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Abstract 

Various studies showed that the effect of immune activation is pro-atherogenic and coronary heart disease (CHD) 
should therefore be considered an autoimmune disease. This study aimed to identify potential immune-related 
biomarkers, pathways, and the potential regulatory networks underlying CHD. Differentially expressed genes (DEGs) 
between CHD and control samples were determined by analyzing GSE71226 and GSE9128. The overlapping dif-
ferential expression immune-related genes (DE-IRGs) for CHD were identified by analyzing the ImmPort database 
and two GEO databases. A total of 384 DE-IRGs were identified. Subsequently, comprehensive enrichment analyses 
suggested that DE-IRGs were enriched in immune-related pathways, including autoimmune thyroid disease, the 
intestinal immune network for IGA production, and downstream signaling events of B cell receptors. The signature of 
DE-IRGs was validated using an external independent dataset GSE20681 (AUC = 0.875). Furthermore, we conducted 
protein–protein interaction network analysis and identified eight hub genes, which were most enriched in regula-
tion of defense response, NF-κB signaling pathway, regulation of JNK cascade, and regulation of cytokine production. 
Moreover, networks of miRNAs-mRNAs and transcription factors (TFs)-mRNA underlying the integrated data were 
established, involving eight miRNAs and 76 TF-targeting hub genes. Ultimately, 17 SNPs in miRNA-mediated gene net-
works were identified. We screened potential immune-related genes in CHD and constructed miRNA-mRNA-TF and 
SNP-miRNA networks, which not only provide inspired insights into the occurrence and the molecular mechanisms 
of CHD but also lay a foundation for targeting potential biomarkers using immunotherapy and for understanding the 
molecular mechanisms of CHD.
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Introduction
Coronary heart disease (CHD) is considered a seri-
ous threat to human health worldwide, which caused 
365,914 deaths in 2017. Approximately 2 in 10 deaths 
due to CHD are of adults less than 65  years of age [1]. 
Millions of patients with chest pain symptoms are com-
monly admitted to hospitals in high-income countries 

every year. Approximately 50% of them are diagnosed 
with CHD, including stable angina, unstable angina, and 
acute myocardial infarction [2]. In China, the number of 
CHD patients is 11 million in 2017; the mortality rate was 
higher in rural residents (122.04/100,000) as compared to 
that in urban residents (115.32/100,000). The mortality 
rate in males is higher than that in females, showing an 
upward trend since 2012 [3, 4].

Comprehensive studies on the mechanism of CHD 
have recognized that the effect of immune activation is 
pro-atherogenic, and CHD should therefore be consid-
ered a type of autoimmune disease [5–7]. Various cells 
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and molecules involved in the immune response consti-
tute a complex immune mechanism of cooperation and 
interaction [8–10]. Multiple classic inflammation-related 
pathways are involved in the survival, proliferation, and 
migration of immune cells [11–15]. However, there is 
currently no systematic model to evaluate the immune 
environment of CHD patients.

CHD was precisely controlled by microRNAs (miR-
NAs) at the post-transcriptional level and transcription 
factors (TFs) at the transcriptional level [16, 17]. MiR-
NAs are a type of endogenous small non-coding RNAs 
of 20–24 nucleotides in length that are mainly involved 
in translational repression and/or mRNA destabiliza-
tion. The widespread availability of high-throughput 
technologies, including microarray profiling and genome 
sequencing, has enabled the screening and discovery of 
an increasing number of differentially expressed (DE) 
miRNAs that are involved in multiple cardiac transcrip-
tional and signal regulatory pathways [18–20]. TFs are 
fundamental factors in transcriptional and post-tran-
scriptional regulation, which involves physiological and 
pathological processes of cells by binding to particular 
DNA sequences [21]. Although an increasing number of 
miRNAs and TFs are involved in the immune regulation 
of CHD, potential miRNA biomarkers and molecular 
mechanisms remain largely unknown.

