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Abstract
Background  Autophagy regulators play important roles in the occurrence and development of a variety of tumors 
and are involved in immune regulation and drug resistance. However, the modulatory roles and prognostic value of 
autophagy regulators in pancreatic cancer have not been identified.

Methods  Transcriptomic data and survival information from The Cancer Genome Atlas (TCGA) and Gene Expression 
Omnibus (GEO) databases were used to construct a risk score model. Important clinical features were analyzed to 
generate a nomogram. In addition, we used various algorithms, including ssGSEA, CIBERSORT, XCELL, EPIC, TIMER, 
and QUANTISEQ, to evaluate the roles of autophagy regulators in the pancreatic cancer immune microenvironment. 
Furthermore, the mutation landscape was compared between different risk groups.

Results  Pan cancer analysis indicated that most of the autophagy regulators were upregulated in pancreatic 
cancer and were correlated with methylation and CNV level. MET, TSC1, and ITGA6 were identified as the prognostic 
autophagy regulators and used to construct a risk score model. Some critical clinical indicators, such as age, American 
Joint Committee on Cancer (AJCC) T stage, AJCC N stage, alcohol and sex, were combined with the risk model to 
establish the nomogram, which may offer clinical guidance. In addition, our study demonstrated that the low score 
groups exhibited high immune activity and high abundances of various immune cells, including T cells, B cells, and 
NK cells. Patients with high risk scores exhibited lower half inhibitory concentration (IC50) values for paclitaxel and 
had downregulated expression profiles of PD1, CTLA4, and LAG3. Mutation investigation indicated that the high 
risk groups exhibited a higher mutation burden and higher mutation number compared to the low risk groups. 
additionally, we verified our risk stratification method using cytology and histology data from our center, and the 
results are satisfactory.
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Introduction
Pancreatic cancer remains one of the most malignant and 
lethal tumors, with 57,600 new cases of this disease and 
47,050 deaths associated with pancreatic cancer reported 
in 2020 [1]. The lack of opportunity for early surgery and 
the scarcity of effective chemotherapy drugs pose chal-
lenges for pancreatic cancer therapy. Immunotherapy 
with immune checkpoint inhibitors (ICIs) has achieved 
ideal therapeutic results in various solid cancers [2]. 
However, ICIs exhibit negligible benefits in pancreatic 
cancer therapy due to the cold tumor immune micro-
environment [2, 3]. In addition, many pancreatic cancer 
patients undergoing chemotherapy exhibit chemothera-
peutic drug resistance to various degrees. Hence, devel-
oping a new method to detect the drug sensitivity of 
pancreatic cancer chemotherapy and immunotherapy is 
an urgent mission.

One of the difficulties that prevents therapeutic 
approaches from working effectively and causes the 
immune evasion of pancreatic malignant cells is the 
tumor microenvironment [4]. Due to the absence of a 
significant number of tumor-associated macrophages 
(TAMs), regulatory T cells (Tregs), myeloid-derived sup-
pressor cells (MDSCs) [5–7], the microenvironment of 
pancreatic cancer is always immunosuppressive. Addi-
tionally, the biological effects of B cells and T cells are 
always inhibited by cancer cells, and normal immune 
functions are restrained [8].

Autophagy is a complex pathophysiological process 
that relies on autophagosomes and autolysosomes to 
recover cytoplasmic components or organelles [9]. The 
theory of autophagy was first proposed by Christian 
De Duve, and research interest in this field peaked in 
2016, with the Nobel Prize for Medicine and Physiology 
awarded for autophagy-related research [10]. Autophagy 
has been found to play a significant role in the patho-
physiological processes of many diseases, including 
diabetes [11], obesity [12], heart disease [13, 14], neuro-
degenerative disorders [15], and cancer [16]. Moreover, 
autophagy has dual functions in cancer: it can promote 
the survival of cancer cells or lead to their death [9]. In-
depth study of the functions of autophagy regulators may 
reveal the underlying mechanisms of cancer metabolism 
and progression.

