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Abstract
Background  Increasing evidence has suggested an association between carotid atherosclerosis (CAS) and periodontitis 
(PD); however, the mechanisms have not been fully understood. This study aims to investigate the shared genes and 
molecular mechanisms underlying the co-pathogenesis of CAS and PD.

Methods  Gene Expression Omnibus (GEO) datasets GSE100927 and GSE10334 were downloaded, and differentially 
expressed genes (DEGs) shared by both datasets were identified. The functional enrichment analysis of these overlapping 
DEGs was then conducted. A protein-protein interaction (PPI) network was created using the STRING database and 
Cytoscape software, and PPI key genes were identified using the cytoHubba plugin. Then, weighted gene co-expression 
network analysis (WGCNA) was performed on GSE100927 and GSE10334, and the gene modules most correlated with 
CAS and PD were identified as key modules. The genes in key modules overlapping with PPI key genes were determined 
to be the key crosstalk genes. Subsequently, the key crosstalk genes were validated in three independent external datasets 
(GSE43292 [CAS microarray dataset], GSE16134 [PD microarray dataset], and GSE28829 [CAS microarray dataset]). In addition, 
the immune cell patterns of PD and CAS were evaluated by single-sample gene set enrichment analysis (ssGSEA), and the 
correlation of key crosstalk genes with each immune cell was calculated. Finally, we investigated the transcription factors 
(TFs) that regulate key crosstalk genes using NetworkAnalyst 3.0 platform.

Results  355 overlapping DEGs of CAS and PD were identified. Functional enrichment analysis highlighted the vital role 
of immune and inflammatory pathways in CAS and PD. The PPI network was constructed, and eight PPI key genes were 
identified by cytoHubba, including CD4, FCGR2A, IL1B, ITGAM, ITGAX, LCK, PTPRC, and TNF. By WGCNA, the turquoise 
module was identified as the most correlated module with CAS, and the blue module was identified as the most correlated 
module with PD. Ultimately, ITGAM and LCK were identified as key crosstalk genes as they appeared both in key modules 
and PPI key genes. Expression levels of ITGAM and LCK were significantly elevated in the case groups of the test datasets 
(GSE100927 and GSE10334) and validation datasets (GSE43292, GSE16134, and GSE28829). In addition, the expression of 
multiple immune cells was significantly elevated in PD and CAS compared to controls, and the two key crosstalk genes 
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Background
The leading pathological process of cardiovascular dis-
ease, atherosclerosis, has become a major cause of dis-
ability and mortality throughout the world [1]. The 
carotid artery is one of the primary early onsets of ath-
erosclerosis in seemingly healthy individuals [2]. There is 
currently a substantial global burden of carotid athero-
sclerosis (CAS), with 21% of patients aged 30–79 years 
suffering from carotid plaque [3]. Furthermore, studies 
have shown that CAS contributes to new occurrences of 
ischemic stroke [4, 5].

Periodontitis (PD) is a chronic inflammatory disease 
that affects the supporting tissues around the teeth [6]. 
Increasing evidence suggests an association between PD 
and CAS [7, 8]. The risk factors for PD, such as smok-
ing, diabetes, and obesity [9], are also associated with 
atherosclerosis [3]. In addition, PD serves as an indepen-
dent risk factor for atherosclerotic cardiovascular dis-
ease [10]. The majority of studies indicate that systemic 
inflammation plays a significant role in PD and CAS [11]. 
Inflammatory mediators (e.g., C-Reactive Protein, matrix 
metalloproteinases, fibrinogen, and other hemostatic fac-
tors) are elevated by PD, thus accelerating the progression 
of CAS through oxidative stress and inflammatory dys-
function [12]. Further, bacteremia attributed to PD can 
promote direct targeting of bacteria to the distal carotid 
artery, thereby triggering CAS [13]. Carotid atheroma-
tous plaques obtained during carotid endarterectomy 
were found to contain DNA of multiple periodontitis-
associated bacteria, the most common of which was 
Porphyromonas gingivalis, followed by Aggregatibacter 
actinomycetemcomitans, Tannerella forsythia, Eikenella 
corrodens, Fusobacterium nucleatum, and Campylo-
bacter rectus [14]. These findings suggest a strong linkage 
between CAS and PD, while molecular mechanisms and 
pathological interactions are not fully understood.

