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genes in the prognosis, immunity, and drug 
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Abstract 

Background: Although the relationship between inflammatory response and tumor has been gradually recog-
nized, the potential implications of of inflammatory response genes in lung adenocarcinoma (LUAD) remains poorly 
investigated.

Methods: RNA sequencing and clinical data were obtained from multiple independent datasets (GSE29013, 
GSE30219, GSE31210, GSE37745, GSE42127, GSE50081, GSE68465, GSE72094, TCGA and GTEx). Unsupervised cluster-
ing analysis was used to identify different tumor subtypes, and LASSO and Cox regression analysis were applied to 
construct a novel scoring tool. We employed multiple algorithms (ssGSEA, CIBERSORT, MCP counter, and ESTIMATE) to 
better characterize the LUAD tumor microenvironment (TME) and immune landscapes. GSVA and Metascape analysis 
were performed to investigate the biological processes and pathway activity. Furthermore, ‘pRRophetic’ R package 
was used to evaluate the half inhibitory concentration (IC50) of each sample to infer drug sensitivity.

Results: We identified three distinct tumor subtypes, which were related to different clinical outcomes, biological 
pathways, and immune characteristics. A scoring tool called inflammatory response gene score (IRGS) was established 
and well validated in multiple independent cohorts, which could well divide patients into two subgroups with sig-
nificantly different prognosis. High IRGS patients, characterized by increased genomic variants and mutation burden, 
presented a worse prognosis, and might show a more favorable response to immunotherapy and chemotherapy. 
Additionally, based on the cross-talk between TNM stage, IRGS and patients clinical outcomes, we redefined the LUAD 
stage, which was called ‘IRGS-Stage’. The novel staging system could distinguish patients with different prognosis, with 
better predictive ability than the conventional TNM staging.

Conclusions: Inflammatory response genes present important potential value in the prognosis, immunity and drug 
sensitivity of LUAD. The proposed IRGS and IRGS-Stage may be promising biomarkers for estimating clinical outcomes 
in LUAD patients.
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Background
As the most common subtype of non-small cell lung can-
cer (NSCLC), lung adenocarcinoma (LUAD) has its com-
plex oncogenic mechanisms and heterogeneity [1–5]. 
This is an important reason why cancer patients at the 
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same stage have different clinical outcomes and show 
different responses to the same drug treatment. Even 
with such medical progress, the prognosis judgment and 
treatment of LUAD are still challenging. In recent years, 
a large number of studies [4–9] have attempted to con-
struct classifiers for prognostic risk stratification and 
drug response prediction in NSCLC patients. Unfor-
tunately, most of the prognostic signatures proposed in 
these studies still face some limitations of routine clini-
cal practice. In the era of precision medicine, a reliable 
prognostic stratification system is urgently needed to 
optimize patients’ prognosis prediction and treatment 
decision-making.

Inflammatory microenvironment is considered as a 
hallmark of cancer, and an increasing number of stud-
ies have gradually confirmed the effect of the inflamma-
tory response on tumorigenesis and progression [10–16]. 
TNF-a has been reported to alter the tumor microen-
vironment (TME), enhance tumor aggressiveness, and 
promote metastasis [14]. Macrophages represented a sig-
nificant portion of immune infiltrate in most cancers and 
M1 pro-inflammatory macrophages was also considered 
as anti-tumor cells [15]. Meanwhile, the CXCL1/CXCR2 
signaling pathway was also thought to play important 
roles in regulating tumor growth and promoting tumor 
metastasis [16]. However, although the relationship 
between inflammatory response and tumor has been 
gradually recognized, there is still a lack of comprehen-
sive analysis of inflammatory response genes (IRGs) in 
prognosis, immunity and drug therapy of LUAD.

In this study, we comprehensively analyzed the IRGs 
and identified three distinct tumor subtypes with obvi-
ously different clinical outcomes and immune charac-
teristics in LUAD. Besides, based on IRGs, we set up a 
scoring tool called inflammatory response  gene score 
(IRGS), which was also strongly correlated with immune 
infiltration and genomic landscape in LUAD and dis-
played the potential in predicting drug therapeutic 
responses. These findings suggested that the IRGs played 
non-negligible roles in shaping individual tumor immune 
microenvironment. Deep understanding of the multi-
faceted significance of IRGs in LUAD facilitates more 
rational intervention strategies for LUAD patients.

Materials and methods
Data download and pre‑processing
First, we obtained 200 IRGs from the GSEA website 
(http:// www. gsea- msigdb. org/ gsea/ index. jsp), and LUAD 
transcription profile data and clinical information from 
TCGA (https:// portal. gdc. cancer. gov/), GEO (https:// 
www. ncbi. nlm. nih. gov/ geo/). We also obtained 288 
lung normal tissues from the Genomic Tissue Expres-
sion (GTEx) database (https:// commo nfund. nih. gov/ 

GTEx/) to obtain adequate lung normal tissue match-
ing the tumor tissue. In total, eight LUAD-independ-
ent datasets from GEO were included in this study, all 
containing patient survival data. These datasets were 
respectively, GSE29013 [17], GSE30219 [18], GSE31210 
[19], GSE37745 [20], GSE42127 [9, 21], GSE50081 [7], 
GSE68465 [22] and GSE72094 [23]. For these data-
sets (GSE29013, GSE30219, GSE31210, GSE37745, 
and GSE50081) from the same chip platform, we used 
the "combat" algorithm of "SVA" R package to integrate 
them into a new cohort (meta-cohort) to reduce the 
batch effect caused by non biotechnology bias [24, 25]. 
In addition, we also obtained the somatic mutation data 
in LUAD from the TCGA and the copy number variation 
(CNV) data from the UCSC Xena (https:// xenab rowser. 
net).

Identification of the candidate genes and unsupervised 
clustering analysis
The ‘limma’ R package was used to explore the signifi-
cantly differentially expressed genes (DEGs) between 
lung tumor and normal tissues based on TCGA and 
GTEx databases. The cut-off value was |log2FC|> 1 and 
FDR < 0.05 (FC, fold change; FDR, false discovery rate). 
After integrating the transcriptional profiling data and 
survival data, we performed univariate Cox analysis on 
IRGs. Subsequently, unsupervised clustering analysis 
was applied to identify distinct tumor molecular sub-
types based on the expression of these candidate genes 
(p < 0.05 in univariate Cox analysis) and classify patients 
for further analysis. We used the ‘ConsensuClusterPlus’ 
package [26] to perform the above steps and 1000 times 
repetitions were conducted for guaranteeing the stability 
of classification.

