
gasdermin-A to gasdermin-E [14]. Inflammasomes par-
ticipate in activation of Caspase-1, resulting in GSDMD 
(gasdermin D) cleavage and the maturation and secretion 
of proinflammatory factors, including IL-1B and IL-18 
[15]. In addition to GSDMD, cleavage of other kinds of 
gasdermin proteins also induces the formation of pores 
on the plasma membrane. In particular, Caspase-3 par-
ticipates in cleavage of GSDME (gasdermin E) to induce 
pyroptosis [16, 17].

According to previous studies, pyroptosis plays a piv-
otal role in the development of malignancies and anti-
tumor activities. For instance, recent research identified 
a novel gene signature related to pyroptosis that may be 
used in the prognosis of skin cutaneous melanoma [18]. 
Nonetheless, the specific effects of pyroptosis remain to 
be explored in ccRCC. Hence, this systematic study was 
conducted to explore expression differences of genes 
related to pyroptosis in ccRCC and normal tissues, and 
a new PRG (pyroptosis-related gene) prognostic risk 
signature in ccRCC was established to predict survival. 
Furthermore, phenotypes related to prognosis and rela-
tionships between the immune microenvironment of 
tumours and pyroptosis were investigated.

Materials and methods
Collection of TCGA data
Transcriptome RNA sequencing data and clinical data 
for 611 ccRCC cases (72 normal samples and 539 tumour 
samples) were downloaded (website: https://​portal.​gdc.​

cancer.​gov/; TCGA database). Samples without complete 
information were excluded.

Identification of DEGs related to pyroptosis
A total of 52 genes associated with pyroptosis were 
extracted from prior reviews [19–26], as shown in Addi-
tional file 2: Table S1. The “limma” package was used to 
find DEGs associated with pyroptosis between tumour 
and normal tissues, and 44 DEGs were identified accord-
ing to P < 0.05. Version 11.0 STRING (Search Tool for the 
Retrieval of Interacting Genes; website: https://​string-​db.​
org/) was used to construct a PPI network. The R pro-
gramming language and “pheatmap” package were uti-
lized to acquire heatmaps of the DEGs. The “igraph” and 
“reshape2” R packages were applied to evaluate relation-
ships between selected DEGs (cut-off = 0.2).

Consensus clustering
To categorize ccRCC according to consensus cluster-
ing, the “limma”, “survival” and “ConsensusClusterPlus” 
R packages were applied. Prognostic PRGs in diverse 
subgroups were screened with the "limma" R package 
(LogFC = 1, FDR = 0.05). Relationships between clinical 
characteristics (OS, overall survival) and clusters were 
evaluated using the R package “survival” and the chi-
square test. To present the results, Kaplan‒Meier (KM) 
curves and heatmaps were generated using the R pack-
ages “pheatmap”, “survival”, and “survminer”.

Development of a ccRCC prognostic model based on PRGs
Univariate Cox regression analysis was executed by using 
the “survival” R package, and the significance filter was 
set to 0.05. Cox regression analysis (least absolute shrink-
age and selection operator, LASSO) was conducted with 
the R package “glmnet” to construct a prognosis model 
using candidate genes. The minimum parameters were 
used to determine the penalty parameter (λ). The follow-
ing equation was used to calculate the RS (risk score): the 
RS equals eΣi(Coefi·Expi), where Expi denotes the expres-
sion level of each retained gene and Coefi the coefficient. 
Principal component analysis (PCA) was performed 
by applying the R package “Rtsne” according to the risk 
score. The R packages “survival” and “survminer” were 
applied for KM analyses. The R package “survivalROC” 
was employed for 1-, 3- and 5-year ROC analyses in dif-
ferent populations.

