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CASE REPORT

A novel variant of SLC4A1 for hereditary 
spherocytosis in a Chinese family: a case report 
and systematic review
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Abstract 

Background:  The incidence of hereditary spherocytosis (HS) is approximately 1:2000 in the western population, 
while it is much lower in the Chinese population. It is difficult to make a definite diagnosis due to the variable geno-
typic features and the lack of well-documented evidence for HS patients. Gene sequence examination is helpful for 
clear diagnosis.

Case presentation::  We presented the case of a 29-year-old male HS patient with skin yellowness, anorexia, and 
cholecystolithiasis as the first manifestations. Laboratory examination of the patient and his parents showed a mild 
reduction in hemoglobin and mean corpuscular hemoglobin concentration, increased reticulocytes, and promotion 
of indirect bilirubin in the patient and his father. Furthermore, small globular red blood cells with increased osmotic 
fragility were observed. In particular, the eosin-5’-maleimide binding test provided the strong evidence that band 
3 protein was deleted in the erythrocyte membrane. Next-generation sequencing (NGS) and Sanger sequencing 
further demonstrated a heterozygous nonsense variant (exon16, c.G1985A: p.W662X) in SLC4A1, inherited from his 
father. Thus, the patient was diagnosed with HS, and then was effectively treated. After splenectomy, the anemia was 
relieved without any obvious unpleasant side effects.

Conclusion:  We report an extremely rare case of HS in China that presented with hereditary hemolytic anemia with 
band 3 deletion resulting from a novel variant of SLC4A1, and systematically review a large number of related litera-
tures. This study, therefore, significantly contributes to the literature on HS.
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Background
Hereditary spherocytosis (HS) refers to a group of heter-
ogeneous inherited anemias. In the western population, 
it is the most common cause of hereditary hemolytic 
anemia, with an estimated incidence of 1:2,000 [12]; 
however, based on clinical reports, this condition seems 
less common in southeast Asian and African-American 

populations [1]. In the Chinese population, the preva-
lence is approximately 1 in 100,000 people [3]. Mor-
phologically, HS is characterized by the presence of 
spherocytes in peripheral blood smear, and is generally 
due to variants in one of the five genes (SPTA1, SPTB, 
ANK1, SLC4A1, and EBP42), encoding α-spectrin, 
β-spectrin, ankyrin, band 3 (anion exchanger 1, AE1), 
and protein 4.2, respectively [4]. Among these genes, 
ANK1 and SPTB variants are the most frequent causes 
of HS, followed by variants in SLC4A1 (15%) in North-
ern European populations [5]. However, the Asian pop-
ulation showed a lower rate of variant in SLC4A1, with 
< 13.5% in the Chinese population [67–11] and only 4.2% 
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in the Indian population [12]. Although relevant studies 
on HS in the Chinese population have been published 
in the last 2 years, in some cases, it is difficult to make a 
definite diagnosis due to the variable genotypic and phe-
notypic features of HS and the lack of well-documented 
evidence for HS patients. Timely diagnosis and therapy 
will help decrease complications of biliary tract disease, 
such as biliary obstruction with pancreatitis, cholecysti-
tis, and cholangitis, and contribute to improving patients’ 
quality of life [21315]. Thus, accurate detection of known 
or new variant sites associated with HS is important in 
understanding this genetic disease.

Herein, we describe a case of HS in a 29-year-old man 
caused by a novel stopgain variant (c.G1985A) in SLC4A1 
exon 16, inherited from his father. Notably, the patient 
exhibited more severe hemolytic anemia than his father 
and presented with splenomegaly, cholelithiasis, and kid-
ney disease. Based on genetic screening for hereditary 
diseases of the hemopoietic system and immunodefi-
ciency diseases in selected family members of the patient, 
we concluded that a new variant in SLC4A1 caused the 
phenotypic deficiency of band 3 (p.W662X) in this fam-
ily, subsequently leading to the onset of HS. The patient 
provided written informed consent for the publication of 
this study, which was approved by the Ethics Committee 
of Hebei General Hospital, Shijiazhuang, China.

