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Abstract 

Background:  MYCN amplification (MNA) has been proved to be related to poor prognosis in neuroblastoma (NBL), 
but the MYCN-related immune signatures and genes remain unclear.

Methods:  Enrichment analysis was used to identify the significant enrichment pathways of differentially expressed 
immune-related genes (DEIRGs). Weight gene coexpression network analysis (WGCNA) was applied to reveal the cor-
relation between these DEIRGs and MYCN status. Univariate and multivariate Cox analyses were used to construct risk 
model. The relevant fractions of immune cells were evaluated by CIBERSORT and single-sample gene set enrichment 
analysis (ssGSEA).

Results:  Five genes, including CHGA, PTGER1, SHC3, PLXNC1, and TRIM55 were enrolled into the risk model. Kaplan–
Meier survival analysis and receiver operating characteristic (ROC) curve showed that our model performed well in 
predicting the outcomes of NBL (3-years AUC = 0.720, 5-year AUC = 0.775, 10-years AUC = 0.782), which has been 
validated in the GSE49711 dataset and the E-MTAB-8248 dataset. By comparing with the tumor immune dysfunction 
and exclusion (TIDE) and tumor inflammation signature (TIS), we further proved that our model is reliable. Univariate 
and multivariate Cox regression analyses indicated that the risk score, age, and MYCN can serve as independent prog-
nostic factors in the E-MATB-8248. Functional enrichment analysis showed the DEIRGs were enriched in leukocyte 
adhesion-related signaling pathways. Gene set enrichment analysis (GSEA) revealed the significantly enriched path-
ways of the five MYCN-related DEIRGs. The risk score was negatively correlated with the immune checkpoint CD274 
(PD-L1) but no significant difference with the TMB. We also confirmed the prognostic value of our model in predicting 
immunotherapeutics.

Conclusion:  We constructed and verified a signature based on DEIRG that related to MNA and predicted the survival 
of NBL based on relevant immune signatures. These findings could provide help for predicting prognosis and devel-
oping immunotherapy in NBL.
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Introduction
Neuroblastoma (NBL) is the most common embryo-
nal solid tumor of infancy, which accounts for 7–8% of 
malignancies and 15% of cancer-related mortality in 
children [1]. It is a heterogeneous tumor deriving from 
neural crest cells (NCCs) [2]. The genetic, morphologi-
cal, and clinical heterogeneity have been described at 
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multiple levels, including anatomical localization, his-
tology, genomics/molecular profile, and cellular and 
molecular levels. The considerable heterogeneity contrib-
utes to the clinical and prognostic diversity. Therefore, 
children with the same stage usually have different out-
comes. Although treatments of NBL, for example, high-
dose myeloablative chemotherapy, molecular-targeted 
therapy, autologous hematopoietic stem cell transplan-
tation (AHSCT), and immunotherapy have significantly 
prolonged the survival of patients [3], NBL is still a life-
threatening malignancy with 5-year survival rate less 
than 50% [4]. Therefore, it is urgently required to develop 
and validate novel prognostic predictors to guide the 
treatment of NBL.

MYCN amplification (MNA) accounts for about 
20–25% of all primary tumors [5]. which is an initiat-
ing event that drives the development of high-risk NBL 
and is strongly associated with high-risk disease and 
poor prognosis [6]. MYCN affects not only gene expres-
sion but also epigenetic factors [7]. It has been used as 
a biomarker of risk stratification, but the specific related 
immune features and genes remain unclear. Therefore, 
it is necessary to establish computational models of the 
immune-related genes in different MYCN status groups.

In recent years, treatments based on the tumor micro-
environment (TME) have attracted attention. TME plays 
a significant role in tumor progression by providing a 
growth environment, reducing the efficacy of anti-tumor 
drugs, and helping tumor cells evade immune surveil-
lance. Overall, tumor-infiltrating immune cells (TIICs) 
and immune-related genes (IRGs) are essential compo-
nents of the TME [8, 9]. Studies have shown that the stro-
mal and immune signatures are related to the survival of 
NBL. However, the specific mechanisms of TME related 
to tumor progression remain unclear. Therefore, we tried 
to analyze the relationship between the genes and TME 
alternations.