Analysis of the prognostic value of the RS
Clinical features (age, grade, sex, and T and M classi-
fication) of the patients in the cohort from TCGA were 
obtained. The RS and these extracted variables were ana-
lysed together in the regression model, with multivari-
able and univariate Cox regression models used.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://string-db.org/
https://string-db.org/
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Weighted gene coexpression network analysis (WGCNA)
First, we performed a screen for DEGs among 539 KIRC 
samples in the cohort from TCGA by using R software 
and the "limma" package. By setting screening condi-
tions of |log2FC|> 1 and P < 0.05, 4484 DEGs were iden-
tified. We subsequently tested the suitability of these 
genes and used the R package "WGCNA" to construct 
gene coexpression networks. An adjacency matrix was 
built to calculate the strength of association between 
nodes by the following formula: aij =|Sij|β (aij: adjacency 
matrix between gene i and gene j, Sij: similarity matrix 
which was achieved by Pearson correlation of all gene 
pairs, β: softpower value). In this study, the soft thresh-
old was 2, and the scale-free exponent was 0.9. Then, 
we transformed the adjacency matrix into a topologi-
cal overlap matrix (TOM), which is a method to quan-
titatively describe the similarity of nodes by comparing 
the weighted correlation between two nodes and other 
nodes. Hierarchical clustering was performed to distin-
guish differential modules, with each containing at least 
50 genes (minModuleSize = 50). Finally, we merge similar 
modules by computing the correlation between modules 
(abline = 0.25).

Analysis of gene set enrichment
The cohort patients with ccRCC from TCGA were 
assigned to 2 subgroups based on the median RS. DEGs 
between the HR (high-risk) group and the LR (low-risk) 
group were screened based on the criteria FDR < 0.01 and 
|log2FC|≥ 1.5. KEGG and GO analyses of DEGs were 
conducted using the “clusterProfiler” package. ssGSEA 
was carried out by using the “pheatmap package” and 
“gsva” packages to assess activity of the pathways linked 
to immune responses after determination of the scores 
of IIC (immune cell infiltration). Gene set enrichment 
analysis (GSEA) was used in TCGA-KIRC to identify 
the potential regulatory mechanism for six biomark-
ers between the high- and low-expression subgroups via 
GSEA software (GSEA version 4.1.0), and the R package 
named “ggplot2” was used to prepare Additional file  1: 
Fig. S4. The c2.cp.kegg.v7.5. symbols.gmt gene set from 
the KEGG database was selected as the reference gene 
set. Biological processes with a normalized p < 0.05 and a 
false discovery rate (FDR) q < 0.05 were considered statis-
tically significant.

TIMER database analysis
Comprehensive analysis was conducted using the TIMER 
database (website: https://​cistr​ome.​shiny​apps.​io/​timer), 
and IIC in over ten thousand tumours of thirty-two types 
of cancers was visualized [27]. Six subsets of tumour-
infiltrating immune cells (macrophages, dendritic cells, 

CD8 T cells, neutrophils, CD4 T cells, and B cells) are 
included in TIMER. A new statistical approach was used 
to assess abundance of the 6 types of infiltrating immune 
cells in the tumour microenvironment. The genomic, 
immunological, and clinical features of the tumour were 
comprehensively investigated by using the TIMER data-
base. For each hub gene in the risk score model, the 
SCNA (somatic copy number alteration) module of the 
TIMER tool was used to compare infiltration between 
ccRCC samples, including different SCNAs, such as high 
amplification, diploid/normal, deep deletion, arm-level 
deletion, and arm-level gain [28]. Additionally, the infil-
tration level in ccRCC samples was collected using the 
TIMER database to determine relationships with the RS 
system and six hub genes.

CIBERSORT
The proportion of 22 tumour infiltrating immune cells 
in each sample was determined by using "CIBERSORT" 
(R package). CIBERSORT predicts the proportion of 
22 immune cells in each tissue by analysing the relative 
expression levels of 547 genes in a single tissue sample 
based on gene expression profiling [29]. Normalized gene 
expression profiles of ccRCC were transformed into pro-
portions of 22 IICs. Relative expression of the 22 IICs 
in each sample was then determined. Significant results 
(P < 0.05) were selected for subsequent analysis. Correla-
tion analysis and scatter plot drawing were conducted in 
the "limma" and "ggplot2" software packages.

Statistics
R software (version 4.1.0) and the packages mentioned 
above were used for statistical analyses. The log-rank test 
and K-M method were employed for survival analyses. 
The significance of prognostic factors was evaluated by 
using multivariate and univariate Cox regression analy-
ses. The Kruskal–Wallis test and Wilcoxon rank-sum test 
were applied for subgroup differential analyses. All statis-
tical tests were two-sided. P < 0.05 was regarded as statis-
tically significant.