In our study, we screened differential expression 
immune-related genes (DE-IRGs) for CHD using bio-
informatics analysis of multiple microarray databases. 
Thereafter, we further revealed the hub genes from a 

protein–protein interaction (PPI) network that was con-
structed. Furthermore, we constructed miRNA-TF net-
works to further clarify the crucial immune mechanisms 
underlying CHD. The newly established immune-related 
prognostic model was further validated in an independ-
ent Gene Expression Omnibus (GEO) database. Ulti-
mately, we analyzed the SNPs that may be involved in the 
transcriptional regulation of target miRNAs. This study 
revealed the integrative network of DE-IRGs genetically 
related to CHD (Fig. 1), developing a theoretical frame-
work applicable to the systems biology for shedding light 
on the molecular mechanisms underlying CHD. In the 
future, CHD therapy may turn to specific molecules and 
cells involved in the immune system, such as monoclonal 
antibodies against various cytokines and adhesion fac-
tors, and gene therapy, to open new ways for the preven-
tion and treatment of CHD.

Materials and methods
Microarray data download and preprocessing
All analysis steps are performed using R software (version 
4.0.3, https://​www.r-​proje​ct.​org/). The gene expression 
profiles GSE71226 [22], GSE9128 [23], and GSE20681 
[24, 25] were retrieved from GEO (https://​www.​ncbi.​
nlm.​nih.​gov/​geo/) [26] (Table 1). All samples were from 
the peripheral blood of Homo sapiens. The platform for 
GSE71226 was GPL570 [HG-U133_Plus_2] Affymetrix 
Human Genome U133 Plus 2.0 Array, which included 
three healthy individuals and three CHD patients. 
The platform for GSE9128 was GPL96 [HG-U133A] 

Fig. 1  Flow chart of the study

https://www.r-project.org/
https://www.ncbi.nlm.nih.gov/geo/
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Affymetrix Human Genome U133A Array, which col-
lected samples from three healthy individuals and four 
patients with ischemic cardiomyopathy. The platform for 
GSE20681 was GPL4133 Agilent-014850 Whole Human 
Genome Microarray 4 × 44  K G4112F, which contained 
samples from 4 healthy individuals (CHD prognostic 
index less than 5) and 36 CHD patients (CHD prog-
nostic index greater than 80) [27]. Series matrix files of 
GSE71226 and GSE9128 were downloaded to screen and 
verify differentially expressed genes (DEGs) involved in 
the coronary subjects.

We further analyzed the original files through back-
ground correction and quantile normalization via the 
"normalize between arrays" function in the limma pack-
age (3.52.2) [28]. The hclust package was used for cluster-
ing with the default method (“complete”) and “fviz_dend 
function” in the factoextra package was used for visu-
alization. Next, we checked the batch effect by principal 
component analysis (PCA) through the "remove batch 
effect" function in the limma package. The effect of inter-
sample correction was shown by the PCA map using the 
“fviz_pca_ind” function in the FactomineR package [29].

Identification of differentially expressed immune‑related 
genes (DE‑IRGs)
We screened the DEGs from two GEO datasets using 
the limma package, with the threshold criterion of 
|log2FC|> 1 and adj. p value < 0.05. The volcano plots 
and the heatmaps of DEGs were plotted using the 
ggplot2 package [30] and the pheatmap package (1.0.12) 
[31], respectively. Thereafter, we collected the data on 
immune-related genes from the Immunology Database 
and Analysis Portal (ImmPort Database, https://​immpo​
rt.​niaid.​nih.​gov) [32]. The overlapping DE-IRGs were 
screened from the GEO dataset and the ImmPort data-
base for further analysis, and the online tool Draw Venn 
Diagram (http://​bioin​forma​tics.​psb.​ugent.​be/​webto​ols/​
Venn/) was used to display these overlaps.

Functional and pathway enrichment analysis
Gene ontology (GO) [33] and Kyoto Encyclopedia of 
Genes and Genomes analysis (KEGG) [34] enrichment 
analysis of DE-IRGs were conducted using the cluster-
Profiler package (4.4.4) [35]. GO analysis includes the 
following three criteria: molecular function (MF), cel-
lular component (CC), and biological process (BP). The 
enrichplot package (1.16.1) [36] was used to draw circles, 
histograms, and bubble diagrams. An adjusted p value 
(from Benjamin-Hochberg method) of less than 0.05 was 
defined as statistically significant. The data were visual-
ized via the clusterProfiler plug-in (significance was indi-
cated by p < 0.05 and q-value < 0.05), CluePedia plug-in 
[37], and ClueGO plug-in [38] in Cytoscape software 
(http://​www.​cytos​cape.​org/) (kappa score ≥ 0.4).

