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Abstract 

Background:  Lung cancer is a high-incidence cancer, and it is also the most common cause of cancer death world-
wide. 80–85% of lung cancer cases can be classified as non-small cell lung cancer (NSCLC).

Methods:  NSCLC transcriptome data and clinical information were downloaded from the TCGA database and GEO 
database. Firstly, we analyzed and identified the differentially expressed genes (DEGs) between non-metastasis 
group and metastasis group of NSCLC in the TCGA database, Gene Ontology (GO), Kyoto Encyclopedia of Genes 
and Genomes (KEGG) were consulted to explore the functions of the DEGs. Thereafter, univariate Cox regression and 
LASSO Cox regression algorithms were applied to identify prognostic metastasis-related signature, followed by the 
construction of the risk score model and nomogram for predicting the survival of NSCLC patients. GSEA analyzed that 
differentially expressed gene-related signaling pathways in the high-risk group and the low-risk group. The survival of 
NSCLC patients was analyzed by the Kaplan–Meier method. ROC curve was plotted to evaluate the accuracy of the 
model. Finally, the GEO database was further applied to verify the metastasis‑related prognostic signature.

Results:  In total, 2058 DEGs were identified. GO functions and KEGG pathways analysis results showed that the DEGs 
mainly concentrated in epidermis development, skin development, and the pathway of Neuro active ligand -recep-
tor interaction in cancer. A six-gene metastasis-related risk signature including C1QL2, FLNC, LUZP2, PRSS3, SPIC, and 
GRAMD1B was constructed to predict the overall survival of NSCLC patients. The reliability of the gene signature was 
verified in GSE13213. The NSCLC patients were grouped into low-risk and high-risk groups based on the median value 
of risk scores. And low-risk patients had lower risk scores and longer survival time. Univariate and multivariate Cox 
regression verified that this signature was an independent risk factor for NSCLC.

Conclusion:  Our study identified 6 metastasis biomarkers in the NSCLC. The biomarkers may contribute to individual 
risk estimation, survival prognosis.
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Introduction
Lung cancer is the leading cause of cancer-related death 
throughout the world. According to the World Health 
Organization (WHO), 2.2 million new lung cancer cases 
and 1.8 million fatalities are expected in 2020 [1]. NSCLC 
is the most common kind of lung cancer, accounting for 
85 percent of all cases. Lung cancer patients die from 
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invasiveness and metastasis in over 90% of cases, result-
ing in a 5-year survival rate of barely 15% [2]. As a result, 
research into the major regulators of metastasis is crucial 
for improving lung cancer treatment.

Because 80–85 percent of patients are first identified 
with either unresectable or metastatic tumors, despite 
breakthroughs in diagnostic tools, radiotherapies, and 
systemic treatments for NSCLC, the five-year overall 
survival (OS) remains at 10% [3–5]. The five-year sur-
vival rate post-operation was 20% for the tiny number of 
patients with a resectable and confined malignancy [3]. 
The prognosis of individuals with NSCLC is commonly 
believed to be determined by metastasis [2, 6]. Patients 
with metastasis have a shorter survival rate than those 
with localized malignancies, with just 6–8  months on 
average [7, 8]. The brain is the most common distant 
metastatic site for NSCLC [6, 9]. As a result, it’s impor-
tant to investigate possible biomarkers that might differ-
entiate individuals with a poor prognosis based on tumor 
metastasis-related genes.