Results
Identification of differentially expressed PRGs 
between normal and tumour tissues
Expression levels of 52 genes related to pyroptosis in 
the database TCGA (The Cancer Genome Atlas) were 
compared between 539 tumours and 72 normal tis-
sues. Ultimately, 44 DEGs were identified. Thirteen 
genes (NLRP2, TP63, CYCS, CASP9, IL1A, CHMP2B, 
CHMP4C, CHMP3, IL1B, CHMP7, TIRAP, CASP6, 
and GSDME) were downregulated and 31 other genes 
(CHMP2A, IRF2, CHMP6, TP53, GPX4, CASP3, PLCG1, 
NOD1, GSDMD, CASP8, CHMP4A, IL18, IL6, IRF1, 

https://cistrome.shinyapps.io/timer
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NLRP1, CASP4, BAX, NLRP3, NLRP6, GSDMA, CASP1, 
GSDMB, NLRC4, PYCARD, NLRP7, GSDMC, NOD2, 
GZMB, CASP5, AIM2, GZMA) upregulated in tumour 
tissue samples. Heatmaps were used to visualize RNA 
expression of these genes (Fig.  1A, blue: low level of 
expression; red: high level of expression).

To further investigate interactions between these 
PRGs, PPI (protein‒protein interaction) analysis was 
conducted by applying the STRING platform. The results 
are illustrated in Fig. 1B. The minimum interaction score 
required for PPI analysis was 0.9 (the highest confidence). 
The top 30 hub genes according to the number of nodes 
are listed in Fig. 1C. Moreover, except for CHMP4B and 
HMGB1, DEGs between normal tissues and tumour tis-
sues are shown. The network of correlations including all 

genes linked to pyroptosis is shown in Fig. 1D (blue col-
our, negative; red colour, positive).

Tumour categorization according to DEGs linked 
to pyroptosis
To investigate the relationship of ccRCC subtypes with 
the 52 PRG levels, we screened prognostic PRGs by 
applying univariate Cox analysis and clustered the sam-
ples by the PAM (partitioning around medoid) compu-
tational method based on their expression levels. CCA 
(consensus clustering analysis) was performed by using 
data for 539 ccRCC (Additional file 6: Table S5) samples 
in TCGA. Intragroup correlation peaked when the clus-
tering variable (k) increased raised from two to ten; inter-
group correlation was lowest when k = 2, indicating that 

Fig. 1  Expressions and interactions of 44 pyroptosis-linked genes. A Heatmap (blue: low level of expression; red: high level of expression) of genes 
linked to pyroptosis between tumour (T, brilliant red) and normal (N, brilliant blue) tissues. ***P < 0.001, **P < 0.01, *P < 0.05. B Interaction between 
genes linked to pyroptosis indicated by the PPI network (the interaction score was 0.9). C Hub genes ranked by node number. D The correlation 
network of genes related to pyroptosis (blue colour, negative; red colour, positive), whereby the depth of colour represents the relative strength
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the 539 ccRCC patients could be well divided into two 
groups according to 52 PRGs, as shown in Fig. 2A. The 
clinical characteristics and gene expression profile are 
presented in a heatmap, and differences between patient 
characteristics between the two clusters are shown in 
Additional file  7: Table  S6. After comparing Cluster 1 
with Cluster 2, we observed significant differences in 
clinical stage (stage I–IV), distant metastasis (M0-1), 
Fuhrman grade (G1–G4), and tumour size (T1–T3); 

conversely, differences in the number of LNM (lymph 
node metastases), sex and age were not statistically sig-
nificant (Fig. 2B). We also compared the OS of the 2 clus-
ters, which is presented in Fig. 2C. OS was significantly 
poorer in Cluster 1 than in Cluster 2 (P < 0.001, Fig. 2C).

Prognostic value of the PRG expression signature in ccRCC​
In total, 530 ccRCC samples were matched with cor-
responding cases with complete information about 