Gene set enrichment analysis (GSEA) and xPierGSEA
The biological pathways that were significantly altered in 
CHD samples as compared to the control samples were 
determined using GSEA. GSEA [39] was performed 
using cluster profiler package, with c2.all.v7.4.symbols.
gmt as the reference gene set, and analyzed using the 
GSEA function from the GSEA database and the gsea-
plot2 function of the enrichplot package. False discovery 
rate (FDR) < 0.25 and p value < 0.05 were set as the cut-
off criteria. xPierGSEA (2.9.0) was implemented by the 
Pi package [40], providing us with other alternatives to 
screen significantly differential biological functions in 
CHD.

Gene set variation analysis (GSVA)
GSVA [41] was carried out to explore the expression 
matrix of DE-IRGs using the GSVA package, which does 
not need to group samples in advance and calculates the 
enrichment score of the specific gene set in each sample. 
C2: curated gene sets were selected as the reference gene 
set, with the t value of GSVA scores 0.5 as the cut-off 
value standard.

Table 1  Microarray datasets in this study and their experimental designs

Series Platforms Tissue source Design References

GSE71226 GPL570 Affymetrix Human Genome U133 Plus 2.0 Array Human sapiens 3 coronary heart disease and 3 healthy people [22]

GSE9128 GPL96 Affymetrix Human Genome U133A Array Human sapiens 12 ischemic cardiomyopathy and 12 age- and 
gender matched controls

[23]

GSE20681 GPL4133 Agilent-014850 Whole Human Genome Micro-
array 4 × 44 K G4112F

Human sapiens 99 patients with ≥ 50% stenosis in ≥ 1 major 
vessel by quantitative coronary angiography 
and 99 controls have luminal stenosis of < 50% 
by quantitative coronary angiography

[24, 25]

https://immport.niaid.nih.gov
https://immport.niaid.nih.gov
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://www.cytoscape.org/
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Construction of gene feature selection and random forest 
(RF) diagnosis model
To improve the performance of the diagnosis model, 
specific variable genes related to the classification of 
CHD outcomes were screened by the Boruta feature 
selection method (18). The RF diagnostic model clas-
sifier was implemented using a random forest package 
(1.18.1) [42], which distinguished patients with and 
without CHD in the combined data set (GSE71226, 
GSE1128). DE-IRGs were selected as disease-asso-
ciated genes for follow-up model building. Next, the 
average mistranscription rates of all genes were calcu-
lated according to the out-of-bag data. The best vari-
able (mtry) of binary trees in the node was set to 2, and 
1000 was selected as the best number of trees in the RF. 
Thereafter, the RF model was built and the importance 
value was obtained by employing the Gini coefficient 
method. The accuracy of the RF model was tested by 
using the tenfold cross model, and the accuracy of the 
model tended to be stable when the number of genes 
was confirmed. The pROC package (1.17.0) [43] was 
used to validate AUC classification performance. Exter-
nal validation of the immune-related signature was 
conducted using an external dataset (GSE20681).

Construction of PPI network and identification of hub 
genes
To further study the biological function of DE-IRGs, 
we constructed a PPI network (https://​string-​db.​org/) 
[44, 45] and cell landscape (https://​metas​cape.​org/) 
[46] with a combined score ≥ 0.4. Moreover, we used 
the Cytoscape software [47, 48] to visualize the PPI net-
work. We employed the Molecular Complex Detection 
(MCODE) [49], a plug-in of Cytoscape, to identify vital 
modules (MCODE score ≥ 4). We applied the CytoHubba 
[50], another plug-in of Cytoscape, to indicate essential 
nodes in the network and hub genes involved in the PPI 
network.

Construction of a miRNA‑DE‑IRGs‑TF regulatory network
We used NetworkAnalyst (https://​www.​netwo​rkana​lyst.​
ca/) [51] to analyze miRNA databases and predict the 
interaction between miRNA and DE-IRGs using Tar-
getScan [52] and miRDB [53, 54]. Predicted_Targets_ 
predictions.txt file was downloaded from the TargetScan 
official website, and miRDB_v6.0_prediction_result.txt 
was collected from miRDB. Furthermore, we predicted 
the interaction of DE-IRGs and transcription factors 
via the TRRUST database (https://​www.​grnpe​dia.​org/​
trrust/) [55]. Ultimately, we visualized miRNA-gene and 
TF-gene networks using Cytoscape software.