Establishment and validation of an inflammatory response 
gene score system
We performed the LASSO analysis and multivariate 
Cox analysis for the selected genes acquired above, and 
calculated the coefficients of the genes. Based on gene 
coefficients and expression values, we calculated the 
inflammatory response gene score (IRGS) for each sam-
ple using the following formula:

IRGS = β1 × expressionG1 + β2 × expressionG2 + …
βn × expressionGn. To validate the predictive perfor-
mance of the scoring system constructed in this study, 
we assessed survival differences between subgroups 
using the Kaplan–Meier survival analysis (log-rank test), 
and plotted the receiver operating characteristic (ROC) 
curves compared with previously developed signatures 
[27–30]. Furthermore, to validate the predictive perfor-
mance of the IRGS in the different LUAD subgroups, we 
also performed a subgroup analysis.

http://www.gsea-msigdb.org/gsea/index.jsp
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://commonfund.nih.gov/GTEx/
https://commonfund.nih.gov/GTEx/
https://xenabrowser.net
https://xenabrowser.net
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Estimation of the immune characteristics
To comprehensively characterize the TME and immune 
landscapes of LUAD, we used multiple algorithms. Sin-
gle sample GSEA (ssGSEA) [31], CIBERSORT [32], and 
MCP counter [33] were applied to quantify the infiltra-
tion abundance of various immune cells. The Estima-
tion of Stromal and Immune Cells in Malignant Tumors 
using Expression Data (ESTIMATE) algorithm [33], 
was employed to infer tumor purity and calculate the 
immune and stromal scores.

Gene set variation analysis (GSVA) and functional 
annotation
We downloaded the ‘h.all.v7.4.symbols’ (GSEA hall-
mark sets) from MSigDB (http:// www. gsea- msigdb. org/ 
gsea/ msigdb). Subsequently, we used GSVA method 
[34] to estimate the difference on pathway activity 
between different subgroups. The cut-off value was set 
as |log2FC|> 0.1 and adj. p value < 0.05. We also per-
formed a pathway enrichment analysis of the related 
genes using KEGG [35]

Estimation of drug sensitivity
Half inhibitory concentration (IC50) are widely used to 
assess drug efficacy. In this study, we used the ‘pRRo-
phetic’ R package [36] to evaluate the IC50 of each 
sample to infer drug sensitivity. Additionally, these files 
named “RNA: RNA-seq” and “Compound activity: DTP 
NCI-60”were also obtained from the CellMiner data-
bases (https:// disco ver. nci. nih. gov/ cellm iner/ home. 
do). We further investigated the pearson correlation of 
the drug IC50 with the expression values of IRGs. The 
selected IRGs were used as the receptor and the cor-
responding drugs as the ligand to docking the active 
components (compounds) and the corresponding tar-
gets through Vina software. The compounds were then 
dehydrated and removed from the original ligand by 
the PyMOL 2.4.0 software, and the results were visually 
analyzed using Discovery Studio.

Additional bioinformatic and statistical analyses
All scores including checkpoint genes, immune inhibi-
tors, immune stimulators, tumor infiltrating lympho-
cytes (TILs), IFN response, cytolytic activity (CYT), 
and HLA were calculated based on the ssGSEA algo-
rithm using the corresponding gene sets (Additional 
file  2: Table  S1). We calculated the tumour immune 
dysfunction and exclusion (TIDE) score [37] for each 
sample of the LUAD by using an online tool (http:// 
tide. dfci. harva rd. edu). Based on it, we can predict the 
potential response to immunotherapy in different sub-
groups of patients. All statistical analyses were done in 

R 3.6.2 software, and p < 0.05 was considered statisti-
cally significant.

Results
Differentially expressed IRGs and functional annotation
The workflow and content of this study are shown in 
Fig.  1. This flow chart consists of four parts: a, b, c, d, 
described as follows: (a) Identification of prognostic 
related IRGs; (b) Unsupervised clustering to identify dif-
ferent LUAD subtypes; (c) Multi-dimensional charac-
terization of IRGS-S genes (d) Multifaceted differences 
between high and low IRGS subgroups. Of the 200 IRGs 
obtained from the GSEA website, 139 genes differed in 
expression between tumor and normal tissues. Among 
them, 67 genes were up-regulated in tumor tissues, and 
72 genes were down-regulated. Additional file 1: Fig. S1a, 
b visualized the top 5 pathways significantly enriched for 
up- and down-regulated genes in LUAD, respectively. 
Among them, the three pathways that up-regulated genes 
are mainly involved in are cytokine-cytokine receptor 
interaction, viral protein interaction with cytokines and 
cytokine receptors, and chemokine signaling pathway, 
while the three pathways that down-regulated genes are 
mainly involved in are TNF signaling pathway, Yersinia 
infection, and JAK-STAT signaling pathway. All of these 
pathways are significantly linked to the host inflamma-
tory response.

Three distinct tumor subtypes revealed different 
prognosis, biological processes, and immune 
characteristics in LUAD
Univariate Cox analysis revealed a close association 
with prognosis in 24 of the 139 differentially expressed 
IRGs (Additional file  1: Fig. S1c). The 24 prognosis-
related IRGs probably played critical roles in the forma-
tion of different tumor subtypes, and were implicated 
in cancer pathogenesis and progression. To testify these 
hypotheses, we applied the “ConsensusClusterPlus” R 
package to perform unsupervised clustering of LUAD 
patients based on the transcriptional profiling data of 
these 24 prognosis-related IRGs for classifing patients 
with qualitatively different subtypes, and three distinct 
tumor molecular subtypes were eventually identified 
(Additional file  1: Fig. S2a, b), including 213 cases in 
subtype A, 129 cases in subtype B and 158 cases in sub-
type C. We termed these three subtypes as Inf-Cluster 
A, Inf-Cluster B, Inf-Cluster C, respectively, among 
which Inf-Cluster A presented a prominent survival 
advantage, whereas Inf-Cluster B exhibited the worst 
prognosis (Fig.  2a). Additionally, we also observed 
obvious difference in the expression of 24 prognosis-
related IRGs among distinct tumor molecular subtypes. 
CD69, GPC3 and TLR2 were significantly elevated in 

http://www.gsea-msigdb.org/gsea/msigdb
http://www.gsea-msigdb.org/gsea/msigdb
https://discover.nci.nih.gov/cellminer/home.do
https://discover.nci.nih.gov/cellminer/home.do
http://tide.dfci.harvard.edu
http://tide.dfci.harvard.edu
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the Inf-Cluster A subtype. ADM, NMI, GNAI3, PSEN1, 
MMP14, MXD1, DCBLD2, MYC, PCDH7, ITGA5, 
PLAUR, SERPINE1, RIPK2, PVR, SPHK1 and TPBG 
were markedly increased in the Inf-Cluster B subtype 
(Additional file 1: Figs. S1d and S2b). Surprisingly, the 
genes highly expressed in the Inf-Cluster B subtype 
were all prognostic risk genes (HR > 1), which could 
serve as an important aspect in explaining that the Inf-
Cluster B subtype presented the worst prognosis.