Fig. 2  Tumour categorization according to PRGs related to prognosis. A Total of 539 ccRCC patients were assigned into 2 clusters based on the 
CCA matrix (k = 2; High expression level cluster of prognostic PRGs, C1; Low expression level cluster of prognostic PRGs; C2). B The clinicopathologic 
features and heatmap of the 2 clusters categorized by PRGs (T, N, and M classification included lymph node metastasis, tumour size, and distant 
metastasis) (P values: *P < 0.05; **P < 0.01; ***P < 0.001). C Kaplan–Meier OS curves for the 2 clusters
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survival. We used univariate Cox regression analysis 
to initially screen for survival- and pyroptosis-related 
DEGs, and 8 genes with P < 0.05 were used for analysis 
(Fig. 3A). To screen candidate genes for construction of 
the model of prognosis, Cox regression analysis (LASSO) 
was performed. Based on the optimal λ value, 6 genes 
(Fig. 3B, C) and their coefficients (Table 1) were eventu-
ally retained, and 530 patients were equally assigned into 
high- and low-risk subgroups according to the median 
score (Fig. 3D; Additional file 7: Table S6). As shown in 
Fig. 3E, PCA demonstrated that subjects with alternative 
risks could be divided into 2 clusters. The death rate was 
higher and survival time shorter in the high-risk group 
than in the low-risk group (as shown in Fig. 3F). In addi-
tion, we assessed the distribution of risk scores between 
the clusters, with significantly more high-risk patients in 
Cluster 1 than in Cluster 2 (Additional file  1: Fig. S1A, 
B). As depicted in Fig. 3G, there was a significant differ-
ence in ccRCC, and lifespan was shorter in the high-risk 
subgroup (P < 0.001, HR = 0.374, 95% CI 0.277–0.504). 
As continuous variables, a certain correlation between 
the RS and OS remained (Additional file 1: Fig. S2). The 
specificity and sensitivity of the prognostic model were 
assessed by applying a ROC (receiver operating charac-
teristic) curve, and the AUC (area under the ROC curve) 
was 0.706, 0.640, and 0.720 for 5-year, 3-year, and 1-year 
survival, respectively (Fig.  3H). As illustrated in Addi-
tional file 1: Fig. S3, we estimated the prognostic value in 
different populations, including females, males, age ≥ 60, 
age < 60, stage 1–2, stage 3–4, grade 1–2, and grade 3–4. 
Our results indicate that the PRG expression signature is 
valuable for predicting prognosis in ccRCC.

Prognostic value of the risk model in ccRCC​
To identify the prognostic value of the risk model, we 
conducted a Kaplan‒Meier analysis to confirm whether 
the genes involved in the construction of the risk model 
are associated with the prognosis of ccRCC. As indicated 
in Fig. 4A, higher levels of ELANE, AIM2, GSDMB, IL6, 
NLRP1, and NOD2 correlated positively with poor prog-
nosis. We then analysed whether the RS of the gene sig-
nature model is a factor predicting prognosis, and the 
results suggested that the RS is a predictive factor for 
prognosis in the cohort from TCGA (HR = 3.065, 95% 
CI 2.295–4.092, Fig. 4B). According to the results of mul-
tivariate analysis, after adjustment for confounding fac-
tors, the RS was found to be a predictive factor for the 

prognosis of patients with ccRCC in TCGA (HR = 2.251, 
95% CI 1.659–3.055, Fig. 4C), and a heatmap of clinical 
characteristics was generated (Fig. 4D), with a significant 
difference in tumour grade and stage between subgroups. 
These findings suggest that the prognostic model based 
on PRGs is robust and independent in the prediction of 
ccRCC prognosis.

Identifying prognostic model‑related BPs (biological 
processes)
Determining the BPs related to DEGs in the model is of 
great importance. The “limma” R package was utilized 
to obtain differentially expressed genes: FDR < 0.01, 
|log2FC|≥ 1.5. As a result, 381 DEGs in the cohort from 
TCGA were selected. A total of 378 of the 381 genes in 
the high-risk group were overexpressed, whereas reduced 
expression was indicated for the remaining 3 genes 
(Additional file 4: Table S3). KEGG pathway analysis and 
GO enrichment analysis of the selected DEGs were con-
ducted (Fig.  5). Of interest, the most enriched biologi-
cal processes are closely related to immune responses, 
inflammatory cell chemotaxis, and chemokine-mediated 
signalling pathways, including B-cell-regulated immunity, 
humoral immune responses, CXCR chemokine receptor 
binding, and TNF/NF-kappa B/IL-17 pathways. These 
findings suggest that the model of prognostic risk based 
on PRGs is associated with immune responses.