Recent studies have indicated that autophagy regula-
tors participate in the modulation of immune activity 
and chemotherapy resistance [17, 18]. Pua et al. identified 
the critical role of autophagy in the growth, proliferation 

and differentiation of T cells [19]. Deficiencies in certain 
autophagy regulators, such as ATG7, can contribute to T 
cell mitochondrial metabolism disorders and cell cycle 
arrest [19, 20]. In addition, autophagy regulators can pro-
mote the differentiation of T cells into Tregs by regulat-
ing thymus differentiation [21, 22]. Cancer chemotherapy 
resistance also involves autophagy modulation. Some 
studies have shown that the induction of autophagy after 
chemotherapy can increase the sensitivity of patients to 
chemotherapy drugs and reduce drug resistance [18]. The 
death of autophagic cells may be the mechanism underly-
ing this effect [23, 24]. Interestingly, most of these studies 
have indicated that the regulation of autophagy promotes 
tumor resistance through mechanisms that involve EGFR 
signaling, the PI3K/AKT/mTOR pathways [25], p53 [26], 
and MAPK14/p38a signaling [27]. However, despite the 
important role of autophagy regulators in pancreatic can-
cer therapy and prognosis, few studies have investigated 
their application prospects.

Gene mutations also play a critical role in the progres-
sion and evolution of pancreatic cancer, especially KRAS 
mutations and other key mutations in pancreatic cancer. 
We might find new directions by investigating the vari-
ables that influence these mutations [4].

Here, we performed a comprehensive bioinformatics 
analysis using The Cancer Genome Atlas (TCGA) and 
Gene Expression Omnibus (GEO) datasets to explore the 
expression profiles of autophagy regulators across can-
cers; the predictive values of risk model for the progno-
sis, immune landscape and the efficacies of therapeutic 
options (research design shown in Figure S1), with the 
goal of improving clinical therapeutic benefits.

Materials and methods
List of autophagy regulators and patient expression 
datasets
We identified 515 unique autophagy regulators in total, 
with 232 autophagy regulators from the Human Autoph-
agy Database (HADb), 347 autophagy regulators from 
the Molecular Signatures Database (MSigDB), and 48 
autophagy regulators from GeneCards. These autophagy 
regulators were used for subsequent analysis. In addi-
tion, we downloaded the gene expression data of 182 
pancreatic cancer patients from TCGA-PAAD (RNA 
sequencing data, 182 samples) (https://cancergenome.
nih.gov/) via the TCGAbiolinks R package. After vacancy 
value screening and clinical information integrating, we 
ultimately included 154 patients with complete clinical 

Conclusion  We speculated that autophagy regulators have large effects on the prognosis, immune landscape and 
drug sensitivity of pancreatic cancer. Our model, which combines critical autophagy regulators and clinical indicators, 
will provide guidance for clinical treatment.
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and expression information. For validation, GSE 62,452 
(Microarray chip data, 66 samples) and PACA-AU (RNA 
sequencing data, 80 samples) was downloaded from GEO 
(https://www.ncbi.nlm.nih.gov/geo/) and used as a vali-
dation dataset.

Autophagy regulator screening and determination of their 
expression levels in various tumors
To identify the most critical autophagy regulators in pan-
creatic cancer, we performed univariate Cox regression 
analysis, lasso regression and random forest analysis, 
and multivariate Cox regression analysis to progressively 
screen significant genes. Autophagy regulators that were 
correlated with patients’ overall survival (OS) were iden-
tified by univariate Cox regression analysis (R package 
“survminer 0.4.9”, R package “survival 3.3.7”), and P < 0.05 
was considered significant. The lasso regression algo-
rithm (R package “glmnet”, version 4.1.2, nfold = 1000, 
family = ‘cox’) can be used to reduce the coefficients of 
genes to 0 to facilitate variable selection. The random 
forest algorithm (R package “randomForestSRC” ,ver-
sion 2.12.0, set.seed = 60, ntree = 100) takes the average 
or mode of the prediction results as the final data of a 
certain sample, which can reduce the prediction error. 
We applied the random forest and lasso regression algo-
rithms as the second screening step. Then, multivariate 
Cox regression analysis (R package “survival 3.3.7”) was 
used to narrow down the numbers of selected genes and 
reduce the interactions among them. In addition, we 
analyzed the expression profiles of the selected genes in 
various tumors and investigated their effects on the prog-
nosis of pancreatic cancer patients.