Case presentation
A 29-year-old man was admitted to Hebei General 
Hospital (Shijiazhuang) on July 7, 2020, due to skin yel-
lowness, anorexia, nausea, and vomiting after satiety, 
occasional abdominal distension, and dizziness. Four 
months before presenting to our hospital, the patient 
was initially diagnosed with cholecystolithiasis because 
of similar symptoms and abdominal ultrasound results 
(splenomegaly and bile duct neck stones) and did not 
receive treatment at a county hospital. The patient was 
subsequently admitted to our hospital with complaints 
of weight loss and unrelieved symptoms resulting from 
cholecystolithiasis. More than 10 years ago, the patient’s 
father showed mild anemia, splenomegaly and elevated 
bilirubin without a clear diagnosis and further treat-
ment. On admission, the estimation of the complete 
blood count, a mild reduction in hemoglobin and mean 
corpuscular hemoglobin concentration was observed in 
the blood of the patient and his father (Table 1). Labora-
tory examination revealed increased number of reticulo-
cytes and increased levels of total bilirubin and indirect 
bilirubin (Table 1). However, the patient showed negative 
results on immunofluorescence diagnosis and Coombs’ 
test. Peripheral blood smears for the patient and his 
parents showed different forms and sizes of mature red 
blood cell (RBC), with small globular RBC in the patient 

(2.4%) and his father (Fig.  1). The osmotic fragility test 
for the patient showed that a significant increase in RBC 
osmotic fragility (Table 2).

Furthermore, the eosin-5′-maleimide (EMA) bind-
ing test using flow cytometry (FCM) showed decreased 
fluorescence of EMA-labeled RBCs, with a mean fluores-
cence intensity of only 30.33% (Fig. 2), providing strong 
evidence that the band 3 protein is deleted in the RBC 
membrane. Based on the father’s medical history of ane-
mia and splenomegaly, DNA from the patient and his 
parents were screened for nearly 700 genes related to 
hereditary blood and immunodeficiency diseases (SPTB, 
SPTA1, EPB41, EPB42, ANK1, SCL4A1, ALAS2, SFXN4, 
TET2, HSPA9, HBA1, MTR, MMAB, etc.) using the 
next-generation sequencing (NGS). The results showed 
a heterozygous nonsense variant (NM_000342: exon16, 
c.G1985A: p.W662X) in SLC4A1. Sanger sequence fur-
ther demonstrated that this variant was inherited from 
his father, but not from his mother (Fig. 3). According to 
the Mutational Database, including 1000 Genomes Pro-
ject, dbSNP, ClinVar, ESP6500, ExAc, Ensembl, HGMD, 
and UCSC, this variant has not been reported previously. 
Meanwhile, it was predicted to be pathogenic variant 
(PVS1 + PS1 + PM2) based on the American College of 
Medical Genetics and Genomics (ACMG) standards and 
guidelines.

Additionally, abdominal ultrasound showed fatty liver, 
hepatomegaly, multiple gallstones, splenomegaly, and 
splenic vein widening. Abdominal and pelvic computed 
tomography (CT) further demonstrated multiple gall-
stones, splenomegaly, and left renal calculi (Fig. 4).

Based on the prominent symptoms, laboratory results, 
and DNA screening, the patient was diagnosed with 
HS, gallbladder stone, and  left kidney stone. He began 
treatment with folic acid and mecobalamin. After sple-
nectomy, the anemia was relieved without any obvious 
unpleasant side effects. And no occurrence of anemia 
was observed in the follow-up period.