To explore the significance of these six biomarkers in 
the development of ccRCC, we assessed the underly-
ing biological mechanisms of these hub genes by GSEA. 
Interestingly, we found that these genes simultaneously 
play a positive role in multiple identical immune-related 
signalling pathways, including B-cell and T-cell receptors, 
chemokines, cytokine‒cytokine receptor interactions, 
and natural killer cell-mediated cytotoxicity pathways 
(Additional file  1: Fig. S4). Therefore, we predict that 
different immune statuses may be responsible for the 
observed differences in prognosis between clusters.

To further confirm our speculation about the potential 
BPs of the six biomarkers, coexpression network analy-
sis was performed to identify the functional modules to 
which the hub genes belong (Additional file  1: Fig. S5). 
Genes clustered in the identification module may play 
the same or similar roles [30]. Eigengenes refer to gene 
expression profiles that include modular genes sum-
marized by the first principal component. The gene sig-
nificance (GS) and module membership (MM) of these 

Fig. 3  Risk signatures were constructed using the cohort from TCGA. A ccRCC was analysed by univariate Cox regression for every DEG linked 
to pyroptosis and 8 genes with P less than 0.05. B Six genes linked to OS were analysed by LASSO regression. C The selection of parameters was 
cross-validated. D Case distribution according to the RS. E Principal component analysis for ccRCCs according to the RS. F Survival of every patient 
(the right side of the dark line, HR cases; the left side, LR cases). G KM curves for ccRCC cases in the LR group and HR group. H Predictive efficiency of 
the RS indicated by ROC curves

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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eigengenes are shown in Additional file 5: Table S4. After 
comparison, we found AIM2 and NOD2 to be simulta-
neously affiliated with the brown module; the blue mod-
ule included two hub genes, GSDMB and NLRP1, and 
IL6 belonged to the red module. Interestingly, all three 
modules were positively associated with tumorigen-
esis (Additional file 1: Fig. S5G). Next, we examined the 
GO enrichment pathways of the significant modules 
(brown, blue, and red). The gene function of the brown 
module is closely related to activation of immune path-
ways, whereas RNA splicing-related pathways are more 
enriched in the blue module, with acute inflammatory 
responses significantly enriched in the red module (Addi-
tional file 1: Fig. S6).

Evaluation of immune cell infiltration between subgroups
According to the above findings, it was proposed that the 
functions of PRGs in the prediction of ccRCC prognosis 
might be associated with the immune microenvironment, 
and the relationship between the infiltration of immune 
cells and prognosis-related genes was evaluated. Changes 
in gene copy number may affect the amount of product 
and thus the traits of the organism, including the con-
tent of immune cells in tissues. Consequently, changes 
in infiltration were explored by using samples with copy 
number alterations of ELANE, AIM2, GSDMB, IL6, 
NIRP1, and NOD2. The results showed the copy number 
of these prognosis-related PRGs to be associated with 
the immune microenvironment in ccRCC, with AIM2, 
ELANE, GSDMB, NLRP1, and NOD2 mutations inhibit-
ing infiltration of some kinds of immune cells (Fig. 6A–
F). Then, the immune estimation dataset was downloaded 
from the TIMER database, and correlations between 
infiltration of 6 types of immune cells (macrophages, 

dendritic cells, neutrophils, B cells, CD8+ T cells, and 
CD4+ T cells) and the risk score of the prognostic model 
were analysed. The data suggest that the risk score of 
the PRG-related prognostic model correlated positively 
with immune infiltration (Fig. 7A–F). To define the role 
played by the 6 prognostic PRGs in immune cell infiltra-
tion, correlations with the six immune cells in the TIMER 
database were investigated separately. As shown in Fig. 8, 
these six hub genes correlated positively with almost all 
six types of immune cells.

As a complement, we also selected CIBERSORT for 
immune microenvironment deconvolution based on bulk 
RNA-seq. Due to the lack of homogeneity in expression 
of other immune cells in KIRC samples, we only assessed 
the association of 6 immune cells with RS. Despite vari-
ability in the results obtained by the different computa-
tional methods, it is reassuring that T-cell expression 
exhibited a significant positive correlation with RS in 
patients with ccRCC (Additional file  1: Fig. S7A). The 
correlation of six hub genes with 22 types of immune 
cells was also examined (Additional file 1: Fig. S7B).