Functional enrichment analysis of autophagy regulators
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [28] pathway analyses of the ini-
tially selected genes were performed with the R package 
org.Hs.eg.db 3.12 to explore the potential functions and 
pathways. The ggplot2 package of R was used to visualize 
the results.

Construction of the prognostic risk score model and 
establishment of a nomogram
The genes remaining after the above screening process 
were used to construct a prognostic model. The risk 
scores were calculated and the patients were classified 
into high risk or low risk groups. Kaplan–Meier (K-M) 
curve, receiver operating characteristic (ROC) curve, and 
concordance index (C index) was utilized to evaluate the 
performance of the model.

Immune activity and infiltration analysis
The stromal score, estimate score, immune score, and 
tumor purity of every sample were calculated using 

the estimate package. Various algorithms including 
CIBERSORT, QUANTISEQ, TIMER, ssGSEA, EPIC, 
and XCELL were applied to analyze the abundance of 
immune cells.

Evaluation of the model effect for chemotherapy and 
immunotherapy
To further evaluate the significance of our model in pan-
creatic cancer, some analyses were performed to pre-
dict its efficacy in chemotherapy and immunotherapy. 
We calculated the half inhibitory concentration (IC50) 
scores of common chemotherapy drugs for pancreatic 
cancer (pRRophetic, version 0.5, batchCorrect = ‘eb’, min-
NumSamples = 10), and the Wilcoxon test was used to 
evaluate the differences between the high and low risk 
groups.

In addition, the relationship between immune check-
points expression and model score was also explored, 
and violin plots and box plots were used to visualize the 
results.

Mutation analysis
The R package “maftools” (version 2.6.05, rmOut-
lier = TRUE, addStat = ‘median’) was used to investi-
gate the different mutation profiles of pancreatic cancer 
between different risk score groups.

Cytological verification and histological verification
One human normal pancreatic epithelial cell line (H6C7) 
and four human pancreatic cancer cell lines (SW 1990, 
PANC-1, MIA-PaCa-2, CFPAC-1) were chosen to ver-
ify the expression levels of TSC1, ITGA6, and MET. All 
cell lines were cultured in Dulbecco’s modified Eagle’s 
medium (DMEM) with 10% fetal bovine serum (FBS) and 
1% antifungal agent. We maintained each Petri dish in a 
humidified atmosphere at 37 °C with 5% CO2. Addition-
ally, we identified the clinical value of the risk signature 
with data in Fudan University Shanghai Cancer Cen-
ter (FUSCC). Total cDNA from 59 resected pancreatic 
cancer samples with good follow-up was extracted from 
the FUSCC cohort. The primer sequences for the above 
3 genes and GAPDH were as follows: TSC1 forward: 5′- 
CAACAAGCAAATGTCGGGGAG-3′, TSC1 reverse 
5′- CATAGGGCCACGGTCAGAA-3′; ITGA6 forward: 
5′- ATGCACGCGGATCGAGTTT-3′, ITGA6 reverse: 
5′- TTCCTGCTTCGTATTAACATGCT-3′; MET for-
ward: 5′- AGCAATGGGGAGTGTAAAGAGG-3′, 
MET reverse: 5′- CCCAGTCTTGTACTCAGCAAC-3′; 
and GAPDH forward: 5′-CAGGAGGCATTGCTGAT-
GAT-3′, GAPDH reverse: 5′-GAAGGCTGGGGCT-
CATTT-3′. We normalized our expression data by 
GAPDH and calculated the relative mRNA expression 
level by the 2−ΔΔCt method.