Predictive analysis of SNP affecting miRNA binding 
to DE‑IRGs
We used the miRNASNP database [56] to predict the 
SNPs in the seed region of the potential candidate miR-
NAs. We identified genes affected by SNP mutations in 
the seed region of potential candidate miRNAs and then 
selected the DE-IRGs to form a list of miRNA-SNP-DE-
IRGs combinations. Finally, we constructed the miRNA-
SNP-DE-IRGs interaction network according to the list. 
If miRNA was not completely labeled 3p/5p or two highly 
homologous miRNAs appeared, both of them were 
searched.

Results
Identification of DEGs in CHD
The gene expression profiles of GSE71226 and GSE9128 
datasets were merged, and standardized, and the batch 
effects were removed. Gene expression profiles before 
and after standardization are displayed in box plots 
(Fig.  2A, B). Gene expression profiles before and after 
batch correction are displayed by Cluster dendrogram 
(Fig. 2C, D) and PCA (Fig. 2E, F), which showed that the 
control group and CHD group were clustered into two 
groups after batch correction, indicating the heterogene-
ity of sample sources. After data were pre-processed, the 
volcano plot indicated that 4196 DEGs were extracted 
from two gene expression profiles with 2070 DEGs being 
up-regulated and 2126 DEGs being down-regulated 
(Fig.  3A). Then we chose these DEGs with |log2FC|> 4 
and adj. p value < 0.001 for visualization in the heatmap 
(Fig. 3B).

GO and KEGG enrichment analyses
A total of 348 overlapping DE-IRGs (Fig. 3C), the inter-
section of DEGs and ImmPort genes, integrated by the 
Venn Diagram online tool were identified (Fig. 3C). GO 
term and KEGG enrichment analyses were performed on 
DE-IRGs. The significantly top five GO terms were posi-
tive regulation of cytokine production, positive regula-
tion of leucocyte cell−cell adhesion, external side of the 
plasma membrane, MHC class II protein complex, and 
immune receptor activity. For BP, DE-IRGs were sig-
nificantly enriched in response to molecule of bacterial 
origin, response to lipopolysaccharide, cell chemotaxis, 
positive regulation of protein kinase B signaling, positive 
regulation of cytokine production, and positive regula-
tion of leukocyte cell–cell adhesion. For CC, DE-IRGs 
were significantly enriched in the external side of the 
plasma membrane, MHC class II protein complex, secre-
tory granule lumen, cytoplasmic vesicle lumen, and vesi-
cle lumen. For MF, DE-IRGs were significantly enriched 
in receptor-ligand activity, signaling receptor activator 

https://string-db.org/
https://metascape.org/
https://www.networkanalyst.ca/
https://www.networkanalyst.ca/
https://www.grnpedia.org/trrust/
https://www.grnpedia.org/trrust/


Page 5 of 15Zhang et al. BMC Medical Genomics          (2022) 15:219 	

Fig. 2  Preprocessing of GSE71226 and GSE9128. A and B Box plots of DEGs before and after standardization of two datasets. C and D Cluster 
dendrogram of DEGs before and after batch correction. E and F PCA plots of datasets before and after batch correction
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activity, cytokine activity, growth factor activity, and 
cytokine receptor binding (Fig. 4A, B). The top five signif-
icant enrichment pathways indicated by KEGG analysis 
were Cytokine-cytokine receptor interaction, Chemokine 
signaling pathway, Viral protein interaction with cytokine 
and cytokine receptor, T cell receptor signaling pathway, 
and Rheumatoid arthritis (Fig. 4C, D).

GSEA, xPierGSEA, and GSVA
GSEA indicated that the most significantly enriched 
gene sets included the intestinal immune network for 
IgA production and KEGG autoimmune thyroid disease 
(Fig. 5A–D). The xPierGSEA showed that DE-IRGs play a 
significant role in the immune mechanism of CHD, espe-
cially in the T-cell receptor (TCR) signaling pathway of 
Na ï CD4 + T cells (FDR = 5.2e−3) (Fig. 5E). GSVA indi-
cated that the same cellular mechanism may occur in 
multiple diseases other than CHD, such as type II diabe-
tes mellitus, breast cancer basal up, etc. (Fig. 5F).