The most likely site of lung cancer metastasis is the 
brain, the development of the modified extracellular 
matrix (ECM), angiogenesis for micro-metastatic, and 
the building of immune escape are all part of the NSCLC 
metastasis process[10]. Lung cancers are exceedingly 
varied at both the cellular and molecular levels, accord-
ing to previous research [11, 12]. Molecular markers are 
becoming more important in predicting the prognosis of 
individuals with NSCLC [12, 13]. Many prognostic mod-
els with excellent predictive value have been constructed 
using public resources such as The Cancer Genome Atlas 
(TCGA), International Cancer Genome Consortium 
(ICGC), and Gene Expression Omnibus (GEO) [14–16]. 
By mining the TCGA data, Dong et al. recently demon-
strated that the Liver-Metastasis-Related Genes have 
high predictive potential for predicting the clinical out-
comes of patients with pancreatic adenocarcinoma [17]. 
However, limited study on mRNA combination biomark-
ers for NSCLC metastasis has been done. We predicted 
in this study that differentially expressed genes linked 
to metastasis could be able to predict the prognosis of 
NSCLC patients. The mRNA expression data of NSCLC 
tissues in M0 stage and M1 stage from the TCGA data-
sets were combined in this study. Following cox and lasso 
regression, a six-gene prognostic signature was created 
with the potential to predict survival time for NSCLC 
patients.

Materials and methods
Data source
The transcriptome and clinical data were downloaded 
from the TCGA database (https://​portal.​gdc.​cancer.​gov/), 
including metastasis samples (n = 31) and non-metastatic 

samples (n = 733), and were used as training set. 117 
LUAD samples from GEO datasets, the accession num-
ber of GEO datasets is GSE13213, and were used as 
external validation sets.

Identification of DEGs
The ‘Limma’ package [18] in the R statistical software was 
used to identify DEGs between the metastatic group and 
the non-metastatic group, with adj p value < 0.05 set as 
the screening thresholds. A heat map cluster and volcano 
plot of the DEGs were created using the “pheatmap” and 
“ggplots” packages via R software.

Gene ontology (GO) and Kyoto encyclopedia of genes 
and genomes (KEGG) analysis
To explore the potential functions of the metastasis-
related gene signature, GO analysis and KEGG enrich-
ment analysis were conducted by the ‘clusterProfiler’ 
[19] package. P.adjust < 0.05 were found to be statistically 
relevant.

Univariate cox regression and lasso regression analysis
We first used the R package survival coxph function to 
perform Univariate Cox Regression analysis on DEGs 
to screen metastasis-related genes significantly related 
to the survival. p < 0.05 was selected as the threshold 
for filtering. Moreover, the screened prognosis-related 
metastasis-related genes were incorporated into Lasso 
regression model, in which penalties were applied to 
above gene for preventing overfitting effects of the 
model. We performed LASSO Cox Regression analysis 
and identified 12 signature genes [24]. At last, multivari-
ate COX regression analysis constructed the prognostic 
model successfully. The patients of train and validation 
sets were divided into low- and high-risk groups on the 
foundation of the median value of the risk score of train 
cohort, respectively. Survival differences between the 
two groups were assessed by Kaplan–Meier. Meanwhile, 
univariate and multivariate prognostic analyses (p < 0.05) 
were performed for the training group to determine 
whether the riskScore obtained from the model could be 
an independent prognostic factor.

Drawing and validation of the nomogram
A nomogram was established with the independent risk 
factors such as clinical information and risk score to 
predict the possibility of 1-year, 3-year and 5-year OS of 
NSCLC patients. The efficacy of the nomogram was eval-
uated by the calibration curve.

https://portal.gdc.cancer.gov/
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Estimation of immune score, stromal score, and tumor 
purityimmune infiltration
The ESTIMATE package was used to calculate the 
immune score (representing the level of immune cell 
infiltration) and stromal score (representing the num-
ber of stroma) of each PAAD sample. The ESTIMATE 
score was defined as the sum of the immune and stromal 
scores. Then, the differences in stromal score, immune 
score, ESTIMATE scores, tumor purity scores between 
high-risk groups and low-risk groups were compared 
by the Wilcoxon test. p value < 0.05 was considered sig-
nificant [16]. To predict the effect of immune checkpoint 
blockade therapy, we also explored the expression of 
immune checkpoint genes in the groups.

Estimation of relationship between this prognostic risk 
model and clinical characteristics and tumor mutation 
burden (TMB)
We evaluated the relationship between the Risk score and 
clinical characteristics acquired from TCGA, as follows: 
M (M0 and M1), N (N0 and N1-3), T (T1-2 and T3-4), 
and stage (I-II and III-IV). The tumor mutational data of 
NSCLC patients were obtained from TCGA database, 
and tumor mutational burden (TMB) was calculated for 
each NSCLC patient.