To explore the biological behaviors among these dis-
tinct subtypes, we performed GSVA enrichment analysis 
and ssGSEA analysis. As shown in Fig. 2c, d, Additional 
file 1: Fig. S2c and Additional file 3: Table S2, there were 
25 hallmark pathways significantly enriched in the Inf-
Cluster B subtype, which were associated with inflamma-
tory responses as well as the important cell vital activity 
and metabolism, such as IL2-STAT5 signaling, epithelial 
mesenchymal transformation, IL6-JAK-STAT3 signal-
ing, glycolysis, inflammatory response, interferon gamma 

Fig. 1 The workflow and content of this study. This flow chart consists of four parts: a, b, c, d, described as follows: a Identification of prognostic 
related IRGs; b Unsupervised clustering to identify different LUAD subtypes; c Multi-dimensional characterization of IRGS-S genes d Multifaceted 
differences between high and low IRGS subgroups

(See figure on next page.)
Fig. 2 Differences in prognosis, IRG RNA expression and enriched pathways among the three distinct tumor molecular subtypes. A Kaplan–Meier 
survival analyses for the three tumor molecular subtypes based on 500 patients from TCGA-LUAD cohort including 213 cases in Inf-Cluster A, 129 
cases in Inf-Cluster B and 158 cases in Inf-Cluster C. B Expression patterns of 24 prognosis-related IRGs among distinct tumor molecular subtypes. 
C, D GSVA enrichment analysis showing the activation states of biological pathways in distinct tumor molecular subtypes. The heatmap was used 
to visualize these biological processes, and MediumVioletRed represented activated pathways and SteelBlue represented inhibited pathways. The 
TCGA-LUAD cohort was used as a sample annotation. C: Inf-Cluster A vs B; D: Inf-Cluster C vs A
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Fig. 2 (See legend on previous page.)
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response, PI3K-Akt-mTOR signaling, TGF-Beta signal-
ing, apoptosis, hypoxia and so on. This result was con-
sistent with that from ssGSEA (Fig. 3a). These pathways 
were markedly enriched in the Inf-Cluster B subtype and 
might also be important reasons for their poor progno-
sis. The TME affects the immune status of tumor patients 
and in turn affects its response to immunotherapy. Thus, 

ssGSEA analysis was further performed to explore the 
relative abundance of 23 immune-infiltrating cells in the 
3 subtypes (Additional file 1: Fig. S2d and Fig. 3b). This 
result indicated that both some anti-tumor cells and 
immunosuppressive cells had significant infiltration in 
the Inf-Cluster B subtype, including activated CD4 + T 
cells, gamma delta T cells, MDSC, macrophage, NK T 

Fig. 3 TME characteristics and immune landscapes under the three distinct tumor molecular subtypes. A Heatmap shows the ssGSEA score of 
representative Hallmark pathways curated from MSigDB in the three distinct tumor molecular subtypes. B Immune infiltration characteristics of the 
three tumor molecular subtypes based on ssGSEA algorithm. Tumor purity, ESTIMATE, immune and stromal scores from ESTIMATE algorithm are 
shown in annotations above. C Heatmap shows the ssGSEA score of representative immune signatures curated from other publications in the three 
distinct tumor molecular subtypes. The asterisks represented the statistical p value (*p < 0.05; **p < 0.01; ***p < 0.001). For comparisons of the three 
groups, the Kruskal–Wallis test was used



Page 7 of 19Song et al. BMC Medical Genomics          (2022) 15:198  

cells, neutrophilna, regulatory T cell, T follicular helper 
cell, Type 1 T helper cells and Type 2 T helper cells. Of 
these 23 immune cells, the vast majority presented a 
lower infiltration in the Inf-Cluster C subtype compared 
with the Inf-Cluster A and B subtypes. Moreover, further 
analyses by the ESTIMATE algorithm (Figs. 3b) revealed 
that Inf-Cluster C exhibited the lowest immune scores 
and highest tumor purity, while no significant differ-
ences were observed in tumor purity and immune scores 
between the Inf-Cluster A and B subtypes. This suggested 
that Inf-Cluster C subtype tumors might be surrounded 
by more non-tumor components. Subsequent immune 
signature analysis indicated that Inf-Cluster C exhibited 
the lowest scores in all immune signatures, while no sig-
nificant differences were observed in that between the 
Inf-Cluster A and B subtypes (Fig. 3c). Taken together, it’s 
not hard to find that there were no obvious differences 
in immune landscapes between the Inf-Cluster A and B 
subtypes, but their prognosis were completely different, 
suggesting that these immune signatures might more 
greatly affect the immune status of the host, but not or 
slightly affect the prognosis. Overall, the three distinct 
molecular subtypes revealed different prognosis, biologi-
cal processes, and immune characteristics.

The underlying expression perturbations and biological 
pathway activity across these phenotypes
Although the consensus clustering algorithm based on 
24 prognosis-related IRGs classified LUAD patients into 
three different tumor molecular subtypes, the underlying 
expression perturbations and biological pathway activ-
ity across these phenotypes remained enigmatic. Thus, 
we further investigated the potential tumor molecular 
subtype-related transcriptional expression change in 
LUAD. We used the empirical Bayesian approach [38] to 
determine the shared DEGs across the 3 subtypes, and 
identified 162 phenotype-related DEGs using ‘limma’ 
R package (Additional file  4: Table  S3 and Additional 
file 1: Fig. S3a). Subsequently, KEGG enrichment analysis 
revealed that these genes were primarily involved in these 
activities such as focal adhesion, phagosomes, NOD-like 
receptor signaling, and regulation of the actin cytoskel-
eton (Additional file 1: Fig. S3b). The results of the Gene 
Ontology analysis showed that the biological processes 
involved in DEGs included extracellular structure organi-
zation, extracellular matrix organization and phagocyto-
sis (Additional file 1: Fig. S3c). From these results, it is not 
difficult to find that the biological pathways involved in 
these overlapping DEGs are associated with the inflam-
matory processes in the organism, indicating these genes 
could be regarded as the inflammation-related gene 
signatures.

