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Abstract 

Background:  Tumor mutation burden (TMB) is a key characteristic used in a tumor-type agnostic context to inform 
the use of immune checkpoint inhibitors (ICI). Accurate and consistent measurement of TMB is crucial as it can sig-
nificantly impact patient selection for therapy and clinical trials, with a threshold of 10 mutations/Mb commonly used 
as an inclusion criterion. Studies have shown that the most significant contributor to variability in mutation counts 
in whole genome sequence (WGS) data is differences in analysis methods, even more than differences in extraction 
or library construction methods. Therefore, tools for improving consistency in whole genome TMB estimation are of 
clinical importance.

Methods:  We developed a distributable TMB analysis suite, TMBur, to address the need for genomic TMB estimate 
consistency in projects that span jurisdictions. TMBur is implemented in Nextflow and performs all analysis steps 
to generate TMB estimates directly from fastq files, incorporating somatic variant calling with Manta, Strelka2, and 
Mutect2, and microsatellite instability profiling with MSISensor. These tools are provided in a Singularity container 
downloaded by the workflow at runtime, allowing the entire workflow to be run identically on most computing plat-
forms. To test the reproducibility of TMBur TMB estimates, we performed replicate runs on WGS data derived from the 
COLO829 and COLO829BL cell lines at multiple research centres. The clinical value of derived TMB estimates was then 
evaluated using a cohort of 90 patients with advanced, metastatic cancer that received ICIs following WGS analysis. 
Patients were split into groups based on a threshold of 10/Mb, and time to progression from initiation of ICIs was 
examined using Kaplan–Meier and cox-proportional hazards analyses.

Results:  TMBur produced identical TMB estimates across replicates and at multiple analysis centres. The clinical util-
ity of TMBur-derived TMB estimates were validated, with a genomic TMB ≥ 10/Mb demonstrating improved time to 
progression, even after correcting for differences in tumor type (HR = 0.39, p = 0.012).
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Background
Tumor mutation burden (TMB) is a somatic characteris-
tic that can reveal underlying mechanisms of tumor pro-
gression, as well as inform on prognosis [1] and potential 
response to immune checkpoint inhibitors (ICIs) [2, 3]. 
Although response rates to ICIs in unselected populations 
are low (5–13% overall response rates to PD-1 inhibitors) 
[4, 5], rates increase when patients are selected based on 
tumor characteristics, such as high TMB [6] (≥ 10/Mb, 41% 
objective response to PD-1/PD-L1 inhibitors).

Despite the continuing proliferation of cancer sequenc-
ing activities, the only FDA-approved TMB companion 
diagnostic is the FoundationOne®  CDx panel [7, 8]. Pre-
vious studies have reported the variability of TMB esti-
mates derived from panel approaches, indicating they may 
not accurately reflect whole-genome TMB [9, 10]. Whole 
exome sequencing is routinely performed at many research 
institutes. However, the resulting biased coverage profile 
affects mutation calling [11] and thus TMB and mutation 
signature analyses. Whole genome sequencing addresses 
this and related issues.

Earlier studies have shown that for whole genome 
sequence data, differences introduced through extraction 
or library construction methods are far outweighed by dif-
ferences introduced in analysis methods [12]. Enrollment 
of patients in multicentre trials is an example in which the 
application of a consistent analysis pipeline would ben-
efit study quality. While small differences in TMB values 
may not appear to be problematic, they can significantly 
impact patient selection for ICI trials where a threshold 
of 10 mutations per Mb has been clinically approved [13]. 
For example, taking orginally published TMB values [2], 
the application of the TMBur pipeline would result in a 
change in eligibility (based on 10 mutations per Mb) for 
two patients (2.5%, total n = 82).

To address the problem of variability between analysis 
pipelines deployed at distinct institutions (Additional file 1: 
Table S1), we present a TMB estimation pipeline, TMBur, 
purposefully designed to be shared among centres. TMBur 
performs end-to-end analysis of tumor and matched nor-
mal whole genome sequence data to provide TMB counts 
for whole genomes and subsets to coding space, protein 
modifying alterations, and pseudo-panels.