The analysis of GSEA
The R package “limma” was used to analyze differential 
expression between high-risk and low-risk groups [19], 
and all genes were ranked by fold change values. h.all.

v7.4.symbols.gmt data set is downloaded from MSigDB, 
Gene Set Enrichment Analysis was performed to clarify 
the significant annotated pathways through R package 
“clusterProfiler".

Results
Identification of DEGs
The 764 NSCLC samples in the TCGA dataset were sepa-
rated into two groups: non-metastatic (31 samples) and 
metastatic (733 samples). The TCGA dataset yielded 
2058 DEGs (Fig. 1A–B), 1499 of which were down-regu-
lated and 559 of which were up-regulated.

Functional enrichment analysis
DEGs’ biological functions and pathways can be 
studied via gene enrichment analysis. Epidermis 
development, skin development, epidermal cell differen-
tiation, keratinocyte differentiation, and keratinization 
are among the biological processes enriched in GO (top 
5). Presynapse, synaptic membrane, glutamatergic syn-
apse, and intermediate filament intermediate filament 
are the biological components of GO (top 5). Peptidase 
regulator activity, endopeptidase regulator activity, endo-
peptidase inhibitor activity, peptidase inhibitor activ-
ity, and serine-type endopeptidase inhibitor activity are 
the top five molecular functions of GO (Fig.  2A). Simi-
larly, neuroactive ligand-receptor interaction, chemical 
carcinogenesis-receptor activation, estrogen signal-
ing route, staphylococcus aureus infection, and drug 
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Fig. 1  Identification of differential expressed gene between non-metastatic and metastatic group in NSCLC. A The volcano plot demonstrating the 
differentially expressed genes. B Heat map of differentially expressed genes in NSCLC
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metabolism-cytochrome P450 are the top five signifi-
cantly enriched pathways (Fig. 2B).

Construction and validation of the risk score model based 
on 6 prognostic metastasis‑related genes
The DEGs in the TCGA training group were subjected 
to univariate Cox regression analysis. The findings of 
the univariate regression analysis revealed that genes 
related to metastasis were substantially correlated 
with NSCLC patients’ prognosis (p 0.05). (Fig. 3A). For 

these genes having prognostic value, LASSO regres-
sion analysis was used to avoid over-fitting the prog-
nostic model. The LASSO regression analysis revealed 
that 12 genes had a significant relationship with OS 
(Fig.  3B and C). Finally, we ran a multivariate regres-
sion analysis on the 12 genes we chose. C1QL2, FLNC, 
LUZP2, PRSS3, SPIC, and GRAMD1B were identified 
as risk variables for OS in the TCGA training group 
by multivariate regression analysis (Fig.  3D). The risk 
score was calculated as (− 0.265 × C1QL2) + (0.227 × 
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FLNC) + (− 0.625 × LUZP2) + (0.095 × PRSS3) + (0.
193 × SPIC) + (0.447 × GRAMD1B). Following that, 
the TCGA patients were split into high- and low-risk 
groups based on the median risk scores. Patients with 
high-risk scores had worse survival rates in the training 
set by the Kaplan–Meier curves (p 0.0001). (Fig.  3E). 
Similarly, 117 individuals from GSE13213 were chosen 

as the validation cohort and classified into high- and 
low-risk groups based on the median risk score, with 
the same risk score calculation formula as the TCGA 
cohort. The survival curve revealed a significant dif-
ference (p 0.05) between the two groups (Fig. 3F). The 
relationship between the RiskScore and clinical fea-
tures was analyzed, and it was found that the risk score 
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constructed based on the six-gene signature distin-
guished the high- and low-risk groups according to age, 
M0 stage, N stage, stage I-II, T1-2 stage. This finding 
consequently indicated that the risk model had a strong 
predictive ability across clinical features.