In this study, we analyzed the publicly available data-
sets of the GEO database. First, we identified the differ-
entially expressed genes (DEGs) of CAS and PD in test 
datasets (GSE100927 [CAS] and GSE10334 [PD]) and 
obtained overlapping DEGs. Subsequently, we performed 
the functional enrichment analysis of overlapping DEGs. 
Next, we construct the PPI network using the STRING 
database. Then, we identified PPI key genes via the Cyto-
scape software. Furthermore, we performed weighted 

gene co-expression network analysis (WGCNA) on 
GSE100927 and GSE10334, thereby screening the most 
correlated gene modules with CAS and PD. The inter-
secting genes between PPI key genes and key modules 
were defined as key crosstalk genes. These key crosstalk 
genes were verified in the validation datasets GSE43292 
(CAS microarray dataset), GSE16134 (PD microarray 
dataset), and GSE28829 (CAS microarray dataset). In 
addition, we evaluated the immune cell patterns of PD 
and CAS by single-sample gene set enrichment analysis 
(ssGSEA), and calculated the correlation of key crosstalk 
genes with each immune cell. Finally, we explored the 
transcription factors (TFs) regulating the key crosstalk 
genes and finally obtained TFs that were generally up-
regulated in CAS and PD. Our study may shed new light 
on the shared pathogenesis of CAS and PD.

Materials and methods
Data source
Expression data of CAS and PD were obtained from the 
Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/) [15]. The search strategy of 
this study: (1) the gene expression profiles were produced 
by array; (2) PD dataset samples were obtained from 
gingival tissue, and CAS dataset samples were obtained 
from carotid plaque; (3) datasets contain samples of con-
trol groups; (4) samples are sourced from Homo sapiens. 
The dataset GSE100927 is based on the GPL17077 Agi-
lent-039494 SurePrint G3 Human GE v2 8 × 60 K Micro-
array 039381. It included 29 carotid atherosclerotic lesion 
samples and 12 normal carotid samples. GSE10334 was 
generated using GPL570 [HG-U133_Plus_2] Affymetrix 
Human Genome U133 Plus 2.0 Array, which contained 
183 gingival tissue samples affected by PD and 64 unaf-
fected control gingival tissue samples. Details of the vali-
dation dataset are described in the “Validation of Key 
Crosstalk Genes in Independent External Datasets” sec-
tion. The data we analyzed were publicly available; there-
fore, no ethics committee approval or informed consent 
was required.

Differentially expression analysis
Analyses based on R packages were carried out on R soft-
ware (version 4.1.1; https://cran.r-project.org/). DEGs 
were identified by the “Limma” R package [16]. First, the 
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data were normalized using the normalizeBetweenArrays 
function. Subsequently, the probe IDs were transformed 
into official gene symbols. Then, the log2 fold change 
and adjusted P-value of each gene were calculated by 
the lmFit and eBayes functions. The genes with adjusted 
P-value < 0.05 and |log2 fold change| > 0.5 were identified 
as DEGs. Finally, we defined overlapping DEGs as genes 
that were simultaneously up-regulated or simultaneously 
down-regulated in both GSE100927 and GSE10334 data-
sets. The “ggvenn” R package (https://cran.r-project.org/
web/packages/ggvenn/) was performed to plot the Veen 
diagram for overlapping DEGs.

Enrichment analyses of overlapping DEGs
To further understand the function of the overlapping 
DEGs in CAS and PD, we performed Gene Ontology 
biological process (GO_BP) enrichment analysis [17, 
18], Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis [19–21], and Reactome 
pathway enrichment analysis [22] using the DAVID Bio-
informatics Resources (https://david.ncifcrf.gov/) [23]. 
Terms with FDR < 0.05 were considered to be signifi-
cantly enriched. The downloaded results were visualized 
through the Sangerbox data analysis platform (http://
sangerbox.com/) [24].

Protein-protein interaction (PPI) network construction
To identify interactions between overlapping DEGs, 
we constructed a PPI network of the overlapping DEGs 
using the STRING database (Version: 11.5) (http://string-
db.org/). This database enables researchers to construct 
a functional association network of uploaded proteins 
of an organism based on three aspects: prior knowl-
edge, computational interaction predictions and direct 
lab experiments [25]. We obtained the interaction net-
work of overlapping DEGs with the “minimum required 
interaction score” parameter set to 0.4. Subsequently, 
we imported the network into Cytoscape software for 
visualization [26]. MCODE plugin app was used to fil-
ter clusters with high connectivity, thus dividing the PPI 
network into several clusters (default parameters: Degree 
Cutoff = 2; Node Score Cutoff = 0.2; K-Core = 2; and Max 
Depth = 100) [27]. The genes in clusters with scores > 10 
were subsequently performed functional enrichment 
analysis.