https://www.ncbi.nlm.nih.gov/geo/
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Results
The genetic characteristics and transcriptional variations 
of key autophagy regulators in pan cancer and pancreatic 
cancer
We used multiple algorithms to identify the most influ-
ential autophagy regulators in our gene list. Forty-three 
autophagy regulators were identified by univariate Cox 
regression analysis (Figure S2). Figure  1  A exhibits the 
potential influence of autophagy in tumor immune 
microenvironment. We analyzed the mutational profiles 
of these autophagy regulators in the TCGA pan-cancer 
database, and found that 1707 patients had at least one 
mutation on these autophagy regulators. We selected 
the top ten molecules with highest mutation frequency 
and displayed them in waterfall plots (Fig.  1B). Patients 
with these molecules’ mutation accounted for 60.28% 
of the total samples, and the autophagy regulators with 
the highest mutation probability were MET (12%) and 
ITGB4 (12%). Methylation analysis indicated that the 
expression level of most autophagy regulators was neg-
atively correlated with methylation level (Figure S3A). 
In addition, the CNV (Copy number variation) level of 
most autophagy regulators were positively correlated 
with gene expression (Figure S3B). We further compared 
the relative expression of these molecules in 14 cancer 
types containing paired tumor and normal samples and 
found that approximately half of the autophagy regula-
tors showed elevated expression in different cancers, 
including BIRC5, RIPK2, MET, ITGA6, BCL2L1, CASP4, 
etc. (Fig.  1  C). We then screened 12 autophagy regula-
tors by random forest and lasso regression to identify 
the most significant genes. Lasso regression confirmed 7 
critical genes (TNFSF10, MET, CASP4, TPCN1, ATG4D, 
TSC1, BIRC5), and the random forest algorithm identi-
fied 8 essential genes (APOL1, ITGA6, MET, TNFSF10, 
VPS26A, EPM2A, RIPK2, CASP4). We combined the two 
results to obtain 12 significant autophagy regulators.

The pan cancer analysis suggested that these autoph-
agy regulators also exhibited two expression trends in 
most cancers; most of these 12 autophagy regulators had 
upregulation trends in pancreatic cancer (Fig. 2 A). Addi-
tionally, these 12 autophagy regulators can significantly 
predict patient prognosis (Fig.  2B). Validation of these 
12 identified autophagy regulators revealed a more nota-
ble effect. most of these 12 autophagy regulators were 
upregulated in pancreatic cancer, and 8 genes, includ-
ing APOL1, ITGA6, MET, TNFSF10, VPS26A, RIPK2, 
CASP4, and TSC1, exhibited remarkably elevated expres-
sion (Fig. 2 C).

Construction of a risk score model and nomogram
To further investigate the predictive significance of 
autophagy regulators in pancreatic cancer, we con-
structed a risk score model based on TCGA. A total of 

154 patients were selected after excluding patients with 
incomplete clinical information and removing NA values. 
Multivariate Cox regression analysis identified 3 autoph-
agy regulators from the 12 identified genes that were 
strongly associated with pancreatic cancer prognosis: 
TSC1, ITGA6, and MET. The risk scores of all samples 
were calculated by the prediction algorithm utilizing the 
coefficient and expression data of each gene in the multi-
variate Cox regression model. All patients were divided 
into high risk and low risk groups according to their risk 
scores. The risk curve plot reflects each patient’s risk 
score and survival time (Fig.  3  A). The survival curve 
indicated that patients with low risk scores had elevated 
survival times and better prognoses than those with high 
risk scores (p < 0.001) (Fig.  3B). We then constructed a 
time-dependent ROC curve to validate the efficacy of 
our model, and the area under the curve (AUC) values 
at 1, 2, and 3 years were 0.72, 0.76, and 0.77, respectively 
(Fig. 3 C), indicating high predictive ability. A GEO data-
set (GSE62452) was used as the validation cohort, and 
the AUCs at 1, 2, and 3 years were 0.55, 0.77 and 0.81, 
respectively, which suggested higher accuracy in the later 
2 years (Figure S4A). As expected, the survival curve 
distinguished high risk and low risk samples, with a p 
value < 0.05 (Figure S4B). In addition, the prognostic role 
of the prediction model was also well validated in PACA-
AU (Figure S4C-S4D). Considering the importance of 
clinical characteristics in predicting pancreatic cancer 
prognosis, we combined some clinical features with our 
risk score model to perform univariate and multivariate 
Cox regression analyses. The results indicated that the 
risk score were independent prognostic factors for pan-
creatic cancer (Fig.  3D). We then constructed a more 
comprehensive nomogram (Fig. 3E) using age, risk score, 
American Joint Committee on Cancer (AJCC) T stage, 
AJCC N stage, alcohol and sex. The DCA curve revealed 
the clinical benefits of our nomogram (Fig. 3 F).