Diagnosis model construction and analysis of DE‑IRGs
Eight hub genes (LTBR, ACKR1, FPR2, PTGS2, JUN, 
RASGRP1, CYLD, and TNFRSF1A) from the DE-IRGs 
were screened by Boruta algorithms feature selection 
(Fig.  6A). The Metascape online analysis demonstrated 
that the main functions were predominantly enriched 
in regulation of defense response, NF-kappa B signal-
ing pathway, regulation of JNK cascade, and regulation 
of cytokine production (Fig. 7C, D). The cluster profiler 
showed that the main functions were enriched in the NF 
kappa B signaling pathway and TNF signaling pathway 
(Fig. 7B).

In the construction of the random forest diagnosis 
model, eight hub genes of the Boruta feature selection were 
recruited to establish the signature (Fig.  6B). The tenfold 
model verified the accuracy of the random forest model. 
The accuracy increased concordantly with the growing 
proportion of gene features. Our model accuracy tended 
to be stable when the fourth gene was included (> 0.95) 

Fig. 3  Identification of DEGs and DE-IRGs. A Volcano plots of DEGs. 2070 red points represent upregulated genes, 2126 blue points indicate 
downregulated genes, and 10,002 grey points represent unchanged genes. B Heatmaps of DEGs with |log2FC|> 4 and adj. p value < 0.001. Blue 
represents the case group and red represents normal control. C Venn Diagram demonstrates the intersection of DEGs and immune-related genes
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(Fig. 6C). According to the results of Mean Decrease Gini, 
the eight characteristic genes were ranked in decreasing 
order of importance as FPR2, RASGRP1, LTBR, ACKR1, 

PTGS2, JUN, TNFRSF1A, and CYLD (Fig.  6D). AUC 
was used to evaluate the random forest model. The AUC 
value of GSE71226 is 0.875 (Fig. 6E) and the AUC value of 

Fig. 4  Functional enrichment analyses of DE-IRGs. A GO enrichment analysis with “eGO” function (OrgDb = org.Hs.eg.db, pvalueCutoff = 0.05, 
qvalueCutoff = 0.25, pAdjustMethod = "BH") in the clusterProfiler package. The results were visualized with the “cnetplot” function in the enrichplot 
package and the color of the dot marks the logFC of the gene. B GO enrichment analysis. The top 12 results were visualized with the “barplot” 
function in the enrichplot package. The x-axis and y-axis represent the gene ratio, and GO terms, respectively, and the color represents the 
corrected p value. C KEGG pathway enrichment analysis with “enrichKEGG” function (organism = "hsa", keyType = "kegg", pvalueCutoff = 0.05, 
pAdjustMethod = "fdr") in the clusterProfiler package. The top 12 results were visualized with the “dotplot” function in the enrichplot package and 
the x-axis and y-axis represent the gene ratio and pathway, respectively. D Correlation between KEGG enrichment pathways with the “upsetplot” 
function in the enrichplot package and the line represents the correlation between pathways

Fig. 5  Enrichment pathway analysis. A GSEA plots. The x-axis represents the proportion of DEGs, the color represents the corrected p value 
(corrected by Benjamin-Hochberg test), and the dot represents the number of enriched genes. B–D Predictive immune-related pathways in CHD 
via GSEA. B Autoimmune thyroid disease. C Intestinal immune network for IgA production. D Downstream signaling events of B cell receptor. E 
xPierGSEA of the top four significant pathways. The leading edge on the left chart reveals leading targets and the bar chart on the right shows the 
FDR value (numerical value) and NES value. F GSVA (blue: T-score > 0.5, green: T-score < 0.5, gray: not significant)

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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external validation set GSE20681 is 0.751 (Fig.  6F), indi-
cating that the model has high efficiency in predicting the 
diagnosis and classification of CHD.

PPI network construction and hub gene selection
The PPI network included 18 nodes and 28 edges. The eight 
colored nodes represented hub genes, and the gray nodes 
are extended genes with matching confidence cut-off (cut-
off score is 0.4) by the String app expand network (Fig. 7A). 
The results show that FPR2 is at the center of the hub gene 
and extended gene, revealing that it not only serves as a 
bridge to communicate with other functional networks but 
also plays a more important biological role than other key 
genes in the network.