Reliable evaluation performance of the IRGS‑S for LUAD 
prognosis prediction
Based on the above findings, we believed that the 
three tumor subtypes based on these 24 prognostic-
related IRGs could better identify patients with dif-
ferent prognosis as well as the immune infiltration 
landscapes. Thus, to further investigate the potential 
value of these 24 prognostic-related IRGs in LUAD, we 
subsequently included them in the Lasso regression 
analysis (Figs.  4a, b), 15 genes (ADM, GNAI3, CD69, 
IL7R, DCBLD2, ITGA5, RIPK2, NMI, SLC11A2, PVR, 
RNF144B, PCDH7, TLR2, PSEN1 and TNFSF9) were 
further included in the multivariate Cox analysis (step-
wise regression) after filtering part of the genes. Finally, 
eight genes (ADM, GNAI3, PCDH7, CD69, PSEN1, 
SLC11A2, TLR2, TNFSF9) were included in a predictive 
signature (we call this the IRGS-S) (Fig. 4c and Additional 
file 5: Table S4). The IRGS for each patient was obtained 
by the following formula: IRGS = (0.144 × Expression-
AMD) + (-0.277 × ExpressionCD69) + (0.673 × Expres-
s i o n G N A I 3 )  +  ( 0 . 2 5 0  ×  E x p r e s s i o n 
PCDH7) + (0.587 × ExpressionPSEN1) + (-0.680 × Expres-
s i o n S L C 1 1 A 2 )  +  ( - 0 . 2 4 0  ×  E x p r e s -
sionTLR2) + (0.224 × ExpressionTNFSF9). Next, 
according to the optimal cut-off point of IRGS, patients 
were divided into high- and low-IRGS subgroups. As 
shown in Fig. 4d, patients with high IRGS have a worse 
prognosis than patients with low IRGS. This finding was 
also observed in four additional independent cohorts 
(Fig.  4e–h). In addition, the AUC values of the IRGS in 
our study (Fig.  4i) were also remarkably higher than 
that of signatures in other studies [27–30] (Fig.  4j–m). 
The C-index comparison of these models also reflected 
the same conclusions (Fig.  4n). The results from the 
subgroup analysis also demonstrated the good predic-
tive performance of the IRGS-S (Additional file  1: Fig. 
S4), where patients with high IRGS have a worse prog-
nosis than patients with low IRGS in many subgroups 
(< = 65y, > 65y, female, male, stage I/II, and stage III/IV).

Multidimensional features underlying the IRGS‑S in LUAD
Given the significance of the IRGS-S constructed above 
in patient outcome prediction, we speculated that these 
genes included in this model had great impacts on LUAD, 
therefore we further revealed the multi-dimensional char-
acteristics of these eight IRGS-S genes (ADM, CD69, 
GNAI3, PCDH7, PSEN1, SLC11A2, TLR2, TNFSF9) in 
LUAD. Differential analysis showed that GNAI3, PCDH7, 
PSEN1 and TNFSF9 were highly expressed in tumor tis-
sues, while ADM, CD69, SLC11A2 and TLR2 were oppo-
site (Fig.  5a). We also compared the expression of these 
genes in tumor versus normal tissues from the protein 
level (Additional file 1: Fig. S5). Not surprisingly, we found 
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that the RNA expression trend of these genes was signifi-
cantly different from the protein expression trend in the 
tumor and normal tissues. This suggests that these genes 
are epigenetically modified at the post-transcriptional 
level. CNV plays an important role in biological pro-
cesses [39], intensive investigation of CNV can provide 

us with a new understanding of the composition of and 
human genome and genetic pathogenic factors. We sub-
sequently investigated the CNV in these eight IRGS-S 
genes. This results revealed that CNV mutations were 
prevalent. ADM, CD69, GNAI3, PSEN1, TLR2, TNFSF9 
showed extensive CNV deletions. In contrast, PCDH7 and 

Fig. 4 Construction and verification of an IRGS-S for LUAD patients. A‑B These plots visualize the Lasso regression process of the 24 
prognostic-correlated IRGs. C A forest plot reflecting a multivariate Cox regression analysis of the candidate genes in the TCGA. D–H Theses Kaplan–
Meier survival curves revealed the OS differences between high- and low-IRGS groups in the TCGA D, GSE42127 E, GSE68465 F, GSE72094 G and 
merge-GEO H cohorts. GSE29013, GSE30219, GSE31210, GSE37745, and GSE50081 were from a same chip platform and thus integrated to a new 
cohort (meta cohort) using the ‘ComBat’ algorithm of ‘sva’ R package to reduce the batch effects from non-biological technical biases. I–M The ROC 
curves of the IRGS-S I, the sigantures from Al-Dherasi et al. J, Zhang et al. K, Shi et al. L, Yi et al. M. N Comparison of the C-index for each model
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Fig. 5 Multidimensional features of IRGS-S genes in LUAD. A The difference of mRNA expression levels of 8 IRGS-S genes between LUAD normal 
and tumor samples. B The bar graph showing the CNV gain/loss frequency of 8 IRGS-S genes. C The CNV alteration positions of these 8 IRGS-S 
genes on the human chromosome. D The waterfall plot reflecting the frequency of genetic alteration in these 8 IRGS-S genes in LUAD. E The plot 
reflecting the interrelationship between immune cells, IRGS-S genes, and IRGS. F Network map intuitively shows the correlation between FDA 
approved drugs and 8 IRGS-S genes. PSEN1 and CD69 associated with 42 and 41 drugs, respectively, with the highest proportion. The size of nodes 
indicates the correlation degree (number); purple lines represent positive correlation and orange represents negative correlation. The thickness 
of the lines represents the correlation degree (cor). G Docking pose and interaction of Tyrothricin with TNFSF9. H Docking pose and interaction of 
Fluphenazine with CD69
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SLC11A2 had prevalent CNV amplification (Fig. 5b). And 
the CNV alteration positions of these 8 IRGS-S genes on 
the chromosome were also shown in Fig.  5c. To answer 
the effect of CNV on gene transcription, we further inves-
tigated the correlation of CNV with gene expression. We 
observed that the CNV single amplification of GNAI3, 
PSEN1, and SLC11A2 could up-regulated the expression 
of the corresponding genes, while CNV single deletion of 
them could play the opposite effect (Additional file 1: Fig. 
S6c, e, f ). The above results initially confirmed the tight 
association between CNV variants and gene expression. 
Further describing the somatic mutation frequency of the 
eight IRGS-S genes in LUAD, we found that only 41 out 
of the 561 samples (7.31%) experienced genetic alterations, 
mainly including missense mutations, nonsense mutations, 
and multi hit. Of the 8 IRGS-S genes, PCDH7 presented 
the highest mutation frequency, followed by TLR2, while 
ADM, CD69, GNAI3, and and TNFSF9 did not experi-
ence any mutations in LUAD (Fig.  5d). Subsequently, we 
also investigated the correlation between immune infiltrat-
ing cells and IRGS as well as IRGS-S genes. Surprisingly, 
we found that these genes were associated with at least 
six immune cells. Among these, CD69 was significantly 
associated with all 23 cells, the vast majority positively, 
including anti-tumor cells and immunosuppressive cells 
(Fig.  5e). This seemed to indicate crucial roles for IRGS 
genes, particularly CD69, in the TME. Additionally, as one 
of the key avenues of anti-tumor treatment, drugs to treat 
tumors have always been a hot topic of research. More 
and more drugs are being developed and used in clinical 
practice. Given the importance of these 8 IRGS-S genes in 
LUAD, we explored the relevance of these genes with FDA 
approved drugs. Figure 5f and Additional file 6: Table S5 
intuitively showed the correlation between these drugs and 
IRGS-S genes. PSEN1 and CD69 associated with 42 and 41 
drugs, respectively, with the highest proportion. The com-
binations with the strongest correlation were randomly 
selected for molecular docking, as shown in Fig. 5g, h, vis-
ualizing the Fluphenazine with CD69 and Tyrothricin with 
TNFSF9 docking sites. This suggested that these genes 
might be potential targets for drug therapy in LUAD. This 
provides valuable clues to the individualized treatment of 
LUAD patients. Globally, the above analysis illustrates the 
multiple traits of the eight IRGS-S genes in LUAD, includ-
ing differential expression at transcription levels, genomic 
alterations, correlation with immune-infiltrating cells, and 
the effects of FDA-approved drugs. These IRGS-S genes 
have important implications in LUAD.