Investigation of the autophagy-associated mutation 
landscape in pancreatic cancer
We comprehensively compared the tumor mutation 
burden, mutation numbers, mutation panorama and co 
mutation status among different risk groups in TCGA. 
The high risk groups showed an obviously higher muta-
tion burden and higher mutation numbers than the low 
risk groups (Fig. 4 A, 4B). The result was well validated in 
PACA-AU (Figure S4E). In addition, the high risk groups 
exhibited a higher mutation rate (87.5%) than the low risk 
groups (65.5%). Interestingly, the top five mutated genes 
were consistent among the different risk groups: TP53, 
KRAS, SMAD4, CDKN2A, and TTN (Fig. 4 C, 4D). Co 
mutation analysis identified some co mutation genes, 
including TP53 and CDKN2A in the high risk groups and 
SMAD4 and KRAS in the low risk groups (Fig. 4E F). In 
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addition, we performed differentially mutated gene anal-
ysis between samples with high and low scores. We pres-
ent the results of differentially mutated genes between 

the two groups using volcano plots, which are shown in 
Fig. 4G.

Fig. 1  Expression variation of autophagy regulators. (A). The pattern map to show the potential role of autophagy in tumor immune microenvironment. 
(B) The waterfall plot shows the somatic mutations of the 10 autophagy regulators with the highest mutation rate using pan-cancer analysis. (C) Dot plot 
exhibits the expression level of these molecules between tumor and normal tissues.
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Autophagy regulators play an important role in immune 
regulation
To investigate the relationships between autophagy 

regulators and immune cell activity in pancreatic cancer, 
we performed functional annotation of the expression 
matrix from TCGA-PAAD with 28 immune cell-related 

Fig. 2  Expression profiles and survival significance of autophagy regulators. (A) Pancancer analysis of the expression profiles of 12 autophagy regulators. 
(B) Forest plots of univariate and multivariate analysis results showing the survival significance of 12 autophagy regulators. (C) The expression profiles of 
12 autophagy regulators in various validated datasets of pancreatic cancer. The marked numbers in Fig. 2 A represent the number of datasets in which 
the gene was either up- or down-regulated in this cancer.
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gene sets, and unsupervised clustering was used to dem-
onstrate the results methodically. Patients were divided 
into 3 categories: low immune activity (immune-
L), medium immune activity (immune-M), and high 

immune activity (immune-H) (Fig. 5 A). Then, we investi-
gated the correlations between the autophagy regulators 
and immune activity. The immune-H group exhibited 
a lower risk score than the immune-M and immune-L 

Fig. 3  Construction of the autophagy-related risk score model and nomogram. (A) Risk score curve showing the distribution of each patient’s risk score 
and survival time. (B) The survival curve reflects the prognosis of patients with different risk scores. (C) The ROC curve verifies the accuracy of our risk score 
model. (D) Univariate and multivariate regression analyses of clinical characteristics and risk signatures. (E) Construction of a nomogram to accurately 
predict the prognosis of pancreatic cancer. (F) DCA curve showing the clinical benefit of our nomogram for pancreatic cancer patients.
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Fig. 4  Investigation of the autophagy-associated mutation landscape in pancreatic cancer. (A, B) The high-risk group showed an obviously higher muta-
tion burden and higher mutation numbers. (C) Oncoplot of the high-risk group. (D) Oncoplot of the low-risk group. (E) Comutation analysis of the high-
risk group. (F) Comutation analysis of the low-risk group. (G) Differentially mutated gene analysis between samples with high and low scores.
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groups (Fig.  5B). In addition, we calculated the stromal 
score, estimate score, immune score, and tumor purity 
of every sample and used these scores for analysis. The 
results indicated that immune activity was consistent 

with the stromal score, estimate score and immune score 
but contrary to tumor purity. Interestingly, different 
immune categories exhibited remarkable differences in 