Methods
Sequencing
Tumor specimens were collected from biopsies (nee-
dle core, endobronchial ultrasound) or tissue resections 
(Additional file 2: Table S2). Solid tumor specimens were 
snap frozen and liquid biopsies were spun down. Pathol-
ogy was reviewed and nucleic acids were extracted as 
described in Pleasance et  al. [1]. Sequencing was per-
formed on either HiSeq 2500 or HiSeq X instruments to 
target 80X coverage for the tumor samples and 40X cov-
erage for the matched normal samples. The reference cell 
lines COLO829 and COLO829BL were obtained from 
American Type Culture Collection (ATCC), Manas-
sas, VA, and sequenced to 80X and 40X coverage, 
respectively.

TMBur pipeline
The TMBur pipeline, implemented in Nextflow [14], per-
forms all analysis steps to generate TMB estimates from 
fastq files, including adapter trimming with fastp [15], 
alignment with BWA mem 0.7.17 [16], and alignment 
sorting and duplicate marking with Samtools 1.9 [17]. 
Somatic variants are identified using Manta 1.6.0 [18], 
Strelka 2.6.2 [19], and Mutect2 from GATK 4.0.10.0 [20]. 
Variants from these tools are intersected using RTGTools 
[21] to generate the calls used for further analysis. Micro-
satellite instability (MSI) is estimated using MSIsensor2 
0.1 [14], while all annotation of variants is done against 
Ens75 [22] using SNPEff 4.3t [23]. Intersections of coor-
dinate ranges are performed using bedtools 2.29.2 [24]. 
These tools are provided in a singularity 3.5.2–1.1.el7 [25] 
container downloaded by the workflow at runtime.

Calculation of TMB for somatic variant genomic sub-
sets is as follows:

•	 Genome counts of variants that overlap with chro-
mosomes 1-22XY are divided by the alignable space 
(non-N bases) in 1-22XY (n = 2667837836 bases).

•	 Coding counts of variants that intersect with CDS 
bases from Ens75 are divided by the total CDS bases 
in 1-22XY (n = 31990128 bases).

•	 Protein counts of variants with SnpEff impact rating 
of “HIGH” or “MODERATE” using Ens75 are divided 
by the total CDS bases in 1-22XY.

Conclusions:  TMBur, a shareable workflow, generates consistent whole genome derived TMB estimates predictive 
of response to ICIs across multiple analysis centres. Reproducible TMB estimates from this approach can improve col-
laboration and ensure equitable treatment and clinical trial access spanning jurisdictions.

Keywords:  Tumor mutation burden, Whole genome and transcriptome analysis (WGTA), Immune checkpoint 
inhibitors
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•	 Panel using methods outlined in [26], the count of 
variants is limited to the CDS of a set of cancer genes 
(Additional file  3: Table  S3) minus: (a) any variants 
intersecting with COSMIC [27] (b) nonsense SNVs 
and SNPEff impact ratings of “HIGH”, “MODER-
ATE”, or “LOW” in tumor suppressor genes (Addi-
tional file 4: Table S4).

Variant calling using TMBur is stable down to a normal 
depth of 30X, and a tumor depth of 50X with bioinfor-
matics estimated tumor content values above 30%, based 
on tests performed using Mutect2 and Strelka2, compo-
nents of TMBur (Additional file 8: Fig. S1).

Reproducibility at multiple sites
Analysis infrastructure at Canada’s Michael Smith 
Genome Sciences Centre at BC Cancer in Vancouver, 
Canada and The Hospital for Sick Children in Toronto, 
Canada, used CentOS 7 on Intel-based CPUs. Vancou-
ver’s cluster scheduling was done with slurm, and Toron-
to’s was performed with Moab/Torque (Additional file 5: 
Table S5).

Clinical data collection and survival outcomes
The ICI-treated patient cohort’s complete treatment 
histories, response, and survival data were collected ret-
rospectively using the BC Cancer Pharmacy database 
and chart review, and as described in Pender et  al. [2]. 
Patients received either a single-agent ICI, combination 
ICIs, or a combination of ICI and chemotherapy. Follow-
up was censored on March 1, 2019. Time to progression 
(TTP) was defined as the time from ICI initiation to the 
date of discontinuation due to progression.