The expression of RiskScore on different clinical features 
and the construction of nomogram
The multivariable Cox method was used to find the three 
independent prognostic indicators (age, stage, and risk 
score) of NSCLC patients in the TCGA data set (Fig. 4A). 
Following that, a nomogram for 1-year, 3-year, and 5-year 

Fig. 4  Construction and evaluation of prognostic models based on risk scores and clinical features. A Forest plot for multivariate COX regression 
analysis based on risk scores and clinical features. B A nomogram predicts the risk of progression in patients with NSCLC by four clinicopathological 
features. C–E The calibration curve is used to evaluate the accuracy of one-, three-, and five-year progress forecasts of nomograms. F K–M curves of 
prognostic models based on risk scores and clinical features
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survival rates was produced based on the age, stage, and 
risk score to objectively estimate the survival likelihood 
of each NSCLC patient (Fig. 4B). In addition, calibration 
curves for 1-year, 3-year, and 5-year survival rates were 
plotted to test the nomogram’s accuracy, with the find-
ings revealing that the nomogram-predicted and actual 
survival probability are generally in accord (Fig.  4C–E). 
Patients in the TCGA cohort were divided into high- 
and low-risk groups based on the median risk score 
computed from the nomogram. Figure 4F indicated that 
patients in the high-risk group had significantly shorter 
OS than those of the low-risk group (p < 0.001).

The correlation between the prognostic risk model 
and clinical pathological characteristics of patients
We started by looking at the association between risk 
scores and clinical variables. The results revealed that 
there was no significant difference in risk ratings among 
N stages (Fig.  5A). We looked at the differences in risk 
scores between different NSCLC groups. The subgroup 
analysis stratified by stage revealed that stage IV NSCLC 
patients had a significantly higher risk score than stage 
I NSCLC patients (p = 0.0031). (Fig.  5B). Furthermore, 
M1 NSCLC patients had a significantly higher risk score 
compared to M0 NSCLC patients (p = 0.043). In addi-
tion, T3NSCLC patients had a considerably higher risk 
score than T1 NSCLC patients (p = 0.0052). (Fig. 5C–D).

Analysis of the relationship between the immune 
microenvironment and risk score model in NSCLC patients
Using the ESTIMATE algorithm, we estimated the stro-
mal score, immune score, and tumor purity of NSCLC 
from TCGA dataset. Our data showed that the immune 
score and stromal score of the high-risk group was signif-
icantly higher than those of the low-risk group (Fig. 6A), 
and the tumor purity score of the high-risk group was 
significantly lower than that of the low-risk group. To 
further explore the individual immune microenviron-
ment and develop individualized treatment, immune 
infiltration and immune checkpoint genes in high- and 
low-risk group were further investigated (Fig. 6B–C). The 
low-risk group had considerably lower markers of Mac-
rophages, Macrophages M1, MEP, Monocytes, pDC, and 
Th2 cells than the high-risk group. The low-risk group, 
on the other hand, showed increased Th1 cell, MEP, 
and HSC marker expression. In addition, variations in 
immune checkpoint genes were discovered in the high-
risk and low-risk groups. TNFSF15 was expressed at 
higher levels in the low-risk group than in the high-risk 
group. When compared to the low-risk group, the high-
risk group showed higher expressions of ADORA2A, 
TNFSF14, CD28, ICOS, TIGIF, TNFRSF9, CD276, 
TNFSF9, TNFRSF8, PDCD1, CTLA4, TNFSF4, CD86, 

NRP1, TNFRSF4, CD70, LAIR1, C10orf54, HAVCR2, 
and CD200.

We also estimated the TMB of each sample and dis-
covered that in the TCGA dataset, TMB was significantly 
greater in the high-risk group (p = 0.0056). (Fig. 6D).

GSEA analysis
GSEA analyses were conducted to further explore the 
difference biological mechanism between low- and high-
risk groups. we found that signaling pathway (Fig.  7), 
including allograft rejection, coagulation, complement, 
epithelial mesenchymal transition, G2M checkpoint, IL6-
JAK-STAT3 signaling, inflammatory response, interferon 
gamma response, KRAS signaling up, TNFA signaling via 
NFkB were significantly enriched in the high-risk group.