Construction of miRNA‑DE‑IRGs‑TF network
Based on two miRNA target gene databases (TargetScan 
and miRcode), eight miRNAs were obtained, which were 
hsa-miR-411, hsa-miR-371-5p, hsa-miR-292-5p, hsa-
miR-186, hsa-miR-495, hsa-miR-543, hsa-miR-340-5p, 
and hsa-miR-433. TRRUST transcription factor database 
predicted the targeted DEGs for TFs. Overall, 76 pairs of 
TF-DE-IRGs interaction groups were found. Among them, 
PTGS2 and JUN predicted the most TFs, and the STAT 
family TFs (STAT1, STAT2, STAT3, and STAT6) matched 
PTGS2 the most (Fig.  7E). FPR2 and TNFRSF1A did not 
predict matching TFs.

Predictive analysis of SNP‑influenced miRNAs and DE‑IRGs
Potential candidate miRNAs targeting DE-IRGs were ana-
lyzed using miRNASNP to determine how the SNP variants 
in the seed region of the miRNAs affected their binding to 
the 3’ UTR region of DE-IRGs, and to construct miRNA-
SNP-DE-IRGs interaction networks (Fig. 7F). A total of 17 
SNP locations were identified (rs1165649618, rs753033941, 
rs111835650, rs1353902015, rs1185000692, rs1049004182, 
rs1480794990, rs774879764, rs767556394, rs1292420312, 
rs749991806, rs1445781653, rs905233879, rs778897748, 
rs1033402586, rs1177339324, and rs1157324828), which 
may play regulatory roles in the binding of miRNAs to 
DE-IRGs. Among them, 13 SNP mutations increased the 
number of miRNAs that could target the 3’-UTR of the 
DE-IRGs (gain), whereas 11 SNP mutations had the oppo-
site effect (loss) (Table 2).

Discussion
A growing body of evidence has demonstrated that 
immune-related genes (IRGs) play significant roles in 
CHD. Various cellular and molecular-mediated immune 
mechanisms participate in the occurrence of CHD and 
promote the development and deterioration of CHD [57, 
58]. Although it has been investigated widely, the molecu-
lar mechanism and critical regulators involved in IRGs for 
evaluating CHD patients remain to be further elucidated, 
which will help to explore the complex pathological process 
of the formation and development of CHD. In this study, 
348 DE-IRGs were identified as significant with respect 
to CHD by integration analysis of two mRNA microar-
ray datasets and ImmPort database. Next, the intersec-
tion of GO term and KEGG pathways enrichment analysis 
indicated that immune-related terms and pathways were 
highly enriched. The results suggested that immune-related 
molecular functions and crucial biological processes are 
involved in CHD pathogenesis. Also, GSEA enriched path-
ways are mainly involved in the internal immune network 
for IgA production and autoimmune theroid disease path-
ways. The xPierGSEA also showed that DE-IRGs played 
a vital role in the immune mechanism of CHD, being 
especially involved in the TCR signaling pathway of naïve 
CD4 + T cells.

Based on the 348 DE-IRGs, we built a PPI network 
and obtained eight hub genes using MCODE analysis, 
including FPR2, RASGRP1, LTBR, ACKR1, PTGS2, JUN, 
TNFRSF1A, and CYLD to explore the regulatory networks 
and crucial pathways underlying CHD. Our results demon-
strated that FPR2 is at the center of the network including 
characteristic genes and extended genes, indicating that it 
might play a potential role in immunoregulation processes. 
FPR2, a seven-transmembrane G protein-coupled receptor, 
plays multifaceted functions, such as a role in sensing bac-
teria and modulation of immune responses [59], colonic 
epithelial homeostasis, inflammation, and tumorigenesis 
[60]. PTGS2 was confirmed to suppress cell viability [61] 
and proliferation [62] of cells by activating the AKT/NF-κB 
pathway [63]. Overexpression of TNFRSF1A promoted 
the activation of the NF-κB signaling pathway and plays a 
potential regulatory role in neuronal cell damage [64]. The 
variant in TNFRSF1A is involved in Tumor Necrosis Fac-
tor Receptor-Associated Periodic Syndrome (TRAPS), and 