In this study, we developed and validated individu-
alized prognostic characteristics of NBL based on the 
MYCN-related DEIRGs, and then compared the immune 
components between the two score groups. These results 
may provide insights for further prediction of the prog-
nosis of NBL patients.

Material and methods
Public datasets
We downloaded the mRNA matrix, somatic mutation, 
and clinical data from the Therapeutically Applicable 
Research to Generate Effective Treatments (TARGET) 
database (www.​ocg.​cancer.​gov/​progr​ams/​target).

The validation cohorts were downloaded from the 
Gene Expression Omnibus (GEO) database (GSE49711, 
n = 498, www.​ncbi.​nlm.​nih.​gov/​geo/) and the 

ArrayExpress database (E-MTAB-8248, n = 223, www.​
ebi.​ac.​uk/​array​expre​ss). The immunotherapy dataset 
(IMvigor210, n = 298) was downloaded from the “IMvig-
or210CoreBiologies” R package (http://​resea​rch-​pub.​
gene.​com/​IMvig​or210​CoreB​iolog​ies/​packa​geVer​sions). 
298 patients with metastatic urothelial cancer in the 
IMvigor210 dataset treated with an anti-PD-L1 agent 
(atezolizumab). IRGs list was obtained from the ImmPort 
database (www.​immpo​rt.​org/​home) and the InnateDB 
database (www.​innat​edb.​ca).

Analysis of DEIRGs and gene enrichment analysis
According to the MYCN status (MNA or non-MNA), 
we identified the differentially expressed genes (DEGs) 
with a false discovery rate (FDR) < 0.05 and |logFC|> 1 
between the two groups in the TARGET cohort using 
"limma" R package. Then we extracted differentially 
expressed immune-related genes (DEIRGs) from DEGs 
based on the IRGs list. These DEGs and DEIRGs were 
shown in the heatmap. In order to gain new insights into 
the mechanism and pathways related to these DEIRGs, 
we performed Gene Ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) [10–12] enrich-
ment analyses.

WGCNA to identify key modules and hub genes
To screen hub genes associated with MYCN status, 
weight gene coexpression network analysis (WCGNA) 
was carried out based on the expression of these DEIRGs 
by “WGCNA” R package. We first calculated the degree 
of adjacency between every two genes and applied the 
standard scale-free network to evaluate the optimal soft 
threshold power. Topological overlap matrix (TOM) was 
used to reduce the effects of noise and spurious asso-
ciations. TOM-based dissimilarity was used to form 
modules through dynamic tree cutting. The clustering 
dendrogram of genes was created through a dendro-
gram with colored assignments when cut height = 0.2, 
minModuleSize = 25. To select key modules associated 
with MNA, p < 0.05 was considered significant. Network 
screening was used to visualize hub genes in the key 
modules with Cytoscape 3.5.1 software.

Construction of a prognostic signature based 
on MYCN‑related DEIRGs
Univariate Cox regression analysis was used to select 
prognostic genes located in the key modules. Multi-
variate Cox regression analysis was used to calculate the 
regression coefficients for each gene. We constructed a 
prognostic risk model based on these genes. The formula 
was as follows: risk score = β1 * X1 + β2 * X2 + … + βn* 
Xn (β, risk coefficient; X, the expression of a specific 
gene). Patients were assigned to the high- or low-risk 
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group based on the median risk score. Next, we per-
formed univariate and multivariate analyses to identify 
whether the risk score can serve as an independent factor 
in NBL. The tumor immune dysfunction and exclusion 
(TIDE) and tumor inflammation signature (TIS) have 
been proved to be effective. By comparing with TIDE and 
TIS, we further proved that our model is reliable. Moreo-
ver, we evaluated the correlations between the risk model 
and clinical factors, including age (age <  = 1.5, age > 1.5), 
gender (female, male), INSS stage (stage 2, 3, 4), MYCN 
status (amplification, unamplification). We also calcu-
lated the proportions of patients in different age groups.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) was used to iden-
tify significantly enriched pathways in the two groups. 
The “c2.cp.kegg.v7.4.symbols.gmt” gene set collection 
in the MSigDB database was chosen as the reference. 
p < 0.05 was considered statistically significant.