Comprehensive analyses of enriched biological processes 
and immune infiltration between different IRGS subgroups
We acquired 3768 DEGs between the high and low IRGS 
groups (Additional file 7: Table S6). Of these, 520 genes 

were highly expressed in the high-IRGS group and 3248 
were poorly expressed. The results from Metascape 
analysis revealed that these genes over-expressed in the 
high-IRGS group were mainly involved in formation 
of the cornified envelope, embryonic morphogenesis, 
NABA matrisome associated and so on (Fig.  6a), while 
these genes over-expressed in the low-IRGS group were 
mainly enriched in cilium movement, icosanoid meta-
bolic process, regulation of membrane potential and so 
on (Fig.  6b). In view of the important role of immune 
cells in TME, we used multiple algorithms to quantify 
the abundance of immune cell infiltration, and estimated 
the tumor purity and immune score for each sample. 
Our results indicated that patients in high and low IRGS 
subgroups were significantly different in terms of tumor 
purity and immune scores, that is, high IRGS patients 
had higher tumor purity, whereas the immune scores 
were the opposite. Moreover, they also showed clear dif-
ferences in immune cell infiltration, as shown in Fig. 6c. 
The revelation of these findings allows us to more clearly 
recognize the complexity of the TME. The high and low 
IRGS groups had significantly different enrichment path-
ways and TME landscapes, which might be an intrinsic 
mechanism leading to their significant differences in 
prognosis.

IRGS as a reliable marker of drug therapeutic response 
in LUAD
From the previous analysis, we observed clear differ-
ences in the prognosis, enriched pathways, and immune 
landscape between high and low IRGS patients. We 
were curious about differences in somatic mutations. 
Therefore, we characterized the somatic mutation 
profiles of two sets of samples based on TCGA-LUAD 
genomic data. From Fig.  6d, e, we found that TP53, 
TTN, and MUC16 were the most frequently mutated 
genes in LUAD. Patients with high IRGS group had a 
higher proportion of gene mutations. It was also not 
difficult to explain why patients with high IRGS pre-
sented with a higher tumor mutation burden (TMB) 
(Fig.  6f ). Further to the survival analysis, we found 
that overall survival was not significantly different in 
patients with high and low TMB (Fig.  6g). However, 
patients with high TMB and high IRGS had the worst 
prognosis, while patients with low TMB combined 
with low IRGS presented the best outcomes (Fig.  6h). 
The correlation between TMB and response to can-
cer immunotherapy has been well elucidated in previ-
ous studies [40, 41]. Our study found a higher TMB in 
patients with high IRGS (Fig. 6f ). This result seems to 
imply that patients with high IRGS may have a better 
response to immunotherapy. To consolidate this infer-
ence, we computed the TIDE score for each sample. 
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Not surprisingly, we found that patients with high IRGS 
presented with lower TIDE scores (Fig.  6i). Based on 
these findings, we believe that patients with high IRGS 

may be beneficiaries of immunotherapy. Furthermore, 
considering that chemotherapy remains an important 
means of cancer therapy in clinical practice, we also 

Fig. 6 Enriched biological pathways, immune infiltration and genetic characteristics in different IRGS subgroups. A, B Metascape analysis was 
performed to reveal the enriched pathways that over-expressed genes A and low-expressed genes B in the high-IRGS group were mainly involved 
in. C Comparison of immune cell infiltration abundance in the high- and low-IRGS groups based on ssGSEA, CIBERSORT, and MCP counter 
algorithms. D, E Genetic alterations in the top 25 common tumor-mutated genes in the high D and low E IRGS groups. F Comparison of overall 
survival  in the high- and low-IRGS groups. G The Kaplan-Meier survival curve reflecting the interrelationship among TMB, IRGS and patient survival. 
H Comparison of TMB in the high- and low-IRGS groups. I Comparison of TIDE scores in the high- and low-IRGS groups
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evaluated the IC50 of each sample against common 
chemotherapeutic agents. In the analysis of the LUAD 
transcription profiling data from three independent 
datasets (TCGA, GSE68465 and GSE72094), we found 
that the IC50 of some common chemotherapeutic 
agents was lower in patients in the high IRGS group 
(Fig. 7a–c), indicating higher sensitivity to these drugs 
in patients with high IRGS. These results highlight the 
important value of IRGS in the prognostic stratification 
and drug efficacy prediction for LUAD.

The novel LUAD staging system (IRGS‑Stage) 
for optimizing patient outcome prediction
More accurate prognostic prediction was crucial for 
clinical treatment decisions. Therefore, we also tried to 
optimize the existing TNM staging system. First, we per-
formed both a univariate and multivariate Cox analysis 
on 490 samples obtained from the TCGA-LUAD project. 