Fig. 5  ssGSEA to perform immune activity stratification and the correlation with our risk model. (A) The estimation algorithm and ssGSEA were utilized to 
evaluate the immune activity of samples based on 28 immune cells. (B-F) The ability of our model to reflect the immune activity of the samples.
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stromal score, estimate score, immune score, and tumor 
purity (Fig. 5 C-5 F).

To explore the ability of our risk stratification method 
in assessing the activity of immune cells, algorithms 
including CIBERSORT, QUANTISEQ, TIMER, ssGSEA, 
EPIC, and XCELL were applied to analyze the abundance 
of immune cells (Fig.  6). A convolution histogram was 
constructed to show the proportions of immune cells in 
different samples (Fig. 6 A, CIBERSORT), and a lollipop 
graph was constructed to show the correlation between 
immune cell scores and risk scores (Fig. 6B, CIBERSORT, 
QUANTISEQ, TIMER, ssGSEA, EPIC, and XCELL). The 
results indicated that the abundances of T cells, B cells 
and NK cells estimated by different algorithms had strong 
correlations with our risk score (Fig.  6B). In addition, 
ssGSEA and CIBERSORT were performed to analyze the 
distribution of immune cells between the high and low 
risk groups. The low risk groups had more immune cell 
infiltration than that in the high risk group (Fig. 6 C, D). 
In addition, the prediction of immune infiltration by the 
predictive model was also well validated in PACA-AU 
(Figure S4F-S4G).

Autophagy regulators have great potential for immune 
therapy and chemotherapy
We investigated the inner correlation between our risk 
score and therapy efficacy in pancreatic cancer to explore 
new prediction methods for prognosis (in TCGA data-
base). We explored the relationship between ICI tar-
gets and our risk score model to identify the predictive 
potential. The results indicated that a low risk score was 
associated with relatively high expression levels of PD1 
(p < 0.001), CTLA4 (p < 0.01), and LAG3 (p < 0.001), while 
PDL1 showed no significant association with risk score 
(Fig. 7 A-7D). we validated this result in PACA-AU and 
the conclusion was consist with that in TCGA (Figure 
S5A).

We the discovered that patients with lower risk scores 
exhibited a higher IC50 of paclitaxel (p < 0.001), while 
patients with lower risk scores exhibited a lower IC50 of 
other three drugs (Fig.  7E H, S5B), suggesting that our 
model is a potential indicator for drug sensitivity.

Functional enrichment analysis
GO analysis (Fig. 8) indicated that the enriched terms of 
these autophagy regulators mainly included “regulation 
of autophagy”, “macroautophagy”, “positive regulation of 
cellular catabolic process” and “cellular response to extra-
cellular stimulus”. KEGG analysis indicated that these 
autophagy regulators were involved in the autophagy-
related pathway, pathways of infection by some bacteria 
and viruses, and some neurodegenerative disease-related 
pathways (Fig. 8). In addition, we compared samples with 
a high- vs. low-risk score and perform a GSEA analysis 

with the DEG results. The result indicated that these dif-
ferential expression genes mainly are involved in “leuko-
cyte chemotaxis”, “cellular response to cytokine stimulus” 
and other immune related pathways, as well as some 
tumor-related process including, “angiogenesis” and 
“positive regulation of cell motility” (Figure S6).

Cytological verification and tissue sample verification
qRT-PCR was performed to detect the relative expres-
sion levels of TSC1, ITGA6, and MET in normal and can-
cer cell lines. The results (Figure S7) indicated that the 
expression levels of TSC1, ITGA6, and MET in most can-
cer cell lines (SW1990, PANC1, Mia-paca-2, CFPAC1) 
were significantly higher than those in the normal cell 
line (H6C7). In addition, according to the results from 
our 24 pairs of cancer and adjacent-tissue samples, the 
expression levels of TSC1, MET, and ITGA6 in cancer 
were significantly higher than those in adjacent normal 
tissues (Fig.  9  A). Our model was well validated in the 
FUSCC cohort. The survival time of high risk patients 
was significantly lower than that of low risk patients, with 
AUCs of 0.78 and 0.76 for one and two years, respectively 
(Fig. 9B).