Weighted gene co-expression network analysis
The “WGCNA” package in R was applied for weighted 
gene co-expression network analysis [28]. The optimal 
values of the weighted parameters of the adjacent func-
tions were obtained using the pickSoftThreshold func-
tion and were used as soft thresholds for subsequent 
network construction. Then, a weighted adjacency matrix 
was constructed, and a hierarchical clustering based on 

a topological overlap matrix (TOM) with a dissimilar-
ity measure (1-TOM) was used to construct the relevant 
gene modules. Finally, the correlation of each module 
with the disease was calculated, and the module with the 
highest correlation was defined as the key module. The 
genes within the key modules were screened for subse-
quent analysis.

Identification and validation of key crosstalk genes
CytoHubba is a Cytoscape plugin app that can screen hub 
genes in PPI networks [29]. Genes that generally ranked 
top 20 in four algorithms (Degree, EPC, MCC, and 
MNC) were identified as PPI key genes. Subsequently, 
PPI key genes and key module genes were intersected. 
The intersections were defined as key crosstalk genes, 
which were subsequently validated in GSE100927 and 
GSE10334. We examined the diagnostic effectiveness of 
the key crosstalk genes with the receiver operating char-
acteristic curves (ROCs) using the “pROC” package in R 
[30]. In addition, the mRNA expression levels of the key 
crosstalk genes were compared between case and con-
trol groups using an independent t-test, with a P-value of 
less than 0.05 considered statistically significant. Relative 
expression levels of the key crosstalk genes in case and 
control groups were visualized by boxplots through the 
“ggplot2” R package [31].

Validation of key crosstalk genes in independent external 
datasets
To improve the confidence, we validate the expression 
of the key crosstalk genes in the GSE43292, GSE16134, 
and GSE28829 datasets. GSE43292 was generated using 
GPL6244 [HuGene-1_0-st] Affymetrix Human Gene 
1.0 ST Array, including 32 carotid atherosclerotic lesion 
samples and 32 normal carotid samples. GSE16134 was 
obtained from GPL570 [HG-U133_Plus_2] Affymetrix 
Human Genome U133 Plus 2.0 Array, which contained 
241 gingival tissue samples affected by PD and 69 unaf-
fected control gingival tissue samples. GSE28829 was 
generated using GPL570 [HG-U133_Plus_2] Affyme-
trix Human Genome U133 Plus 2.0 Array, including 16 
advanced atherosclerotic plaque samples and 13 early 
atherosclerotic plaque samples from carotid arteries.

Immune infiltration analysis
The expression levels of immune cells for each sample 
of GSE10334 and GSE100927 were quantified using the 
ssGSEA algorithm from the GSVA R package [32]. The 
gene set of the cell marker for immune cells was derived 
from a previous study by Charoentong and colleagues 
[33]. We then calculated the correlation between the 
expression of key crosstalk genes and the expression of 
immune cells in the samples of case groups in GSE10334 
and GSE100927 using the Spearman method.
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Identification of transcription factors (TFs) of key crosstalk 
genes
First, we predicted TFs of the key crosstalk genes through 
the NetworkAnalyst 3.0 platform (https://www.network-
analyst.ca/) [34]. Then, TFs interacting with at least two 
key crosstalk genes were screened. Subsequently, we vali-
dated the mRNA expression levels of these TFs in the test 
set (GSE100927 and GSE10334) and the validation set 
(GSE43292, GSE16134, and GSE28829) by independent 
t-tests. Finally, TFs that were commonly upregulated in 
case groups were identified as potential key TFs in CAS 
and PD.

Results
Identification of overlapping DEGs of CAS and PD
Figure  1 shows the flow diagram for this study. There 
were 3552 DEGs identified in GSE100927, of which 
1915 were up-regulated, and 1637 were down-regulated 
(Fig.  2a and c). In addition, 1371 DEGs were identified 
in GSE100927, including 837 up-regulated genes and 
534 down-regulated genes (Fig. 2b and d). Through Veen 
diagrams, we identified 293 overlapping up-regulated 
DEGs and 62 overlapping down-regulated DEGs between 
GSE100927 and GSE10334 (Fig. 2e).