TNM stage and IRGS were identified as two independ-
ent prognostic factors, as shown in Fig. 8a. Based on the 
TNM stage and IRGS, we divided the patients into four 
categories: (1) stage I/II and low IRGS; (2) stage I/II and 
high IRGS; (3) stage III/IV and low IRGS; 4) stage III/IV 
and high IRGS. Surprisingly, we found that this classifica-
tion distinguished the patient prognosis very well (Fig. 8b, 
c). Thus, we defined patients with low-IRGS combined 
with TNM-Stage I/II as IRGS-Stage I, patients with low-
IRGS combined with TNM-Stage III/IV as IRGS-Stage II, 
patients with high-IRGS combined with TNM-Stage I/II 
as IRGS-Stage III, and patients with high-IRGS combined 
with TNM-Stage III/IV as IRGS-Stage IV (Fig. 8c). Both 
univariate Cox analysis (Fig. 8c) as well as K-M survival 
analysis (Fig.  8d) suggested significantly different prog-
nosis in these patients with different IRGS-Stages, and 
the median survival times for IRGS-Stage I, II, III, and 
IV were 9.2, 4.9, 3.2 and 1.6 years, respectively. Another, 

Fig. 7 Comparison of drug sensitivities in the high- and low-IRGS groups. The estimated IC50s of Bortezomib, Cisplatin, Cyclopamine, Docetaxel, 
Epothilone.B, Paclitaxel, Parthenolide, Pazopanib in the high- and low-IRGS groups in the TCGA (A), GSE68465 (B), GSE72094 (C) cohorts

(See figure on next page.)
Fig. 8 Establishment and evaluation of the novel proposed IRGS-Stage. A Forest map shows that IRGS is an independent prognostic predictor in 
LUAD by univariate and multivariate Cox analyses. B The cross-talk among TNM stage, IRGS and patient survival. C Establishment of the IRGS-Stage 
and risk stratification based on the cross-talk among TNM stage, IRGS and patient survival. The results of univariate Cox analysis for the IRGS-Stage 
are shown below the figure. D The Kaplan–Meier survival curves revealed remarkable differences in survival in different IRGS-Stage patients. E 
Alluvial diagram of Inf_Clusters (3 molecular subtypes) in groups with different IRGS, TNM stage, IRGS-Stage and survival status. F ROC curves for 
age, gender, stage, IRGS and IRGS-Stage
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Fig. 8 (See legend on previous page.)
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Fig.  8e also reflected the overlap and correspondence 
among the tumor molecular subtypes (Inf_Cluster A-C), 
IRGS, TNM stage, IRGS-Stage, and patient survival sta-
tus. Moreover, the ROC analyses indicted the novel 
IRGS-Stage proposed in this study showed a more pow-
erful capacity for survival prediction compared to the 
others, with highest AUC values (Fig.  8f ). We believed 
that the IRGS-Stage was better able to refine the patient 
survival prediction.

Discussion
Due to the complex oncogenic mechanisms and hetero-
geneity of LUAD, it remains highly challenging to accu-
rately predict patient prognosis and develop personalized 
management strategies. Inflammatory response play 
crucial roles in tumorigesis and progression [42, 43], 
however, although the relationship between inflamma-
tory response and tumor has been widely recognized, 
the potential implications of of inflammatory response 
genes in prognosis, immunity and drug therapy of LUAD 
remains poorly investigated. In this study, we identified 
three distinct tumor molecular subtypes using unsu-
pervised clustering, and accidentally found that the 
three molecular subtypes presented obviously different 
prognosis and immune characteristics. Besides, based 
on IRGs, we established a scoring tool called IRGS that 
could effectively identify high- and low-risk patients. Its 
prognostic power was also validated in four independ-
ent cohorts. The prediction performance of the model 
presented in this study was still not inferior to other 
LUAD prognostic models [27–30]. Even in some LUAD 
patient subgroups, the IRGS retained its predictive power 
to effectively distinguish between high- and low-risk 
patients.

The IRGS-S constructed in this study included eight 
genes (ADM, CD69, GNAI3, PCDH7, PSEN1, SLC11A2, 
TLR2, TNFSF9). Of these eight genes, four (GNAI3, 
PCDH7, PSEN1, TNFSF9) were highly expressed in 
tumor tissues and were associated with poor prognosis, 
while CD69, SLC11A2, and TLR2 were poorly expressed 
in tumor tissue and were associated with good prognosis. 
However, ADM expression was lower in tumor tissues 
but considered as a prognostic risk gene. This result was 
in line with the findings in ovarian cancer by Ferlini C 
et  al.[44]. ADM (Adrenomedullin) is a gene encoding 
preproadm located at a single locus on human chromo-
some 11 [45]. Previous studies [44, 46] have found that 
ADM is expressed in a variety of tumor tissues and cells, 
and can regulate tumor cell proliferation, invasion, and 
metastasis, and tumor angiogenesis. In our study, ADM 
was also identified as a poor prognostic gene for LUAD. 
This finding is also similar to that of Ramachandran et al. 
[47, 48], where ADM was also demonstrated to promote 