Discussion
In this article, NSCLC samples were classified into meta-
static group and non-metastatic group according to M 
stage. TCGA was used as training cohort and construct 
a prognostic model, while GEO database was used as 
validation cohort to verify the efficacy of the prognostic 
model evaluation. Firstly, we analyzed the gene expres-
sion data and clinical data of NSCLC patients enrolled 
in TCGA, discerning 2058 DEGs related to metastasis. 
Using univariate, LASSO and multivariate Cox regres-
sion analysis, 6 mRNAs (C1QL2, FLNC, LUZP2, PRSS3, 
SPIC, GRAMD1B) had been found as independent prog-
nosis predictors in NSCLC. Secondly, survival analysis 
was utilized to examine the availability of the prognostic 
model. The expression pattern of all the 6 mRNAs, had a 
correlation to OS which meant that with the generate of 
these mRNAs’ expression, patients would have a different 
survival time. Thirdly, the model constructed in training 
group was validated externally, adding dependability to 
the outcomes.

Through pathway enrichment analysis of metastasis-
related genes, we found that many GO pathways were 
enriched, such as epidermis development, skin develop-
ment, epidermal cell differentiation, keratinocyte differ-
entiation, and so on. Many of them have been confirmed 
to be associated with tumor metastasis. Close relation-
ship, for example, Sabounsji’s study pointed out that the 
metastasis of NSCLC is closely related to epidermal cell 
differentiation [20]. A correlation between keratino-
cyte differentiation and Metastatic Melanoma was also 
pointed out in Li’s studies [21]. The mRNAs in model 
had been reported in other articles that they also had 
relationship with different types of cancers. A study from 
Sigin et  al. found that in in luminal B breast cancer the 
methylation level of C1QL2 is closely linked to neoadju-
vant chemotherapy in luminal B breast cancer patients 
[22]. Filamin C (FLNC) is a large actin-cross-linking 
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protein that is found in a variety of cells. According to 
the previous literature, temporary expression or silenc-
ing of FLNC can alter cancer cell proliferation and col-
ony formation, whereas endogenous FLNC silencing 
can accelerate cancer cell motility and invasion [23]. 
LUZP2(leucine zipper protein 2 gene), located on Chr 
11p13–11p14 and encoding a leucine zipper protein, 
has been shown to be deleted in Wilms’ tumor patients. 
Wilms’ tumor, genital abnormalities, aniridia, and mental 

retardation is a rare congenital abnormality syndrome 
characterized by Wilms’ tumor, genital deformities, 
aniridia, and mental retardation [24, 25]. Furthermore, 
Zhao et colleagues found that LUZP2 mRNA expres-
sion is elevated in hormone-naive prostate cancer (PC) 
relative to normal prostate tissues, but downregulated 
throughout the progression from hormone-naive PC to 
castration-resistant PC (CRPC) [26]. PRSS3 (serine pro-
tease 3) is a member of the serine protease family that is 
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Fig. 7  Gene Set Enrichment Analysis. Differences in gene sets between high and low risk groups
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produced in pancreatic acinar cells and released into the 
small intestine to help in digestion. According to Wang’s 
findings, increased PRSS3 expression may enhance 
stomach cancer metastasis and serve as an independ-
ent molecular indication of poor patient prognosis [27]. 
SpiC is a member of Spi subtypes, SpiC has crucial func-
tions in myeloid differentiation, however, there have been 
no reports of the role of SpiC in tumors[28]. GRAMD1B 
(GRAM domain-containing protein 1B) was identified 
as a putative component of the signaling cascade17, has 
been implicated in human malignancies [29]. Specifically, 
it was reported to play a role in chemoresistance of ovar-
ian cancer patients, such that GRAMD1B inhibition led 
to an anti-tumor effect [30]. Khanna’s study has proved 
that GRAMD1B regulates cell migration in breast cancer 
cells through JAK/STAT and Akt signalling [29]. Those 
results had represented similar conclusions as this study. 