Functional enrichment analysis of overlapping DEGs
We conducted functional enrichment analyses of over-
lapping DEGs in the DAVID database. The GO_BP 

Fig. 1  The flow diagram for the whole study
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analysis revealed that the most significantly enriched 
terms were immune response, inflammatory response, 
neutrophil chemotaxis, cell adhesion, and T cell differ-
entiation. KEGG analysis showed that the overlapping 
genes were likely related to chemokine signaling pathway, 
leukocyte transendothelial migration, rheumatoid arthri-
tis, cytokine-cytokine receptor interaction, and hema-
topoietic cell lineage. Reactome analysis indicated that 
overlapping DEGs were significantly enriched in immune 
system, innate immune system, neutrophil degranula-
tion, adaptive immune system, and cytokine signaling 
in immune system. Figure S1 illustrates the top 20 terms 
that were significantly enriched in GO_BP, KEGG path-
way, and Reactome pathway.

Construction of PPI networks with overlapping DEGs
A PPI network with 302 nodes and 2844 interaction pairs 
was constructed from the STRING database. The PPI 
network was visualized using the Cytoscape software 
(Fig. 3a). The MCODE plugin app identified two clusters 
with high connectivity (scores > 10) (Fig. 3b and c). KEGG 
analysis showed that two clusters were significantly 
enriched in cytokine-cytokine receptor interaction, che-
mokine signaling pathway, leukocyte transendothelial 
migration, osteoclast differentiation, NF-kappa B signal-
ing pathway, rheumatoid arthritis, TNF signaling path-
way, complement and coagulation cascades, and IL-17 
signaling pathway (Fig.  3d). Reactome analysis revealed 
that two clusters were mainly involved in immune sys-
tem, innate immune system, signaling by interleukins, 

Fig. 2  DEGs in GSE100927 and GSE10334. (a) Heatmap of GSE100927. (b) Heatmap of GSE10334. (c) Volcano map of GSE100927. (d) Volcano map of 
GSE10334. (e) Veen diagrams indicate that GSE100927 and GSE10334 share 293 overlapping up-regulated DEGs and 62 overlapping down-regulated 
DEGs.
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cytokine signaling in immune system, neutrophil degran-
ulation, adaptive immune system, interleukin-4 and 
interleukin-13 signaling, and extracellular matrix organi-
zation (Fig. 3e).

Construction of weighted gene co-expression network and 
screening of key modules
The top 5000 genes with the highest standard deviation 
of expression were screened for WGCNA. The value of 
β = 18 and β = 12 (scale-free R2 = 0.80) were selected as 

the soft-threshold power of CAS and PD respectively to 
ensure scale-free networks (Fig.  4a and b). With min-
ModuleSize set to 40, 11 modules were identified in 
GSE100927, and 15 modules were identified in GSE10334 
(Fig. 4c and d). Different colors indicated different mod-
ules. Finally, based on Pearson correlation coefficients, 
heat maps on module-trait relationships were generated 
to assess the association between each module and the 
disease. As a result, the turquoise module was most cor-
related with CAS (0.9, p = 5E-16), containing 2441 genes, 

Fig. 3  PPI network of overlapping DEGs. (a) PPI network includes 302 nodes and 2844 interaction pairs. (b)-(c) Two gene clusters with high connectivity 
obtained by the MCODE algorithm in the PPI network. (d) KEGG pathway enrichment analysis of genes in two gene modules. (e) Reactome pathway 
enrichment analysis of genes in two gene modules
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and the blue module was most correlated with PD (0.64, 
p = 4E-30), including 555 genes (Fig. 4e and f ). The genes 
in these two modules were subsequently analyzed to 
screen for key crosstalk genes.