Discussion and conclusion
The prevalence of HS is relatively high in North European 
countries but is much lower in the Asian population. A 
survey of hereditary hemolytic anemia in South Korea 
showed 71.3% of RBC membranopathies [16], while there 
has been no investigation on such a large number of cases 
due to the sporadic nature in China. Clinical data from 
the Changhai Hospital showed that of the hereditary 
hemolysis cases, 42.56% were membranopathies [17]. 
However, with the clinical application of gene sequenc-
ing, the number of reported cases of HS has significantly 
increased [18]. In the past 10 years, nearly half of the total 
HS cases have been reported, with 71% diagnosed at uni-
versity hospitals [18]. Owing to the lack of accurate data 
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on the incidence of and a detailed study on HS, its early 
diagnosis remains unclear in the Chinese population. As 
HS is caused by variants in different genes, its clinical 
manifestations vary widely, ranging from asymptomatic 
hemolysis to transfusion dependence. Therefore, it is dif-
ficult to obtain the correct diagnosis and to provide early 
treatment through traditional examinations. Sequence 
analysis of genetic exons contributes to early diagnosis 
and understanding of the characteristics of the variants.

Physiologically, in the RBC membrane, an enormous 
number of transporters and channels determine RBC 
volume and intracellular water content. There are five 
causative genes of HS: SPTB, SPTA1, ANK1, SLC4A1, 
and EPB42, which encode the erythrocyte membrane 
proteins β-spectrin, α-spectrin, ankyrin 1, band 3, and 

protein 4.2, respectively. Among these, the tetramer of 
spectrin forms a dense network, lining the inner surface 
of the lipid bilayer in the RBC membrane, while ankyrin-1 
provides the main membrane binding site for the spec-
trin-based membrane skeleton and links β-spectrin to 
band-3 [219]. These skeleton proteins provide RBCs with 
deformability and undergo substantial distortion without 
fragmentation during microcirculation [1920]. There-
fore, protein defects caused by gene variants result in 
decreased deformability, increased osmotic fragility, and 
premature destruction in the spleen. It has been reported 
that 75% of HS cases are associated with dominant inher-
itance and 25% are associated with non-dominant and 
recessive inheritance [52122, 23]. In Northern European 
populations, variants in ANK1 (50–60%) are the most 