The activities of thirteen pathways related to immune 
responses and enrichment scores of sixteen kinds of 
immune cells were then compared between the HR group 
and the LR group of TCGA using ssGSEA (single-sam-
ple gene set enrichment analysis). The results revealed 
increased infiltration in the HR group, especially DCs, 
Th cells (Th2, Tfh, and Th1 cells), CD8+ T cells, mac-
rophages, B cells, Treg cells, pDCs, TILs (tumour-infil-
trating lymphocytes), and neutrophils, compared to the 
LR group, as shown in Fig. 9A. Figure 9B illustrates that 
in addition to the type II IFN response pathway, the other 
12 immune pathways were more active in the high-risk 
group than in the low-risk group.

The study design and grouping are shown in Fig. 10.

Discussion
Pyroptosis is a newly recognized kind of programmed 
cell death that has a dual role in the progression of 
malignancy and mechanisms of treatment. Inflamma-
tory cytokines are secreted in pyroptosis, and normal 
cells are stimulated, contributing to progression of can-
cer [19]. Moreover, pyroptosis can enhance cell death 
in malignancy, rendering it a possible therapeutic and 
prognostic target for malignancy [31]. How genes related 

Table 1  Construction of a pyroptosis-related signature in ccRCC​

HR, hazard ratio; CI, confidence interval

Gene name Coefficients HR (95% CI) P value

ELANE 0.003234381 1.136 (1.043–1.236) 0.003221789

AIM2 0.077194693 1.256 (1.143–1.379) 2.00E-06

GSDMB 0.267608183 1.384 (1.236–1.549) 1.82E-08

IL6 0.113880538 1.174 (1.109–1.242) 3.33E-08

NLRP1 − 0.089187177 1.263 (1.077–1.482) 0.00404868

NOD2 0.004289527 1.282 (1.135–1.447) 6.28E-05

(See figure on next page.)
Fig. 4  The RS was analysed by Cox regression. A Kaplan–Meier analysis of the six hub genes linked to pyroptosis (ELANE, AIM2, GSDMB, IL6, NLRP1, 
and NOD2) in TCGA. B Results of univariate analysis of the cohort from TCGA. C Results of multivariate analysis the cohort from TCGA. D Heatmap 
(blue colour, downregulated expression; red colour, upregulated expression) of relationships of clinical characteristics with risk groups (***P < 0.001, 
**P < 0.01, *P < 0.05)
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Fig. 4  (See legend on previous page.)
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Fig. 5  Analyses of functional enrichment. A Bubble graph showing GO enrichment. B Bubble graph of KEGG enrichment (more dark red indicates 
more notable differences, and larger bubbles indicate more genes enriched; MF, molecular function; CC, cellular component; BP, biological process; 
q-value: adjusted p value)

Fig. 6  Infiltration levels of immune cells with the six PRG mutants were linked to prognosis. A AIM2, B ELANE, C GSDMB, D IL6, E NLRP1, F NOD2. 
***P < 0.001, **P < 0.01, *P < 0.05(navy blue, Deep Deletion; light blue, Arm-level Deletion; grey, Diploid/Normal; yellow, Arm-level Gain; red, High 
Amplication; P-value refers to the correlation between different mutants and normal group)
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to pyroptosis interact with each other and whether 
they have an impact on survival time in ccRCC remain 
unknown.

In this research, mRNA expression of 52 currently 
known PRGs was first assessed in normal and ccRCC 
tissues, and 44 of them were found to be differentially 
expressed. The 2 clusters in the consensus clustering 
analysis according to the prognostic PRGs showed sig-
nificant differences in clinical characteristics, suggesting 
that pyroptosis in cancer tissues differs in ccRCC, result-
ing in different OS.

To further evaluate the prognostic value of regula-
tors related to pyroptosis, a 6-gene risk signature was 
constructed, with different OS in subgroups. Functional 
analyses showed that the DEGs between the high- and 
low-risk groups have significant differences in immune-
related pathways, consistent with our expectations. 
Pyroptosis can contribute to accumulation of various 
inflammatory factors, which also results from activation 
of inflammasomes [6, 32]. Additionally, cytokine, NF-
kappa B, IL-17, Ras, and TNF signalling pathways, which 
are closely associated with the development of RCC, were 
enriched.

We also compared pathway activation and immune 
infiltration between the HR group and the LR group, and 
the HR group showed increased activities of pathways 
related to immune responses and elevated levels of IIC 
in comparison with the LR group. Enhanced infiltration 
of immune cells was related to poor prognosis, which 
was consistent with previous studies [33]. Another key 
result of our research was that the above 6 prognostic 
genes related to pyroptosis had a significant correlation 
with immune infiltration, which further suggested the 
fact that pyroptosis has an essential role in the tumour 
immune microenvironment.