Immunohistochemistry verification
We obtained the protein expression profiles of key 
autophagy regulators from the Human Protein Atlas 
(HPA) database, which are shown in Figure S8. The 
immunohistochemical staining of tumor tissues was 
much more intense than that of normal tissues.

Discussion
The development of bioinformatics tools has advanced 
oncology research. High-throughput genome sequencing 
and microarray technology can eliminate the limitations 
of single-gene studies and facilitate an understanding of 
the pathogenesis and prognosis of diseases at the level of 
the entire genome [29]. Many scientists have identified 
genetic signatures to evaluate tumor therapy and prog-
nosis using bioinformatics methods [30]. In this study, 
we confirmed several significant autophagy regulators 
to construct a predictive model and identified their roles 
in influencing the prognosis, immune landscape and the 
efficacies of drug therapies. More importantly, our inves-
tigation established an accurate model by a novel screen-
ing method and is the first to evaluate the influence of 
autophagy regulators on the immune microenvironment 
of pancreatic cancer.

To build a model with high predictive ability and accu-
racy based on autophagy regulators, the choice of vari-
ables and screening process are the most important 
factors to consider. Cox analysis is a common method 
in bioinformatics that can incorporate survival time 
and outcome to screen variables while eliminating the 
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interference of multicollinearity [31]. Zhang et al. iden-
tified tumor microenvironment (TME)-related genes in 
hepatocellular carcinoma using Cox analysis and built a 

risk model beneficial to patients [32]. In addition, Chen 
et al. utilized Cox analysis to validate the most impor-
tant clinical indicators and obtained accurate results 

Fig. 6  Immune cell infiltration and correlation analysis based on various algorithms. (A) A convolution histogram showing the proportions of immune 
cells in different samples (CICBERSORT). (B) A lollipop graph showing the correlations between immune cell scores and risk score. (C) Immune cell 
abundance differences between the high- and low-risk groups (ssGSEA) (D) Immune cell abundance differences between the high- and low-risk groups 
(CICBERSORT).
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regarding outcomes [33]. In our study, we adopted a 
new screening method with multiple processes and 
algorithms to confirm the integrity of the prognostic 

model. Univariate Cox regression analysis was used to 
initially identify autophagy regulators that significantly 
influenced survival time and status, while multivariate 

Fig. 7  The potential predictive performance of the risk score model for chemotherapy and immune therapy. (A-D) Correlations between risk score and 
important immune checkpoint expression levels. (E-H) Ability of our risk score model to predict the IC50 of chemotherapy drugs. 
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Fig. 8  Functional enrichment analysis of autophagy regulators. (A) BP analysis of 43 autophagy regulators. (B) CC analysis of 43 autophagy regulators. (C) 
MF analysis of 43 autophagy regulators. (D) KEGG analysis of 43 autophagy regulators.
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Cox regression analysis was used to exclude the influ-
ences of gene interactions and collinearity. The novelty 
of our investigation method lies in the simultaneous use 
of lasso regression and the random forest algorithm to 
carry out the intermediate screening process and obtain 
the intersecting genes to ensure that critical regulators 
are not censored. The survival curve analysis indicated 
that high risk patients are highly differentiated from 
low-risk patients. In addition, the AUC values (> 0.7) at 
3 years indicated that the prognostic model was accurate, 
and the DCA curve suggested a remarkable benefit to 

patients with pancreatic cancer. The prognostic model we 
constructed can predict precise outcomes of pancreatic 
cancer patients and may have broad application pros-
pects in clinical practice.