Table 1  Laboratory investigations

Investigations On admission Father Mother

WBC (mm3) 3630 4660 4280

Neutrophils (%) 57.3% 51.3% 47.1%

Lymphocytes (%) 37.2% 43.8% 47.7%

Monocytes (%) 4.1% 3.6% 4.2%

Eosinophils (%) 1.1% 1.1% 0.5%

Basophils (%) 0.3% 0.2% 0.5%

Erythrocyte (mm3) 3,280,000 3,630,000 4,390,000

Hemoglobin (g/dl) 10.9 11.8 13.5

Platelets count (mm3) 189,000 187,000 227,000

Prothrombin time (seconds) 10.8 11.6 9.9

Reticulocyte (mm3) 466,100 410,900 52,700

Reticulocyte (%) 14.21% 11.32% 1.20%

Activated partial thromboplastin time (seconds) 25.2 28.5 27.1

Serum folate (ng/mL) 3.09 4.12 8.36

vitaminB-12 (pg/mL) 615.2 755.2 554.3

Serum ferritin (ng/mL) 693.4 525.7 32.6

Serum iron (μmol/L) 14.9 20.6 28.7

Total iron-binding capacity (μmol/L) 44.8 42.5 55.2

Transferrin (mg/dL) 196.4 183.3 262.8

Unasturated iron binding force (μmol/L) 29.9 25.3 43.7

Coombs’ test Negative Negative Negative

Blood urea (mmol/L) 6.8 7.5 8.4

Serum creatinine (μmol/L) 85.2 66.3 58.7

Alanine aminotransferase (U/L) 30.6 27.8 25.5

Aspartate aminotransferase (U/L) 17.8 16.5 23.7

Total bilirubin (μmol/L) 111.5 133.0 13.8

Direct bilirubin (μmol/L) 12.3 13.0 3.8

Indirect bilirubin (μmol/L) 99.2 120.0 10.0

HBsAg Negative Negative Negative

HBsAb Negative Negative Negative

HCV-Ab Negative Negative Negative

Anti-nuclear antibody Negative Negative Negative
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frequent cause of HS, followed by variants in the SPTB 
or SPTA1 gene (20%) and in the SLC4A1 gene (15%) [5]. 
In 25 Korean patients, variants in ANK1 (52%) or SPTB 
(48%) were genetically reported to be the cause of HS 
[24], while heterozygous variants in ANK1 were found in 
31% of Japanese HS patients [25]. A study of 73 Indian 
families (113 patients) with HS found variants in ANK1 
(53.2%), SPTB (36.2%), and SLC4A1 (4.2%) [12]. The five 
most recent studies reported in the Chinese population 
showed incidences of 44.7–66.7% for ANK1 variant, 

33.3–45.7% for SPTB variant, and < 13.5% for SLC4A1 
variant [67–11]. Compared to European countries, Asian 
countries show a lower rate of variants in SLC4A1, which 
are predominantly inherited.

In the present study, the patient presented with typical 
manifestations, including jaundice, anorexia, occasional 
abdominal distension, and dizziness. Laboratory exami-
nation showed an increased number of reticulocytes and 
increased levels of total bilirubin and indirect bilirubin, 
suggestive of RBC damage, compensatory erythrocytosis, 

Fig. 1  Peripheral blood smears of the patient, his parents and healthy donor. Peripheral blood smears were detected on an optical microscope 
(Olympus BX53, Shinjuku, Tokyo, Japan) with a cell medical image system (CMIS-2011). a Peripheral blood smears of the healthy donor. b Peripheral 
blood smears of the patient showed multiple spherocytes (black arrows) lacking central pallor. c Peripheral blood smears of his father showed many 
spherocytes (black arrows). d Peripheral blood smears of his mother. (×400)

Table 2  The results of Hemolysis test

The down (↓) and up (↑) arrows represent abnormal value

Investigations On admission Father Mother Reference values

Acidified glycerol lysis test (AGLT) 45s↓ 43s↓ 330s > 290s

Osmotic fragility test (the beginning hemolysis) 0.56%↑ 0.52%↑ 0.45% (0.44–0.48)%

Osmotic fragility test (the complete hemolysis) 0.48%↑ 0.43%↑ 0.32% (0.28–0.36)%

Sucrose hypertonic test cold hemolysis (SHTCL) 24.3%↑ 22.6%↑ 10.8% (0-16.9)%

Erythrocyte incubation osmotic fragility test 0.62%↑ 0.61%↑ 0.47% (0.44–0.60)%
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and hemolysis. However, the negative results of immu-
nofluorescence diagnosis and Coombs’ test excluded 
the possibility of paroxysmal nocturnal hemoglobinuria 
and autoimmune hemolytic anemia. Peripheral blood 
smears showed small globular RBC, and osmotic fragil-
ity tests showed increased osmotic fragility. Abdominal 
and pelvic CT further demonstrated multiple gallstones, 

splenomegaly, and left renal calculi. Subsequently, EMA-
FCM provided strong evidence that the band 3 protein 
was deleted in the erythrocyte membrane. Based on 
these results, the patient was diagnosed with HS. To clar-
ify HS diagnosis and genetic variant, WES for approxi-
mately 700 genes associated with hereditary diseases of 
the blood and immune system was performed on samples 

Fig. 2  EMA binding test by flow cytometry showed decreased fluorescence of EMA-labeled RBC g, h from the patient, compared with from healthy 
donors a–f with a mechanical fragility index of 30.33%

Fig. 3   A heterozygous nonsense variant (exon16, c.G1985A: p.W662X) of SLC4A1 in the patient and his father using Sanger sequence
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from the patient and his father. The results demonstrated 
a heterozygous stopgain variant in SLC4A1 exon16 
(c.G1985A; p.W662X).