Identification and validation of key crosstalk genes
CytoHubba plug-in of Cytoscape was used to calculate 
the top 20 genes based on four algorithms (Degree, EPC, 

MCC, and MNC) (Fig. 5a, b, c, and d). Table S1 presents 
the top 20 genes calculated by the four algorithms. The 
Veen diagram showed that ITGAM and LCK existed 
both in the top 20 genes of the four algorithms and in 
the two key modules (Fig. 5e). Therefore, these two genes 
were identified as key crosstalk genes. According to the 
ROC curves, LCK and ITGAM were effective for diag-
nosing CAS and PD (Fig.  5f h). In addition, the mRNA 

Fig. 4  Weighted gene co-expression network analysis (WGCNA). (a) Soft threshold determination in GSE100927 (CAS dataset). (b) Soft threshold determi-
nation in GSE10334 (PD dataset). (c) Hierarchical clustering dendrograms of the top 5000 genes with the highest standard deviation in the CAS clustered 
based on a dissimilarity measure (1-TOM). (d) Hierarchical clustering dendrograms of the top 5000 genes with the highest standard deviation in the PD 
clustered based on a dissimilarity measure (1‐TOM). (e) Module–trait relationships in CAS. Each different colored module contains the corresponding 
correlation and p-value. (f ) Module–trait relationships in PD. Each different colored module contains the corresponding correlation and p-value
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expression levels of the key crosstalk genes were signifi-
cantly upregulated in the case groups of GSE100927 and 
GSE10334 (Fig. 5g, 5i).

Validation of the key crosstalk genes in independent 
external datasets
To further verify the efficacy of the key crosstalk genes. 
We validated the genes in two additional independent 
external datasets (GSE43292 and GSE16134). Consis-
tent with the results of the test set, the ROC results 
showed good diagnostic efficacy in the external dataset 
(Fig.  6a and c), and the mRNA expression levels of the 
key crosstalk genes elevated in case groups of two exter-
nal datasets (Fig. 6b and d). In addition, in the GSE28829 
dataset, ROC results suggested the effectiveness of LCK 
and ITGAM in discriminating between advanced and 
early atherosclerotic plaques (Fig.  6e), and the expres-
sion of the key crosstalk genes was significantly higher in 
advanced atherosclerotic plaque samples in comparison 
to early plaque samples (Fig. 6f ), indicating that LCK and 
ITGAM are strongly associated with CAS severity.

Immune infiltration analysis
Through enrichment analysis, we found that the immune 
pathway is involved in crosstalk between PD and CAS; 
therefore, we calculated the content of each immune 
cell in the case group versus the control group in both 

datasets using the ssGSEA algorithm. Figure  7a and b 
indicated that the immune landscape is considerably 
altered in PD and CAS compared to the control group. 
Furthermore, correlation analysis showed that two key 
crosstalk genes (LCK and ITGAM) were both signifi-
cantly associated with the expression of activated CD 4 T 
cells (Fig. 7c).

Exploring key transcription factors (TFs) regulating the key 
crosstalk genes
We explored the potential TFs that may regulate the 
key crosstalk genes. According to the results gener-
ated by NetworkAnalyst 3.0, we screened TFs that can 
regulate two key crosstalk genes (ITGAM and LCK) 
and calculated their mRNA expression levels in all data-
sets included in our study by independent t-tests. Con-
sequently, the expression levels of SPI1 elevated in all 
case groups in GSE100927, GSE43292, GSE10334, and 
GSE16134 (Fig. 8a and d). In addition, in the GSE28829 
dataset, the expression level of SPI1 was significantly 
higher in advanced atherosclerotic plaque samples in 
comparison to early plaque samples (Fig. 8e). Therefore, 
SPI1 might be a potential key TF regulating the two key 
crosstalk genes (ITGAM and LCK) in the pathological 
process in CAS and PD (Fig. 8f ).

Fig. 5  Identification and validation of key crosstalk genes. (a)-(d) The top 20 genes in PPI networks ranked by Degree, EPC, MCC, and MNC, respectively. 
(e) ITGAM and LCK existed both in the top 20 genes of the four algorithms and in the two key modules. (f ) ROC curve analysis of the key crosstalk genes 
in GSE100927. (g) Expression levels of the key crosstalk genes in GSE100927. (h) ROC curve analysis of the key crosstalk genes in GSE10334. (i) Expression 
levels of the key crosstalk genes in GSE10334. *** p < 0.001; **** p < 0.0001
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Fig. 6  Validation of the key crosstalk genes in independent external datasets. (a) ROC curve analysis of key crosstalk genes in GSE43292. (b) Expression lev-
els of key crosstalk genes in GSE43292. (c) ROC curve analysis of key crosstalk genes in GSE16134. (d) Expression levels of key crosstalk genes in GSE16134. 
(e) ROC curve analysis of key crosstalk genes in GSE28829. (f ) Expression levels of key crosstalk genes in GSE28829. ** p < 0.01; *** p < 0.001; **** p < 0.0001
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Discussion
In a study by Ning and colleagues, gene expression pro-
files of peripheral blood mononuclear cells (PBMCs) 
obtained from patients with PD or CAS were analyzed 
[35]. Another study by Trindade et al., incorporating 
bibliometric analysis and the DisGeNET database, iden-
tified the dysregulated molecules, including C-reactive 
protein, interleukin-6 and 1-beta, myeloperoxidase, 
and matrix metalloproteinase-9, as important media-
tors of periodontitis and coronary artery disease [36]. 