Analysis of tumor mutation burden
We downloaded the somatic mutation data of 209 
patients from the TARGET database and extracted rel-
evant information through Perl script (www.​perl.​org/), 
then we estimated the tumor mutation burden (TMB) 
values. TMB = (total count of variants) / (the whole 
length of exons). The R package “maftools” was used 
to display specific mutation information for the top 20 
genes in different groups.

The correlation between 5‑DEIRGs and tumor‑infiltrating 
immune cells
The R package “CIBERSORT” was used to quantify 22 
kinds of human immune cell phenotypes in each sam-
ple and infer their relative proportions. Gene set LM22 
was used as the reference. In each sample, the sum of the 
proportions of 22 immune cells was equal to 1. We set 
permutations = 1000 to improve the accuracy. Only sam-
ples with a CIBERSORT p < 0.05 were selected for the fol-
lowing analysis. TIICs infiltration was divided in low- or 
high- abundance. We also compared the expression dif-
ference of immune checkpoint gene CD274 (PD-L1) in 
two risk groups and the prognostic value of our model in 
predicting immunotherapeutics.

Single‑sample gene set enrichment analysis
We performed single-sample gene set enrichment anal-
ysis (ssGSEA) to evaluate the activities of 13 immune-
related functions enrichment pathways and infiltration 
scores of 16 immune cells of each example using the R 
package "GSVA".

Statistical analysis
Survival analysis was carried out by the K-M analysis, and 
the log-rank test was applied between groups. Univariate 
and multivariate Cox proportional-hazards models were 
utilized for model construction. The receiver operat-
ing characteristic (ROC) curve was used to estimate the 
predictive ability of our model. Wilcoxon test was used 
to analyze the correlation between the risk model and 
clinical features and immune characteristics. For all tests, 
p < 0.05 was considered to be significant. Data analy-
sis in our study was performed by R language version 
4.0.5 (www.r-​proje​ct.​org/) with the following packages: 
“glment,” “survminer,” “survival ROC,” and “clusterProfile.”

Results
Identification of DEIRG
We downloaded transcriptome profiling and clinical 
databases of 151 NBL patients from the pediatric TAR-
GET database. Transcriptome profiling of 498 NBL 
patients were downloaded from the GEO database and 
transcriptome profiling of 223 NBL patients were down-
loaded from the ArrayExpress, which served as the exter-
nal validation groups. The corresponding flow chart is 
shown in Fig.  1A. We analyzed the DEGs between the 
MNA group (n = 33) and the non-MNA group (n = 118). 
A total of 3270 DEGs were identified, which were dis-
played in the heatmap (Fig.  2A). From ImmPort and 
InnateDB databases, we obtained 2660 immune-related 
genes (IRGs). We extracted 343 DEIRGs from the 3270 
DEGs based on the IRGs list, among which 320 genes 
were down‐regulated and 23 genes were up‐regulated 
in the MNA group compared with non-MNA group 
(Fig. 2B).

Function enrichment analyses were performed using 
KEGG and GO analyses. By GO analysis (Fig.  2C), 
DEIRGs were significantly enriched in leukocyte-medi-
ated immunity, T cell activation, signaling receptor acti-
vator activity, receptor-ligand activity, T cell receptor 
complex, and plasma membrane signaling receptor com-
plex. KEGG analysis showed that these DEIRGs were 
mainly enriched in cytokine-cytokine receptor interac-
tion, tuberculosis, and chemokine signaling pathway 
(Fig.  2D). In brief, these DEIRGs play immune roles in 
NBL mainly involved in transmitting various signaling 
pathways.