The current study found a signature of 6 genes linked 
to pyroptosis (ELANE, AIM2, GSDMB, IL6, NIRP1, and 
NOD2) and that it plays a role in predicting the OS of 
ccRCC patients. Decreased expression of AIM2 (absent 
in melanoma 2) was first found in melanoma [21]. 
AIM2 is a member of the IFN-inducible PYHIN (pyrin 
and HIN200 domain-containing) family and acts as a 
cytoplasmic sensor for DNA that bind to dsDNA (dou-
ble-stranded DNA) [34]. AIM2 activates caspase-1 via 
junctional proteins regulated by ASC to facilitate secre-
tion and maturation of IL-18 and IL-1β, thus promot-
ing pyroptosis [35]. Previous research has demonstrated 

Fig. 7  Correlation of risk scores with immune infiltration levels in ccRCC. The risk score of the PRG prognostic model correlated positively with 
infiltration levels of immune cells .A B cells, B CD4+ T cells, C CD8+ T cells, D dendritic cells, E neutrophils, F macrophages. (Cor > 0, P < 0.05)
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that AIM2 functions as a suppressor in multiple kinds of 
tumours, such as prostate cancer [36], colon cancer [37], 
melanoma [38], melanoma [39], and breast cancer but as 
a promoter in NSCLC (non-small cell lung cancer) [40], 
OSCC (oral squamous cell carcinoma) [41], and HPV 
(human papillomavirus)-associated cervical cancer [42]. 

Therefore, AIM2 might have different effects in differ-
ent tumours. In this research, expression of AIM2 was 
significantly increased in tumour tissues in comparison 
with normal tissues. Furthermore, an increased level of 
AIM2 expression was closely related to poor survival, and 
gene mutations in AIM2 might ameliorate infiltration 

Fig. 8  Correlation of six hub genes with immune infiltration levels in ccRCC. (Types of immune cells include CD8+ T cells, B cells, CD4+ T cells, 
dendritic cells, neutrophils, and macrophages.) |Cor|> 0, P < 0.05 was considered significant
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of immune cells. Thus, it has been suggested that AIM2 
functions more as a pro-oncogene. The molecular mech-
anisms of AIM2 in the development of ccRCC currently 
remain unknown, and our findings for AIM2 might pro-
vide new insight into further research.

GSDMB (gasdermin B) was the gene in the prognostic 
model most linked to the RS, suggesting that GSDMB 
might be strongly involved in ccRCC. According to 
previous research on human malignancies, GSDMB is 
upregulated in tumour tissues, including breast, uter-
ine, gastric, and cervical cancers [43]. It has been dem-
onstrated that GSDMB is located in amplicons and that 
these genomic regions are frequently amplified in can-
cer development [44]. Thus, GSDMB might participate 
in cancer development and metastasis. GSDMB can be 
cleaved into two fragments by caspase-1. One cleavage 
form is the N-terminus of the GSDMB protein, which has 
a molecular weight of 20 kDa. Pyroptosis can be caused 
by secretion of the N-terminal domain. In contrast, the 
full-length N-terminal domain and C-terminal fragment 
do not cause pyroptosis [45, 46]. In general, GSDMB may 
be a downstream protein of the pyroptosis pathway. The 
key is whether some factors trigger the upstream mecha-
nism of GSDMB and cause pyroptosis. However, the spe-
cific mechanism of GSDMB in ccRCC is not clear. The 
increased level of GSDMB in ccRCC is related to poor 
prognosis. This finding may facilitate development of 
tumour treatment targets.

ELANE (neutrophil elastase gene) is the main serine 
protease produced by neutrophils and activates proin-
flammatory cytokines, including IL-1β, IL-18, and TNF-α 
[47, 48], which are regarded as promoters of pyropto-
sis. Kambara et al. [49] showed that ELANE cleaves and 
activates GSDMD and subsequently induces pyroptosis 
in neutrophils. The ELANE expression level in the HR 
group was markedly increased compared with that in the 
LR group, but paradoxically, the neutrophil infiltration 
score was incredibly higher than that in the LR group. 
These findings may result from many complex factors 
driving the difference in gene expression between disease 
and healthy tissues, particularly levels of genes and PRGs 
linked to inflammation, such as the proportion of infil-
trated immune cells and the differentiation of ccRCC [50, 
51]. Such factors might not influence application of the 
PRG expression signature in diagnosing and predicting 
ccRCC prognosis. The relationship between expression of 
pyroptosis genes and infiltration of immune cells, ccRCC 
differentiation status, and other factors requires further 
investigation, which may provide new insight for predict-
ing ccRCC diagnosis and prognosis.