Tumor metastasis is triggered by interactions between 
cancer cells and numerous stromal cell components of the 
tumor microenvironment, as well as by the accumulation 
of intrinsic changes in malignant cells [31, 32]. Inflam-
mation and infiltration of tumor tissue by immune cells 
from the host, such as tumor-associated macrophages, 
myeloid-derived suppressor cells, and regulatory T cells, 
have been demonstrated to promote tumor develop-
ment as well as invasion and metastasis [33, 34]. Our data 
showed that the immune score and stromal score of the 
high-risk group was significantly higher than that of the 
low-risk group. such as macrophages, macrophages M1, 
monocytes, pDC and Th2 cells immune infiltration was 
significantly higher than the low-risk group. This sug-
gests that tumor metastasis-related genes also play a role 
in regulating tumor immunity. To explain more detailed 
immune cell infiltration in NSCLC, ssGSEA was used to 
find the low-risk group had higher marker expression of 
iDC, MSC, Th2 cells, Endothelial cells, Monocytes. These 
results are in line with the conclusions of previous stud-
ies [35, 36], indicating that our prognostic model can 
not only have a good predictive effect on the prognosis 
of patients with NSCLC. And it can respond to patient 
immune changes to some extent. This will be very impor-
tant for immunotherapy with NSCLC patients. For exam-
ple, in the future, patient response to immunotherapy 
can be predicted through prognostic models established 
in our study.

We wished to understand more genetically the possi-
ble mechanisms by which our model worked, GSEA was 
performed to do enrichment analysis of high and low 
risk groups separately, which could be found including 
allograft rejection, coagulation, complement, epithe-
lial mesenchymal transition, G2M checkpoint, IL6 JAK 

STAT3 signaling, inflammatory response, interferon 
gamma response, KRAS signaling up, TNFA signaling 
via NFkB were significantly enriched in the high-risk 
group. These pathways have all been shown in previ-
ous studies to be directly or indirectly related to tumor 
metastasis. For example, EMT, an evolutionarily con-
served developmental program, has been linked to car-
cinogenesis and imparts metastatic qualities to cancer 
cells by increasing mobility, invasion, and resistance to 
apoptotic stimuli. Furthermore, EMT-derived tumor 
cells have stem cell characteristics and are very resistant 
to treatment [37]. The cytokine interleukin-6 (IL6) and 
its downstream effector STAT3 form a major oncogenic 
pathway in breast cancer that has been hypothesized to 
be functionally linked to estrogen receptor (ER). Siers-
bak et  al. found that IL6/STAT3 signaling promotes 
metastasis in ER + breast cancer that is not ER posi-
tive. A subset of ER enhancers is hijacked by STAT3 to 
produce a unique transcriptional pathway [38]. Some 
of the potential pathways we have identified have been 
reported to be associated with tumor metastasis, which 
validates our results, and our results find potential path-
ways that have not been explored to metastasis. This 
provides new perspectives for future studies of genes for 
tumor metastasis.

Finally, we developed a model and a biomarker for pre-
dicting the prognosis of NSCLC metastases by a series 
of bioinformation analyses. Patients in the low-risk cat-
egory had a superior overall survival rate than those in 
the high-risk group, according to our findings which were 
confirmed in both the train and test cohorts. Our study 
opened a new avenue for the diagnostic and therapy of 
NSCLC. However, there were still exist some limitation 
in this research. Firstly, the data in TCGA may contain 
varying degrees of mistake, and the amount of data con-
tained is limited, which may lead to inaccuracies. Sec-
ond, the lack of in  vivo and in  vitro research will result 
in insufficient evidence. Last, There is still a flaw in our 
study that the TCGA database cannot provide paired 
samples. Therefore, we cannot longitudinally compare 
the situation of the same patient with different transfer 
times, and we will also include more cohorts in future 
studies to make up for this deficiency. It is also worth 
mentioning that our study is not based on all clinical fea-
tures, including age, gender, etc., but a prognostic model 
constructed from only some accessible clinical features. 
Such as T and N staging and so on. Future studies need 
to incorporate more clinical features to achieve better 
model performance. As a result, further research and 
trials are needed to verify the model and biomarker to 
assure its robustness.
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