WGCNA to identify key modules and hub genes
To further identify DEIRGs related to MYCN status, we 
performed WGCNA to reveal the correlation between 
343 DEIRGs and MYCN status. The scale-free network 
was constructed based on the expression profile of 343 
DEIRGs with a soft threshold power of 8 (Fig. 3A). Next, 
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a total of 3 modules were identified by the dynamic cut-
ting tree (minModuleSize = 25, cut height = 0.2) (Fig. 3B) 
and results showed that the turquoise (R = 0.44, p < 0.001) 
and grey (R = 0.75, p < 0.001) modules were closely corre-
lated with MNA (Fig. 3C). 228 DEIRGs (n = 149 samples) 
in the grey and turquoise modules were used to identify 
hub genes using the Cytoscape graph. The hub genes 
were located in the center of the modules: the larger the 
circle, the more likely it to be a core gene (Fig. 3D).

Construction and validation of the prognostic signature
A total of 228 DEIRGs (n = 149 samples) originated from 
grey and turquoise modules that related to MNA were 
used for further analysis. As shown in the univariate Cox 
regression analysis, we screened 12 prognostic genes, 
including CRABP1, AMH, CHGA, PTGER1, SHC3, 
GAL, MAPT, PLXNC1, SCG2, LIFR, TRIM55, and 
OPTN (Fig.  4A). We applied the multivariate stepwise 
method (both forward and backward) to screen optimal 

genes to construct the prognostic model. Finally, five 
genes, including CHGA, PTGER1, SHC3, PLXNC1, and 
TRIM55 were enrolled and the risk score of each patient 
was calculated based on the following formula: The risk 
score = (-0.326 * the expression of CHGA) + (0.384 * 
the expression of PTGER1) + (0.199 * the expression of 
SHC3) + (0.114 * the expression of PLXNC1) + (-0.114 * 
the expression of TRIM55). Patients were assigned to the 
low- or high-risk group based on the median value. As 
shown in the K-M curves, the high-level expression of 
PLXNC1 and TRIM55 showed better survival outcomes 
in the high-risk group, while the high-level expression of 
CHGA, SHC3, and PTGER1 showed poorer survival out-
comes in the high-risk group (Additional file 1: Fig. S1A–
E). K–M analysis showed that the low-risk group patients 
had significantly better survival prognosis (P < 0.001) 
(Fig.  4B), which was validated in the GSE49711 data-
set (P < 0.001) (Fig.  4C) and the E-MTAB-8248 data-
set (P < 0.001) (Fig.  4D). In addition, the univariate and 

Fig. 1  The flow chart of this study
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multivariate Cox regression analyses indicated that the 
risk score served as an independent prognostic factor in 
NBL patients in our model (Additional file  1: Fig. S2A, 
B). Subsequently, we identified independent prognostic 
factors in the E-MTAB-8248 and GSE49711 datasets. In 
the E-MTAB-8248 dataset, the univariate Cox regres-
sion analysis indicated that the age, stage, MYCN, and 
risk score were associated with the patient’s prognosis 
(Fig.  4E). Multivariate Cox regression analysis indicated 
that the age, MYCN, and risk score were associated with 
the prognosis (Fig. 4F). The independent prognostic fac-
tors in the GSE49711 dataset are shown in the Additional 
file  1:Fig. S3A, B. Accordingly, the risk score, age, and 
MYCN all can serve as independent prognostic factors 
for NBL patients.