The DisGeNET database, which was utilized in these 
two studies, allows users to obtain genes relevant to par-
ticular diseases [37]. However, this approach may filter 
out some potentially valuable molecules. Therefore, we 
performed analysis directly using transcriptomic data of 
PD and CAS and finally identified key crosstalk genes 
and TFs, as well as their mechanisms leading to PD and 
CAS co-morbidity from an immune and inflammatory 
perspective.

Fig. 7  Results of immune infiltration analysis. (a) Boxplots of the expression of each immune cell between PD and control in the GSE10334 dataset. (b) 
Boxplots of the expression of each immune cell between CAS and control in the GSE100927 dataset. (c) The expression of two key crosstalk genes was 
significantly correlated with the expression of activated CD4 T cells in both GSE10334 and GSE100927 datasets. * p < 0.05; ** p < 0.01; *** p < 0.001; **** 
p < 0.0001
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By comprehensive analysis of gene expression profiles, 
LCK and ITGAM were identified as two key crosstalk 
genes between CAS and PD. LCK is a member of the Src 
family of protein tyrosine kinases (PTKs). He et al. iden-
tified an essential role for LCK in the imbalance of the 
immune system in periodontitis through bioinformatics 
analysis [38]. LCK inhibitor attenuates the development 
of atherosclerosis and promotes plaque stability [39]. In 
addition, LCK was reported to inhibit heat shock pro-
tein 65-mediated reverse cholesterol transport in T cells, 
which is involved in one of the causes of atherosclerosis 
[40]. ITGAM encodes the integrin alpha M chain. Integ-
rins expressed in periodontal tissues are involved in regu-
lating cell attachment, maintaining tissue integrity, and 
mediating cell signaling, gene expression, and cytokine 
activation [41]. In addition, it was shown that ITGAM 
was significantly increased in the gingival tissue of the 
aged nonhuman primate model [42]. A proteomics study 
has revealed a significant elevation of ITGAM in gingi-
val tissue of chronic periodontitis patients [43]. Integrin 
signaling has been associated with multiple aspects of 
atherosclerosis, including the early induction of inflam-
mation and the development of advanced fibrotic plaques 

[44]. Zhou et al. identified that high ITGAM level was 
associated with atherosclerotic plaque instability and 
poor outcomes in ischemic stroke [45]. Mass spectrom-
etry analysis identified integrin Alpha-M in emboli from 
patients with high LDL [46]. In addition, ITGAM has 
been identified as one of the crosstalk genes for athero-
sclerosis and COVID-19 co-morbidity [47]. Therefore, 
the two upregulated key crosstalk genes (ITGAM and 
LCK) might be involved in CAS and PD co-morbidity 
mechanisms.

Enrichment analysis of crosstalk genes indicated that 
immune pathways and inflammatory pathways partici-
pated in the co-morbidity of PD and CAS. In addition, 
immune cell infiltration analysis revealed significantly 
different immune patterns in the disease groups of PD 
and CAS compared to controls. Two key crosstalk genes 
were highly correlated with activated CD4 T cells. Thus 
these two key crosstalk genes may contribute to PD and 
CAS co-morbidities through immune and inflammatory 
pathways.