Recently, TME investigation has become a focus of 
oncology research and may enhance our understand-
ing of the crosstalk between cancer development and 
immune cells. In addition, by influencing immune cell 
infiltration, the TME may influence the therapeutic 
effects of immune therapy [34]. The tumor microenvi-
ronment is one of the challenges that hinders therapeutic 

Fig. 9  Verification of the clinical value of the risk signature in FUSCC. (A) The expression levels of TSC1, MET, and ITGA6 in cancer samples were higher than 
those in adjacent normal samples. (B) The survival time of high-risk patients was significantly lower than that of low-risk patients.
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methods from operating well and contributes to the 
immune evasion of pancreatic malignant cells [4]. How-
ever, autophagy regulators, as significant modulators of 
immune cell infiltration, have not been systematically 
evaluated in the pancreatic cancer immune microenvi-
ronment. Herein, we evaluated the correlation between 
autophagy related risk score and the abundances of 
immune infiltration cells to explore the roles of autoph-
agy regulators. We found that our risk scores were sig-
nificantly correlated with immune activity. The ssGSEA 
outcome indicated that a high-risk score was associated 
with a low degree of immune cell infiltration, indicat-
ing that our model has ideal immune evaluation ability. 
Based on the above results, we speculated that autophagy 
regulators were associated with the immune landscape of 
the pancreatic cancer microenvironment. However, the 
underlying molecular mechanism integrating autophagy 
and pancreatic cancer immunity remains to be eluci-
dated. Some scientists have begun to explore the feasi-
bility of utilizing autophagy modulators to enhance the 
immunotherapy of malignant carcinomas [35]. Choi et 
al. reported that SYK induced autophagy by promoting 
the production of reactive oxygen species (ROS) and the 
activity of MAPK8/9, which subsequently induced the 
surface expression of MHCII and CD4 + T cell activities, 
ultimately leading to remarkable increases in antitumor 
immunotherapy effects [36]. However, the application of 
autophagy in pancreatic cancer immunotherapy remains 
scarce. In our current study, we demonstrated a strong 
correlation between risk scores and different immune 
checkpoints, illustrating the feasibility of deciphering 
immunotherapy from an autophagy related perspective.

Chemotherapy is the primary therapeutic method for 
patients with pancreatic malignancies, either before or 
after surgery. Nevertheless, resistance to chemothera-
peutic drugs often occurs in pancreatic cancer, leading 
to unsatisfactory treatment efficacy [37]. Here, we evalu-
ated the correlations between chemotherapeutics, such 
as paclitaxel, gemcitabine, cisplatin and erlotinib, and the 
autophagy risk signature. High risk scores were associ-
ated with lower IC50 values for paclitaxel, while the other 
drugs showed no associations. Previous studies have 
proven the dual role of autophagy in inducing drug sen-
sitivity. For example, Mirzoeva et al. demonstrated that 
chloroquine (an autophagy inhibitor) can promote the 
antitumor effects of PI3K/mTOR inhibitors in pancre-
atic cancer therapy [38]. In contrast, Torres et al. found 
that cannabinoids can remarkably activate autophagy-
induced tumor cell death to enhance the antitumor activ-
ity of temozolomide [24]. Hence, we speculate that the 
mechanism underlying the high sensitivity to paclitaxel 
may involve the induction of autophagy regulators. Clini-
cal investigations are imperative to test this hypothesis.

Our research has some limitations. First, the patient 
information used to build the model is from TCGA, 
while the validation set was derived from the GEO data-
base. We did not validate our results comprehensively in 
samples from multiple centers. In addition, we have not 
verified our results in vivo and in vitro. Finally, the molec-
ular mechanism by which autophagy regulators affect 
prognosis has not been determined, and further studies 
are needed to identify the important roles of autophagy 
regulators in pancreatic cancer at the molecular level.

In conclusion, our study fills the gap in predicting the 
prognosis of pancreatic cancer by autophagy regula-
tors. The prognostic model we constructed has a strong 
predictive ability for the prognosis of pancreatic cancer 
patients and is correlated with the immune microenvi-
ronment in pancreatic cancer. We hope that these find-
ings can provide some guidance for clinical prognosis 
prediction and for monitoring drug resistance.
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