TIDE was used to compare the immunotherapy 
response between the two groups, and the higher the 
TIDE prediction score, the higher the probability of 
immune evasion. The low-risk group patients had a 
higher dysfunction (*p < 0.05), while the TIDE, MSI, 
and exclusion showed no significant differences in the 
two risk groups (Fig. 4G). Our model performed well in 
predicting the outcomes of NBL (3-years AUC = 0.720, 
5-year AUC = 0.775, 10-years AUC = 0.782) (Fig.  4H), 
which has been validated in the GSE49711 dataset 

(3-years AUC = 0.784, 5-year AUC = 0.820, 10-years 
AUC = 0.825) (Fig.  4J) and the E-MTAB-8248 dataset 
(3-years AUC = 0.654, 5-year AUC = 0.603, 10-years 
AUC = 0.642) (Fig.  4I). The AUC values of risk model, 
TIDE, and TIS was 0.720, 0.493, and 0.458, respectively 
(Fig.  4K). Overall, the 5-MYCN-related DEIRGs signa-
ture has a better predictive ability.

Comparison of clinical features with the risk model
Age, histology, COG (***P < 0.001), and MKI (*P < 0.05) 
showed differences in the two risk groups (Fig. 5A). We 
calculated the proportions of patients in two age groups 
(age ≤ 1. 5, age > 1.5), and the results showed in Fig.  5B. 
All in all, some known clinical features of the prognosis 
[14] were associated with our constructed the 5-gene risk 
model.

Gene set enrichment analysis
We performed GSEA to explore the possible signaling 
pathways and mechanisms. The results showed that Cell 
cycle, mismatch repair, DNA replication, ribosome, and 
spliceosome pathway were highly enriched in the high-
risk group (Fig.  5C). Complement and coagulation cas-
cades, metabolism of xenobiotics by cytochrome p450, 
PPAR signaling pathway, drug metabolism cytochrome 

Fig. 2  Identification of DEIRGs and enrichment analysis in the TARGET cohort. Heatmap of the (A) DEGs and B DEIRGs in the MNA group. C GO, and 
D KEGG enrichment analysis of the 343 DEIRGs. p- and q-value < 0.05 were considered significantly
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p450, and retinol metabolism were highly enriched in the 
low-risk group (Fig. 5D).

Correlation of tumor microenvironment with patients’ 
prognosis
CIBERSORT was used to estimate the 22 kinds of 
TIICs infiltration abundance (Fig. 6A). 88 patients with 
p < 0.05 were selected for the subsequent analysis. There 
were no statistical differences of TIICs infiltration abun-
dances in the two risk groups (Fig.  6B). According to 
the K-M analysis, the expression of four immune cells, 
including B cells naïve (cutpoint = 0.007, p = 0.012), 
macrophages M0 (cutpoint = 0.384, p = 0.040), mast 
cells resting (cutpoint = 0.0003, p = 0.011), and plasma 
cells (cutpoint = 0.028, p = 0.031) were associated 
with the prognosis (Fig.  6C-F). The high abundance 
of Macrophages M0 showed that patients had a good 
prognosis (p < 0.05) while B cells naïve, mast cells 
resting, and plasma cells showed a poor prognosis. 
Immune checkpoint gene CD274 showed a negative 
correlation with the risk score. (R = -0.27, p = 0.001) 
(Fig. 6H), and a higher expression in the low-risk group 
(Fig.  6G). To explore the prognostic value of the risk 
score for immune-checkpoint therapy, patients in the 

IMvigor210 cohort were assigned to high- or low-risk 
groups. K–M analysis showed that the low-risk group 
patients had a significantly better prognosis (P < 0.001) 
(Additional file  1: Fig. S4A). We also compared the 
differences of immunosuppressive benefits between 
the two risk groups, the low‐risk group patients had a 
higher complete response (CR)/partial response (PR) 
rate (Additional file 1: Fig. S4B).