SLC4A1, consisting of 20 exons, encodes a 911 amino 
acid protein, Band-3 (referred to as NM_000342, 
NP_000333.1). Erythrocyte band 3 is a major membrane 
protein, with 1.2  million copies per cell. Functionally, it 
includes two major domains: (1) an N-terminal cytosolic 
domain (cdAE1), providing attachment sites for the skel-
eton (ankyrin 1, protein 4.1, adducin2, and protein 4.2), 
glycolytic enzymes, and deoxyhemoglobin [2627], and (2) 
a C-terminal membrane domain (mdAE1), which forms 
the anion-exchange channel and aids carbon dioxide 
transport through the exchange of chloride and bicarbo-
nate ions [192829]. The mdAE1 of Band 3 consists of 14 
transmembrane (TM) segments with the N- and C-ter-
mini facing the cytosol [30]. Among these segments, a 
core domain (TM1-4 and TM 8–11) provides anion-
binding sites and a gate domain (TM5-7 and TM12-14) 
contains lysine residues crosslinked by some organic ani-
ons [30]. The membrane domain of Band 3, responsible 
for the transport function, is completely functional in the 
absence of the cytosolic domain [31].

Variants in SLC4A1 have been linked to four human 
diseases, including HS, Southeast Asian ovalocytosis 
(SAO), and  hereditary stomatocytosis (HSt) [32], distal 
renal tubular acidosis (dRTA) [3334, 35]. SAO mutates 
frequently via the deletion of nine amino acids (Ala400-
Ala408) on the cytosolic boundary region of TM1 [30], 
while many HSt variants cluster in or around TM10 on 
the cytoplasmic half of the core domain. For HS, vari-
ants in SLC4A1 are thought to occur throughout the 
sequence, including both the membrane and cytosolic 
domains. Although approximately one-third of the 
variants were reported to likely affect the processing of 
SLC4A1 pre-mRNA [1], variants in HS are common 
in the Band 3 membrane domain. Following extensive 
review of the literature, we summarized most of the 
amino acid variants in Band 3 (Fig. 5) [1693637–54]. To 
date, approximately 70% of the variants seem to occur in 
the membrane domain, more frequently than in the core 
domain.

In the case presented here, NGS results demonstrated 
a heterozygous variant (exon16, c.G1985A: p.W662X) 
in Band 3. Trp662, located near the beginning of TM8 
(I661-S690), faces the terminal region of TM3. It has 

Fig. 4  Abdominal and pelvic CT scans showed multiple gallstones (white arrows in a, b and c), splenomegaly (red arrows in a, b, c and d) and left 
renal calculi (yellow arrow in d)
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been reported that tryptophan residues in Band 3 play 
key roles in energy transfer. For example, Trp848, located 
on the extracellular end of TM13, may be the predomi-
nant tryptophan residue responsible for energy transfer 
[20]. Variant of Trp492 or Trp496 within TM4 and in 
close contact with the N-terminal region of TM8 causes 
Band 3 to misfold. Meanwhile, the variant of Trp648, 
Trp662, or Trp723 to Ala has the same effect. In this 
study, the variant (c.1985G > A) in SLC4A1 (inherited 
from the father) caused the conversion of TGG (Trp) to 
a stop codon TAG, resulting in the loss of Band 3. This 
compromised the stability of the cytoskeleton in the RBC 
membrane and induced the onset of HS in the patient.

In summary, we report an extremely rare case of HS in 
a Chinese population that presented hereditary hemo-
lytic anemia with the deletion of band 3 resulting from 
a novel variant (exon16, c.G1985A: p.W662X). Because 

of the lack of a registration system for HS in China, the 
exact rate of its incidence and genotypic and phenotypic 
features of HS patients carrying variants in SLC4A1 
remain unknown. Identifying potential genetic causes is 
helpful in understanding the correlation between geno-
type and phenotype. This study thus makes a significant 
contribution to the literature on HS.
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