NLRP1 (NLR family, pyrin domain containing 1), a 
bipartite adaptor protein, is considered an apoptosis-
associated speck-like protein with an ASC (caspase-
recruitment domain). NLRP1 promotes the recruitment 
process of pro-caspase-1 to the inflammasome com-
plex [52]. GSDMD is cleaved by active caspase-1, allow-
ing the N-terminal domain of GSDMD to form pores 

Fig. 9  ssGSEA scores concerning immune pathways and cells. A Enrichment scores of sixteen types of immune cells between the LR group (blue 
box) and HR group (red box). B Enrichment scores of thirteen pathways linked to immunity between the high-risk (red box) and low-risk (blue box) 
groups. ***P < 0.001, **P < 0.01, *P < 0.05
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in the plasma membrane and triggering the pyroptosis 
mechanism [10, 15, 53, 54]. NOD2 (nucleotide-binding 
oligomerization domain-containing protein 2) initi-
ates NF-κB (nuclear factor-κB)-dependent and MAPK 
(mitogen-activated protein kinase)-dependent gene tran-
scription. In macrophages, NOD2 promotes activation 
of inflammatory bodies [55]. In our study, NOD2 was 
highly expressed in the HR group, which might be one 
of the reasons why we observed higher scores for mac-
rophages in the HR group than in the LR group. At the 
same time, the activation effect of NOD2 on the NF-κB 
pathway might have resulted in the high enrichment of 
this pathway in the KEGG analysis. Interestingly, as one 
of the genes in the risk prognostic model, the activated 

NF-kB pathway increases the amount of IL-6 mRNA 
[56]. In advanced metastatic breast cancer cells, overac-
tivated NF-kB promotes chromatin accessibility at the 
IL-6 promoter region and enhances transcription of the 
IL-6 gene [57]. Appropriate expression of IL-6 is of great 
importance for human immune defence, but its sustained 
production has a pivotal role in the occurrence of mul-
tiple inflammation-related diseases and cancer [58]. In 
our study, IL-6 was significantly highly expressed in the 
HR group, and we speculate that NOD2 might act as an 
upstream initiator of IL-6 to promote IL-6 expression by 
activating the NF-kB pathway.

The purpose of our research was to categorize cases 
with ccRCC into different subtypes, screen DEGs, 

Fig. 10  Specific data analysis workflow diagram
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establish a model of prognosis, and connect pyroptosis 
with prognosis. Although we conducted multiangle and 
multiomics validation, there are limitations in this study. 
All analyses were performed using the KIRC cohort from 
TCGA, and other independent datasets should be exam-
ined for validation. Additional in vivo and in vitro experi-
ments are also required to verify our findings. Pyroptosis, 
particularly the mechanism in ccRCC, has not been suffi-
ciently investigated. In addition, the occurrence of human 
diseases is caused by combined action of multiple fac-
tors, such as the social environment, genetics, and psy-
chology. As tumours develop, multiple cell death modes 
may coexist and interact [59]. Therefore, a Mendelian 
randomization study should be carried out to clarify the 
causal relationship between the six signature genes and 
prognostic outcomes [60, 61]. To make the results more 
reliable, effects of other confounding factors also need to 
be tested. We initially investigated the prognostic value 
of the 6 genes related to pyroptosis in the prognostic risk 
model, providing theoretical support for future studies.

Conclusions
In conclusion, a comprehensive and systematic bioin-
formatics analysis was performed, and we found a prog-
nostic gene signature related to pyroptosis, including six 
genes (ELANE, AIM2, GSDMB, IL6, NIRP1, and NOD2), 
for ccRCC patients. Moreover, the risk score in the prog-
nostic model according to the 6 PRGs, which are associ-
ated with the immune microenvironment, was able to act 
as an independent prognostic factor for ccRCC.
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