pancreatic cancer invasion and metastasis. ADM has 
become an important biological target in the interven-
tion treatment of human tumors. GNAI3 is a member of 
the a subunit of the G protein family. In recent years, 
with the deepening of cancer research, the G protein 
family has been confirmed to play an important role in 
the development of cancer. The study of Faivre et al. [49]
observed that the GNAI3 protein can inhibit the migra-
tory capacity of colon cancer cells. In contrast to this 
finding, Ghosh et  al. [50]found that GNAI3 promotes 
Hela cell migration. However, in this study, we found that 
GNAI3 mRNA showed a high expression state in LUAD 
tumor tissues and was associated with poor prognosis, 
but it showed a completely opposite trend in protein lev-
els. Notably, there are not many reports on the functional 
studies of the GNAI3-encoded protein in cancer. Com-
bined with the existing data, the GNAI3 gene does have 
an impact on the migration ability of cancer cells, but the 
molecular mechanism is still fully unknown. How the 
GNAI3 gene affects the biological behavior of tumor 
malignancy in different cancer backgrounds remains an 
open question. PSEN1, localized to chromosome 14q24.3 
[51], can encode Presenilin-1.It is a commonly expressed 
multi-transmembrane domain protein, mainly located on 
the endoplasmic reticulum, the Golgi apparatus, and the 
plasma membrane. Pathogenic mutations in the PSEN1 
gene are an important cause of familial Alzheimer’s dis-
ease [52], which function as the core catalytic subunit of 
the beta-secretase complex involved in cleavage. Previ-
ous studies [53–56] have shown that PSEN1 plays a key 
role in the Notch and Wnt signaling cascades and in 
downstream regulatory processes by processing key reg-
ulatory proteins and regulating cytosolic CTNNB1 levels. 
Overexpression of PSEN1 promotes peritoneal metasta-
sis in colorectal cancer, which is thought to be associated 
with E-cadherin proteolysis and nuclear translocation 
[57]. Li et  al. [58] found that Presenilin-1 enhanced the 
invasion and migration of gastric cancer cells without 
changing cell proliferation. They believed that Preseni-
lin-1 is associated with CAJ disassembly and can drive 
cancer progression by triggering TCF / LEF-1 activation. 
PSEN1 is still poorly reported in lung tumors, and this 
study reveals for the first time that it is overexpressed in 
LUAD tumor tissues, and that its enhanced expression is 
correlated with a worse prognosis. From the findings of 
the above studies, PSEN1 appears to be used as a tumor-
promoting factor. However, Presenilin-1 plays completely 
opposite roles in tissues such as the skin. Xia et al. [59] 
found that the loss of Presenilin-1 in the skin led to epi-
dermal hyperplasia and skin tumors in adult mice. Over-
all, PSEN1 is still poorly studied in human tumors, and 
how it affects tumors in different cancers remains to be 
investigated. As a member of the tumor necrosis factor 
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superfamily, TNFSF9 has received increasing attention in 
tumors. A previous study [60] have found that TNFSF9 is 
expressed on a variety of tumor cells, promoting pancre-
atic cancer metastasis through Wnt/Snail signaling and 
M2 polarization of macrophages. In colon cancer 
patients, TNFSF9 expression is highly upregulated in 
tumor tissues, and is significantly correlated with the 
occurrence of distant metastases in advanced disease and 
the shortened survival [61]. Similar findings could also be 
observed in a study of breast cancer [62]. Our study 
found that TNFSF9 showed a high expression state in 
LUAD and was associated with poor prognosis. Current 
research on TNFSF9 in the prognosis of LUAD is still 
inadequate and needs to be further elucidated in the 
future. SLC11A2 is a transmembrane iron transporter 
known to be involved in cellular iron uptake, and acts as 
a proton-dependent iron import protein of Fe 2 + [63]. It 
has been shown that SLC11A2 expression is upregulated 
in endometrial cancer, and is correlated with a better 
prognosis [64]. Its role in other cancers, including lung 
cancer, has not yet been reported. In this study, the 
SLC11A2 mRNA was initially poorly expressed in LUAD 
tumor tissues, while the protein encoded by it was highly 
expressed, suggesting that the SLC11A2 gene may be reg-
ulated epigenetically at the post-transcriptional level. The 
Toll-like receptor (TLR) is a member of the superfamily 
of pattern recognition receptors, which play an impor-
tant role in regulating inflammatory responses, cell pro-
liferation, and apoptosis [65]. Currently, accumulating 
evidence [66, 67] suggests that TLR2 is closely associated 
with cancer progression. Our study found low TLR2 
mRNA expression in LUAD tumor tissues, while TLR2 
protein was high expression. Zhang et al. [68] found that 
TLR2 was highly expressed in the serum of lung cancer 
patients and promoted the progression of lung cancer. 
TLR2 has also been proposed as a potential therapeutic 
target for LUAD in cell line studies [69]. In addition, in 
our study, we observed that PCDH7 exhibited the highest 
frequency of mutation among these eight genes. PCDH7 
is one of the largest subfamily members of the cadherin 
family, and a previous study [70] found that PCDH7 was 
significantly downregulated in non-muscle-invasive blad-
der cancer and served as an independent predictor of 
non-muscle-invasive bladder cancer. PCDH7 could pro-
mote the malignant transformation of bronchial epithe-
lial cells carrying KRAS gene mutation, while knockdown 
of PCDH7 inhibited the growth and metastasis of lung 
cancer cells with a mutated KRAS gene, suggesting that 
PCDH7 and KRAS had a synergistic cancer-promoting 
effect [71, 72]. PCDH7 could bind to the regulatory pro-
tein SET of PP2A, inhibiting PP2A activity, leading to 
dysregulation of negative feedback in the MAPK path-
way, which in turn affected lung cancer progression [71, 

73]. Also, our study found that PCDH7 was highly 
expressed in tumor tissues and was associated with poor 
prognosis, with all these findings suggesting that PCDH7 
might be an important cancer-promoting factor. CD69 
was a membrane surface molecule expressed after T lym-
phocyte activation. When activated, it could further 
stimulate the proliferation and activation of T cells, 
induce the secretion of Th1 cytokines, and indirectly kill 
tumors [74, 75]. Given the important roles of TME in 
cancer immunotherapy, we also investigated the rele-
vance of these genes to immune-infiltrating cells. Sur-
prisingly, we found that these genes were associated with 
at least six immune cells. Among these, CD69 was signifi-
cantly associated with all 23 cells, the vast majority posi-
tively, including anti-tumor cells and immunosuppressive 
cells. This seemed to indicate crucial roles for IRGS 
genes, particularly CD69, in the TME. This was con-
firmed in the results of Mita et al. [76]. They found that 
CD69 plays an important role in antitumor immunity, 
especially in regulating the depletion of tumor-infiltrat-
ing T cells and in weakening the antitumor immune 
response. Our study found that CD69 presented low 
expression in tumor tissue and was considered a good 
prognostic gene. This also indirectly confirmed that 
CD69 might be an important tumor suppressor. From the 
current data, CD69 is still poorly studied in tumors. The 
results of this study and the findings of Mita et al. [76] all 
suggest that CD69 may be an important potential target 
for the treatment of malignant tumors. Overall, these 
genes all play an important role in LUAD, but their 
research in cancer, especially lung cancer, is still insuffi-
cient, which is the focus of future researchers.

TME is the survival environment of tumors, which 
plays a key role in the occurrence and development 
of tumors, and immune-infiltrating cells constitute an 
important component of the TME. The results from 
ssGSEA, CIBERSORT, and MCP counter algorithms 
uncovered clearly distinct immune infiltration was 
found between low- and high-IRGS groups. This is con-
sistent with what we had expected. We also observed 
that significant differences on immune score and tumor 
purity between two subgroups. This result was consist-
ent with our previous study [5]. Our previous study [5]
also found that patients with high tumor purity tended 
to present shorter overall survival. In other tumors, this 
phenomenon is not common, or even the exact oppo-
site, such as in colorectal cancer [77] and gliomas [78]. 
But it seems certain that there is a strong relationship 
between tumor purity and prognosis. In addition to the 
obvious differences in the immune microenvironment, 
the patients with high and low IRGS are also obviously 
different in terms of genomic alterations and enriched 
signaling pathways. This further highlights the potential 