Kaplan–Meier survival analysis was performed for TTP 
using the R packages survival (v3.1-8) and survminer 
(v0.4.7). For all survival analyses, patients were split into 
high and low groups based on a threshold of 10/Mb. Log-
rank tests were used to calculate p values. Cox propor-
tional hazards models were performed on 78 samples 
using the R packages survival (v2.42.3) and forest model 
(v0.5.0) individually for each TMB estimate combined 
with tumor type. Tumor types were only included if at 
least three patients with that tumor type were available. 
Counts from indel-only groups and MSI scores were 
excluded from these analyses, as the 10/Mb threshold 
was not appropriate.

Results and discussion
The TMBur workflow generates TMB estimates directly 
from fastq files, handling both alignment and variant call-
ing (Fig. 1). TMB estimates can be generated for matched 
80X tumor and 40X normal genomes in 24 h on a com-
puter cluster with 1.5 Tb of storage, 96 Intel(R) Xeon(R) 

CPU E5-2650 v4 @ 2.20 GHz CPUs, and 600 GB of RAM. 
If desired, intermediate BAM and VCF files can be saved 
for review or further analysis.

Reproducibility tests were performed with TMBur 2.2.5 
by repeatedly analyzing whole genome data from the 
somatic reference cell line COLO829 (COLO829BL nor-
mal). All TMB (per Mb) estimates reported by TMBur 
were identical across 10 analysis replicates. Small single 
digit variances in the genome-wide SNV (range 38014–
38020) and INDEL counts (1301–1302) were observed 
(Additional file 6: Table S6). Upon investigation, this vari-
ance was attributed to the pseudo-random read place-
ment employed by BWA [28]; multiple runs using the 
same starting fastqs yielded BAM files that had 0.2% of 
alignments with differing coordinates. All employed vari-
ant callers, including Strelka2, Mutect2, MSISensor and 
Manta, were shown to call identical sets of variants when 
supplied with identical BAM files. MSI status was called 
stable (MSS) for each test [29].

Reproducibility was also tested using COLO829 and 
COLO829BL data at two centers (in Vancouver, BC and 
Toronto, ON) that ran TMBur using their local stor-
age and compute infrastructures. Results of these tests 
showed identical TMB estimates, and the variances in 
genome-wide SNV (range 38014–38022) and INDEL 
counts (1301–1302) were similar to those reported 
above for the single center replicates (Additional file  6: 
Table S6).

To demonstrate the application of TMBur to a well-
studied cancer patient cohort, we applied it to whole 
genome data from 90 patients with advanced and meta-
static cancer [1, 2] who subsequently received ICIs. This 
cohort included 19 tumor types, with the most common 
being lung (n = 24, 27%), breast (n = 11, 12%), and pan-
creatic cancers (n = 11, 12%, Fig.  2A, Additional file  2: 
Table  S2). Patients received an average of three cancer 
therapies (median, range: 1–10) prior to biopsy.

Tumor types with the highest genomic SNV TMB 
reported by TMBur were consistent with previous 
reports [26, 30], with some cutaneous melanomas, colo-
rectal and lung cancers exhibiting the highest counts 
(Fig.  2A). All TMB counts (SNV only and total counts 
including indels, for different genomic subsets) were 
strongly correlated (mean R = 0.911, Fig.  2B, Additional 
file  8: Figure S2). Interestingly, TMB estimates derived 
using a pseudo-panel approach (Methods) had weaker 
correlations with the other TMB estimates, particularly 
counts derived from the whole genome (SNVs alone, 
R = 0.797, p < 2.2 × 10−16; total including indels R = 0.810, 
p ≤ 2.2 × 10−16).

The FDA-approved TMB threshold for ICI treatment 
is 10/Mb, a value associated with hypermutation and 
increased response to ICIs across many studies [2, 6, 31]. 
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Using the TMBur-derived values from different genome 
subsets in our data, we sought to evaluate the predictive 
value of this threshold. The 10/Mb threshold was able to 
stratify patients based on time to progression using all 
reported TMBur estimates to a similar degree (Fig. 2C). 
However, the pseudo-panel counts had a lower statisti-
cal significance (p = 0.11). When the 10/Mb threshold 
was evaluated for each TMB count in a multivariate Cox 
proportional hazards model with tumor type (Additional 
file  7: Table  S7), high TMB from SNV-based estimates 

tended to be more effective at stratifying patients than 
those from total counts, including indels (protein SNV, 
HR = 0.31, p = 0.012; genome SNV, HR = 0.39, p = 0.012; 
coding SNV, HR = 0.40, p = 0.026). Consistent with 
the Kaplan–Meier analysis, pseudo-panel estimates 
remained the least predictive (HR = 0.53, p = 0.086).