(See figure on next page.)
Fig. 6  Hub gene screening, diagnostic model construction, and validation of DE-IRGs. A Box graph of random forest selection. The green marker is 
an important characteristic gene. B Error rate under the random forest diagnosis model gradually decreases with the increase of ntree, and finally 
tends to be stable. C The accuracy under tenfold crossover model tends to be stable (> 0.95) when the fourth gene is included. D. Random forest 
assessment of eight hub genes. FPR2 displays were much more important than other genes. E ROC curve and an area under ROC (AUC) value of 
GSE71226 data set (AUC = 0.875). F ROC-AUC value of GSE20681 data set (AUC = 0.751)
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Fig. 6  (See legend on previous page.)
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can therefore be used as a novel pathogenic therapeutic 
target [65]. CYLD is a tumor suppressor protein. Studies 
showed that the loss of function of CYLD can release the 
polyubiquitin chain in the ubiquitinated substrate, which 
can then inhibit the IκBα Kinase complex and then inhibit 
the activation of the NF-κB signaling pathway, which is a 
negative regulator of this signaling pathway [66]. The rela-
tionship between the abovementioned hub genes and the 
immune-related molecular mechanism of CHD has not 
been confirmed before. In this study, several hub genes 
were found to be involved in the activation or inhibition of 
the NF-κB and TNF pathways. These findings are consist-
ent with the Metascape analysis enrichment result, which 
illustrated that the eight hub genes were mainly enriched in 
the regulation of defense response, NF-κB signaling path-
way, regulation of JNK cascade, and regulation of cytokine 
production. As a key and strictly regulated regulator, the 
NF-κB family of transcription factors is responsible for 
immune development, immune responses, and inflamma-
tion. The false regulation of NF-κB has been implicated 
in a wide range of diseases ranging from inflammatory to 
immune disorders [67]. TNF-α, mainly secreted by mac-
rophages and monocytes, can directly damage vascular 
endothelial cells, cause a pathological inflammatory reac-
tion, reduce the stability of atherosclerotic plaque, lead to 
the rupture of atherosclerotic plaque, and indirectly and 
directly accelerate the formation and development of ath-
erosclerotic plaque [68].

CHD is a complicated disease involving various signal-
ing pathways, protein-coding genes, numerous transcrip-
tion factors, and post-transcriptional regulation of heart 
morphogenesis, cardiac development, and cardiac mus-
cle cell differentiation and contractility. It is well known 
that miRNAs control gene expression mostly at the post-
transcriptional level, whereas TFs are involved in the 
activation or inhibition of transcription at a pre-tran-
scriptional level. Studies have implicated the abnormali-
ties in miRNA expression in CHD [69]: miR-34a protects 
endothelial function in CHD patients [70]; miR-23a 
improves restoration of blood flow in the ischemic region 
[71]; miR-135b and miR-499a induce the proliferation of 
endothelial cells and vascular smooth muscle cell [72]; 
miR502 suppresses autophagy [73]; miR-33/33b lowers 
low-density lipoproteins and raises high-density lipo-
proteins concentrations [74]; miR-939 in angiogenesis 
[75]; miR-155 prevents the occurrence and development 
of atherosclerosis and CHD [76]; miR-126 substantially 

prevents atherosclerotic cardiovascular diseases [77]; 
miR-21 prevents the formation of neointimal and reste-
nosis of arteries after angioplasty [78]; miR-146 enhances 
the collateral coronary circulation in ischemic tissue [79]. 
In this study, we constructed miRNA-TF co-regulatory 
networks based on candidate immune-related miRNAs, 
TFs, and hub genes, and performed network analysis 
to obtain consensus hub nodes, modules, and motifs 
involved in CHD. Based on two miRNA target gene data-
bases (TargetScan and miRcode), eight miRNAs were 
obtained, which were hsa-miR-411, hsa-miR-371-5p, hsa-
miR-292-5p, hsa-miR-186, hsa-miR-495, hsa-miR-543, 
hsa-miR-340-5p, and hsa-miR-433, and they were all tar-
get genes. Through the prediction of the trust transcrip-
tion factor database, 76 pairs of TF-DE-IRGs interaction 
groups were found. PTGS2 and Jun predicted the most 
transcription factors, and STAT family transcription 
factors (STAT1, STAT2, STAT3, and STAT6) matched 
PTGS2 best. Cluster analysis of the miRNA-DE-IRGs-TF 
regulatory network revealed that its main functions were 
promotion or inhibition of the NF-κB signaling path-
way and TNF signaling pathway. Among eight miRNAs, 
miRNA-292-5p [80, 81], which participates in myocar-
dial ischemia–reperfusion injury by activating the per-
oxisome proliferator-activated receptor-α/-γ (PPARα/
PPARγ)-dependent signaling pathway, has been studied 
since 2018. Recently, several studies have provided evi-
dence that cardiomyocyte-enriched miR-186 contributes 
to cardiac injury and myocardial infarction as well as the 
progression of atherosclerosis [82]. The remaining six 
miRNAs were not retrieved for in-depth study.