Page 16 of 19Song et al. BMC Medical Genomics          (2022) 15:198 

significance of IRGS in prognostic risk stratification, 
and also provides an indicative value for revealing the 
molecular mechanisms in the context of prognostic dif-
ferences. Additionally, as one of the key avenues of anti-
tumor treatment, drugs to treat tumors have always been 
a hot topic of research. More and more drugs are being 
developed and used in clinical practice. Given the impor-
tance of these 8 IRGS-S genes in LUAD, we explored 
the relevance of these genes with FDA approved drugs. 
All eight genes were related to drugs, suggesting that 
these genes might be potential targets for drug therapy 
in LUAD. Among these, CD69 had potential associations 
with 41 drugs (e. g., nelarabine, bendamustine, asparagi-
nase, ifosfamide, imatinib et  al.).  A previous study [79] 
has reported that the expression of CD69 might predict 
the response to bendamostine, its regulation by ibrutinib 
or idlisib could enhance the cytotoxic effects of chronic 
lymphocytic leukemia. This was in line with the find-
ings from our study. Given the great advantages of IRGS 
in prognostic risk stratification, we attempted to explore 
its potential in predicting sensitivity to drug therapy. Our 
data indicate that patients with high IRGS present with 
increased TMB, and decreased TIDE, suggesting that 
patients with high IRGS are more likely to be the popu-
lation to benefit from immunotherapy. In addition, we 
also found that the IC50 of several common chemothera-
peutic drugs (Bortezomib,Cisplatin,Cyclopamine,Doce
taxel,Epothilone.B, Paclitaxel, Parthenolide, Pazopanib) 
was lower in the high IRGS group, which also suggests 
that patients with high IRGS may benefit more from the 
application of chemotherapeutic drugs. It is worth not-
ing that, in addition to cisplatin, docetaxel, Paclitaxel, 
other chemotherapeutic drugs such as Bortezomib and 
Cyclopamine have not been widely used in the treatment 
of lung cancer. Among these, Bortezomib is a reversible 
inhibitor of 26S proteasome-like activity in mammalian 
cells. Data from previous studies [80, 81] suggested that 
Bortezomib may have the greatest clinical benefit when 
used in combination with other therapies. Single-agent 
bortezomib causes growth inhibition and apoptosis in 
many NSCLC cell lines in vitro, and has antitumor activ-
ity in vivo [81]. Cyclopamine, the first compound found 
to inhibit Hedgehog signaling, binds to the Smo pro-
tein, thereby inhibiting its activity. Cyclopamine showed 
antitumor activity in multiple tumors [82]. It has been 
shown that Cyclopamine causes a significant reduction 
in oxygen consumption in many NSCLC cell lines, inhib-
iting NSCLC cell proliferation and inducing apoptosis. 
Cyclopamine also increases ROS production, mitochon-
drial membrane hyperpolarization, and mitochondrial 
breakage, thereby disrupting mitochondrial function in 
NSCLC cells [83]. These FDA-approved drugs have also 
shown antitumor activity. However, their application in 

lung cancer is still slow, and a large number of clinical 
studies are needed to further validate them in the future.

In conclusion, this study comprehensively analyzed 
the inflammatory response genes and identified three 
distinct tumor molecular subtypes with obviously dif-
ferent immune characteristics in LUAD. Besides, based 
on inflammatory response genes, we established a scor-
ing tool called IRGS, which was also strongly correlated 
with immune infiltration and genomic landscape in 
LUAD and displayed the potential in predicting drug 
therapeutic responses. Moreover, we described the 
multi-dimensional characterization of 8 IRGS-S genes 
in LUAD, and emphasized the nonnegligible roles the 
inflammatory response genes played in shaping indi-
vidual TME and in directing therapeutic intervention 
plans for LUAD.
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Additional file 1. Figure S1. Acquisition of candidate genes and their 
expression patterns across three tumor molecular subtypes. (A) KEGG 
analysis revealed the enriched pathways for up-regulated genes in tumor 
tissues. (B) KEGG analysis revealed the enriched pathways for down-
regulated genes in tumor tissues. (C) Forest map shows the correction 
between the candidate genes and prognosis. (D) Heatmap shows that 
expression patterns of 24 prognosis-related IRGs among distinct tumor 
molecular subtypes. The Inf_Clusters (3 molecular subtypes), age, sex, 
EGFR mutation, N, T, TNM stage were used as patient annotations. Figure 
S2. The biological characteristics and immune infiltration across the 
three tumor molecular subtypes. (A, B) Unsupervised clustering for 24 
prognosisrelated IRGs in TCGA cohort with cluster number 3. (C) GSVA 
enrichment analysis showing the activation states of biological pathways 
in distinct tumor molecular subtypes (Inf-Cluster C vs B). The heatmap was 
used to visualize these biological processes, and MediumVioletRed repre-
sented activated pathways and SteelBlue represented inhibited pathways. 
The TCGA-LUAD cohort was used as a sample annotation. (D) Immune 
infiltration characteristics of the three tumor molecular subtypes based 
on ssGSEA algorithm. The asterisks represented the statistical p value (*P < 
0.05; **P < 0.01; ***P < 0.001). Figure S3. Tumor molecular subtype-related 
DEGs and enriched biological pathways. (A) Overlapping differentially 
expressed genes (DEGs) among the three tumor molecular subtypes. (B) 
KEGG enrichment analysis revealed that these overlapping genes were 
primarily involved in activities such as focal adhesion, phagosomes, NOD-
like receptor signaling, and regulation of the actin cytoskeleton. (C) Gene 
Ontology analysis uncovered the biological activities these overlapping 
genes involved in biological processes. Figure S4. Subgroup analyses and 
the Kaplan-Meier survival curves were performed to verify the predictive 
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performance of the IRGS in the different LUAD subgroups. Figure S5. The 
expression of these IRGS-S genes in tumor versus normal tissues from the 
protein level. These analyses were derived from the UALCAN (ualcan.path.
uab. edu/analysis-prot.html) and HPA (https:// www. prote inatl as. org/). 
Figure S6. Association between CNV and gene expression.

Additional file 2. Table S1. The list of immune signatures gene sets.

Additional file 3. Table S2. GSVA enrichment analysis showing the activa-
tion states of biological pathways in distinct tumor molecular subtypes.

Additional file 4. Table S3. The overlapping differentially expressed 
genes (DEGs) among the three tumor molecular subtypes.

Additional file 5. Table S4. Multivariate Cox analysis (stepwise regression 
models) for the construction of an IRGS.

Additional file 6. Table S5. The correlation of FDA approved drugs Z 
scores with the IRG expression values.

Additional file 7. Table S6. Analysis of differential gene expression 
between high and low IRGS groups.
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