TMBur estimates for seventy-eight samples (87%) 
were consistently called high or low, based on the 10/
Mb threshold across all reported genome subsets. Fif-
teen samples (17%) were consistently high, 63 (70%) 

Fig. 1  Schematic diagram of the Nextflow workflow for the singularity container used in the TMBur pipeline. TMBur is a portable software package 
that contains multiple individual components, including variant caller tools (Manta-Strelka2, Mutect2, and MSIsensor2) and resources (the human 
genome reference sequence [hg19] and reference annotations [SNPEff Ens75]), all used to provide consistent tumor mutation burden (TMB) counts. 
The workflow allows for the analysis of raw, whole-genome data from pairs of samples (tumor and normal) and can be conducted with multiple 
pairs simultaneously
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were consistently low, and five (6%) differed in just one 
of the TMB estimates. Of the five samples that were dif-
ferent in one estimate, one was considered high in all, 
but the pseudo-panel (8.26/Mb in pseudo-panel vs. 
median 17.12/Mb in others) had a durable clinical ben-
efit, remaining on pembrolizumab for 578  days without 
progression. The other four patients were considered 
low in all but one method (either pseudo-panel [1/4] 
or genome total [3/4]). Three of these patients did not 
exhibit a durable clinical benefit, but one did (10.64/Mb 
genome total vs. median 6.57/Mb in the others), remain-
ing on pembrolizumab for 214 days without progression. 
These results demonstrate that the manner in which 
TMB is measured can impact clinical trial eligibility and 
could mean that some patients who may respond could 
be denied enrollment.

The use of a smaller sub-set of genome variants (a 
“pseudo-panel”) was the least effective at predicting 
clinical benefit. There are limitations in comparing this 
to clinical panel testing, however, as in practice, whole 
genome sequences tend to be generated at lower levels 

of sequence coverage than panel sequences. Additionally, 
clinical panels may have variable bait efficiency resulting 
in variable coverage not present in whole genome data. 
Finally, clinical panels routinely used to align patients to 
trials use algorithms to filter potential germline variants 
as no matched normal is sequenced, a step not required 
using TMBur with tumor-normal pairs. Whole genome 
sequencing has further benefits for aligning patients 
with ICIs as it allows detection of specific alterations in 
genes such as PBRM1, LRP1B, and SMARCB1 [32–34], 
as well as broader information such as heterozygosity of 
HLA class I alleles [35]. Some studies have also demon-
strated that multiple biomarkers may be more effective 
at predicting response [2, 3], providing further support 
for using whole genome sequencing instead of individual 
tests for each marker.

Fig. 2  Predictive value of TMB estimates on ICI response. A Tumor types represented in the cohort, and genomic SNV TMB estimates per sample. B 
Spearman correlation between TMB estimates derived from different genomic subsets. C Time to progression in patients with a high (≥ 10) or low 
(< 10) TMB. p Values were determined using a log-rank test. In all panels, SNV counts describe TMB derived using SNVs only, and total counts refer to 
SNV and indels. TMB estimates are as described in Methods. Patients at risk for progression at each time point are shown in the tables below
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Conclusions
Our results demonstrate that TMBur, a shareable work-
flow to determine TMB, serves its intended purpose to 
share a reproducible workflow across analysis sites. TMB 
estimates were consistent across multiple runs, per-
formed at two distant academic research centers, and in 
a retrospective analysis appeared capable of anticipating 
patient responses to ICIs. TMBur could lead to higher 
data consistency and quality, more effective collaboration 
and improved access to clinical trials, ensuring patients 
are not excluded from participation due to cross-centre 
variation in TMB estimates. TMBur additionally accom-
modates whole genome data, which is increasingly used 
as a “gold standard” data type in cancer genomic analyses.
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