Recent studies revealed that miRNA-related Single 
Nucleotide Polymorphisms (SNPs) might affect dis-
ease susceptibility and phenotypes in an SNP-genotype-
dependent manner by modifying miRNA regulation [83, 
84]. In our study, according to the function enrichment 
prediction of characteristic genes in Metascape, 17 SNPs 
were identified. They may play a key role in the binding 
of miRNAs and DE-IRGs. Most detected SNPs have not 
been studied yet. Therefore, we recommend combining 
miRNA expression profiling analysis with genome-wide 
SNPs to identify potential disease biomarkers for future 
research.

However, this study has several limitations. Firstly, 
a comprehensive elucidation of the molecular mecha-
nisms should be conducted to understand the factors 
underlying the occurrence and development of CHD. 

Fig. 7  Functional enrichment analysis of hub genes and miRNA-DE-IRGs-TF regulatory network. A PPI network of DE-IRGs. B Cluster profiler showed 
that the main functions were enriched in NF-kappa B signaling pathway and TNF signaling pathway. C Metascape network diagram, Metascape 
functional enrichment correlation analysis of hub gene. D Metascape histogram. The first six functions with the lowest p value were selected. E 
miRNA-DE-IRGs-TF regulatory network. F miRNA-SNP-DE-IRGs network

(See figure on next page.)



Page 12 of 15Zhang et al. BMC Medical Genomics          (2022) 15:219 

Fig. 7  (See legend on previous page.)



Page 13 of 15Zhang et al. BMC Medical Genomics          (2022) 15:219 	

Individual samples with varying degrees of CHD need 
to be collected and studied. Secondly, the low number 
of patients analyzed in this study likely introduced bias. 

Larger sample size and comprehensive analysis of the 
interactions between environmental and genetic factors 
may better reveal the roles of hub genes and pathways 
in CHD pathogenesis. Finally, further bioinformatics 
analyses and validation assays are required for elucidat-
ing the gene function and biological mechanisms of the 
predicted genes in CHD.

Tremendous progress has been made in understand-
ing molecular mechanisms of CHD in vitro, ex vivo, and 
in  vivo. However, we should deepen our understanding 
of CHD pathogenesis and undertake further investiga-
tion to find more feasible treatments. The complex regu-
latory network involving hub genes, miRNAs, and TFs 
will be an exciting new field to explore and will shed new 
light on CHD development. We aimed to discover novel 
markers that would be helpful in diagnosis, prognosis, 
prediction, and immune microenvironment detection in 
CHD patients, and have been successful in finding some 
very promising leads. Further research in this area will 
help explore the formation and development of CHD.
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Target_Gene SNP location miRNA (loss) miRNA (gain)

ACKR1 rs767556394 hsa-miR-371b-5p
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rs1480794990 hsa-miR-371a-5p

rs774879764 hsa-miR-371b-5p

rs1292420312 hsa-miR-186-3p

rs1445781653 hsa-miR-186-5p

rs1033402586 hsa-miR-543

rs1177339324 hsa-miR-340-5p

JUN rs1185000692 hsa-miR-371a-5p

rs1049004182 hsa-miR-371a-5p

rs774879764 hsa-miR-371b-5p

rs767556394 hsa-miR-371b-5p

rs1292420312 hsa-miR-186-3p
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rs778897748 hsa-miR-495-5p

rs1033402586 hsa-miR-543
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rs1353902015 hsa-miR-411-3p

rs1049004182 hsa-miR-371a-5p

rs1292420312 hsa-miR-186-3p

RASGRP1 rs753033941 hsa-miR-411-5p

rs111835650 hsa-miR-411-3p

rs1353902015 hsa-miR-411-3p

rs1049004182 hsa-miR-371a-5p

rs1292420312 hsa-miR-186-3p
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rs1157324828 hsa-miR-433-5p
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