The gum tissue of individuals who neglect oral hygiene 
may be vulnerable to pathogens such as Porphyromo-
nas gingivalis [48]. Macrophages eliminate pathogenic 

Fig. 8  SPI1 was identified as a shared potential key TFs in CAS and PD. (a)-(d) The mRNA expression level of SPI1 was generally up-regulated in the case 
groups in GSE100927, GSE43292, GSE10334, and GSE16134. (e) The mRNA expression level of SPI1 was significantly higher in advanced atherosclerotic 
plaque samples compared to early plaque samples. (f ) The potential TF regulatory network in CAS and PD. ** p < 0.01; *** p < 0.001; **** p < 0.0001
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microorganisms and present antigenic peptides to the T 
cell receptor (TCR) [49]. The critical role of LCK in TCR 
signaling and its involvement in T cell activation was 
previously reported [50]. Thus, the upregulated LCK in 
PD is partially involved in T cell activation, which initi-
ates the adaptive immune response. Subsequently, levels 
of circulating cytokines (such as IL-1β, TNF-α, IFN-γ, 
and MCP-1) rise, elevating the global inflammation level 
and promoting the conversion of macrophages into foam 
cells at the artery, ultimately leading to plaque formation 
[51, 52]. Furthermore, pathogens that reach the damaged 
endothelium of the carotid artery as a result of bactere-
mia brought about by periodontitis can increase LCK in 

the carotid vessels, which can produce the inflammatory 
and immune effects mentioned above and exacerbate the 
CAS process.

Integrin ITGAM/ITGB2 is implicated in various 
adhesive interactions of monocytes, macrophages, and 
granulocytes, as well as in mediating the uptake of com-
plement-coated particles and pathogens [53]. Studies 
have shown that integrin activation can promote smooth 
muscle cell proliferation and macrophage infiltration, 
consequently aggravating atherosclerosis progression 
[54]. A recent study by Zhou et al. identified that ITGAM 
might promote the growth and progression of abdominal 
aortic aneurysms by promoting endothelial cell adhesion 

Fig. 9  PD and CAS co-morbidity mechanisms involving the key crosstalk genes and TF.
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and the migration of circulating monocytes and mac-
rophages [55]. Therefore, ITGAM activation resulting 
from alterations in the gingival microenvironment fol-
lowing a pathogenic attack may be partially involved in 
the local macrophage activation, consequently enhancing 
the inflammatory response. In addition, the altered local 
vascular environment of CAS induces ITGAM upregula-
tion, resulting in the differentiation of monocytes to mac-
rophages, promoting macrophage activation and smooth 
muscle cell migration to the endothelium, further exacer-
bating the progression of CAS.

Our study revealed that SPI1, encoding the transcrip-
tion factor PU. 1, is commonly upregulated in PD and 
CAS, which regulates key crosstalk genes. Despite few 
studies reporting specific functions of PU.1 in PD and 
CAS, there is evidence that PU. 1 is a key regulator of cel-
lular communication in the immune system, capable of 
modulating cytokines and cytokine receptors regulating 
inflammation [56]. In addition, PU.1 specifically partici-
pates in macrophage activation [57]. Thus in the global 
inflammatory environment of PD and CAS, SPI1 (PU. 
1) may simultaneously activate macrophages and regu-
late LCK and ITGAM levels. Figure  9 demonstrates the 
potential role of the key crosstalk genes and TF identi-
fied by our study in the mechanism of PD and CAS 
co-morbidity.

Our study identifies key crosstalk genes and TF in PD 
and CAS from an immune and inflammatory perspective, 
thus providing new ideas on the co-morbidity mecha-
nisms of PD and CAS. The significance of this study is to 
remind people especially those with high cardiovascular 
disease risk factors and those who suffer from CAS to 
focus on oral hygiene. It should be noted that the conclu-
sions were obtained by combining bioinformatics analy-
sis and the previous relevant study findings, thus more 
clinical validation is required in the future. In addition, 
the specific function of the crosstalk genes remains for 
validation in vivo and in vitro, for instance whether per-
turbation of the crosstalk genes on APOE−/− periodonti-
tis mice/rats will alter CAS progression.

Conclusion
In summary, we identified shared DEGs of CAS and 
PD, performed enrichment analysis, constructed 
PPI networks, and conducted WGCNA. Eventually, 
ITGAM and LCK were identified as key crosstalk 
genes for CAS and PD, and they may be involved in the 
crosstalk between CAS and PD through immune path-
ways and inflammatory pathways. In addition, SPI1 
was identified as a potential key TF in CAS and PD. 
This study provides new insights into the co-patho-
genesis of CAS and PD, and the present findings need 
further validation in the future.
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