4 kinds of immune functions, including APC-co-
inhibition, neutrophils, T-helper cells and type-II-
IFN-reponse, were suppressed in the high-risk group 
(Fig.  7A). According to the survival analysis, except 
for the immune function of CCR, the more active 
of the immune functions of aDCs (cutpoint = 0.486, 
p = 0.012), APC co stimulation (cutpoint = 0.491, 
p = 0.035), DCs (cutpoint = 0.407, p = 0.015), HLA (cut-
point = 0.784, p = 0.013), neutrophils (cutpoint = 0.646, 
p = 0.006), iDCs (cutpoint = 0.414, p = 0.023), NK 
cells (cutpoint = 0.584, p = 0.009), T cell co inhibi-
tion (cutpoint = 0.495, p = 0.004), parainflammation 
(cutpoint = 0.743, p = 0.040), T cell co stimulation 
(cutpoint = 0.547, p = 0.028), TIL (cutpoint = 0.627, 
p = 0.043), Th1 cells (cutpoint = 0.455, p = 0.040) and 
Treg(cutpoint = 0.721, p = 0.021), the better prognosis 
of NBL patients(Fig. 7B-O).

Fig. 3  WGCNA screening key modules and hub genes related to MNA. A, B The scale-free network and clustering tree of co-expression modules. C 
Grey, turquoise and blue co-expression modules were identified correlated with MNA. D visualization of the grey and turquoise network modules
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The tumor mutational burden of NBL samples
We showed the top 20 most mutated genes in somatic 
mutation profiles patients. The waterfall plot was used to 
distinguish different mutation types and show the rela-
tionship between gender and MYCN status (Fig.  8A). 
Missense mutations, C > A mutation, and single-nucleo-
tide polymorphism (SNP) accounted for the majority of 
different classifications. In addition, counting each sam-
ple separately, the maximum mutations were 186. The 
box plot showed the number of variant classifications 
in the different samples. The top 3 mutated genes were 
ALK (10%), MUC16 (8%), FLG (4%) (Fig.  8B). To iden-
tify the differences of the TMB, we compared the top 
20 most common mutated genes between the two risk 
groups. ALK, MUC16, FLG, FAT2, and ATP10B were the 

commonly mutated genes in the low-risk group (Fig. 8C), 
while ALK, MUC16, FLG were commonly mutated genes 
in the high-risk group (Fig. 8D). Accordingly, ALK (10%) 
was the most common mutant gene in the 149 NBL 
patients. The boxplot and correlation graphs showed that 
the TMB had no significant difference in the two risk 
groups (Fig. 8E, F).

Discussion
NBL is an embryonal malignancy originating from neu-
ral crest cells, which is frequently characterized by the 
amplification and overexpression of MYCN oncogene 
[13, 14]. MNA is associated with high-risk disease, 
advanced-stage disease, metastatic behavior, rapid pro-
gression, poor survival, and unfavorable prognosis [15, 

Fig. 4  Identification of prognostic genes, construction and validation of the prognostic model. A The forest plot showed the relationship 
between the gene expression and OS. Kaplan–Meier survival analysis of patients in the high or low-risk group in the B TARGET, C GSE49711, and 
D E-MTAB-8248 datasets. The independent prognostic factors in the E-MTAB-8248 dataset was assessed by E univariate and F multivariate Cox 
analysis. G TIDE, dysfunction, MSI and exclusion score in the high and low-risk groups. H–J ROC curves for predicting survival at 3, 5, and 10 years of 
NBL patients in our model, the E-MTAB-8248, and the GSE49711 datasets, respectively. K Multivariable ROC curve compared with the TIDE and TIS 
risk models. p-value < 0.05 was considered significant



Page 8 of 14Ma et al. BMC Medical Genomics          (2022) 15:242 

Fig. 5  The relationship between the risk model and clinical characteristics. A Heatmap of correlation between the risk model and clinical features in 
TARGET cohort, B chi-square test ratio. *p < 0.05; **p < 0.01; ***p < 0.001. Pathways enriched in NBL patients in the C high-risk and D low-risk groups

Fig. 6  The relationship between the risk model and the infiltration abundances of 22 immune cells. A The relative infiltration abundances of the 
22 types of immune cells. B Comparison of TIICs infiltration abundance between the high- and low-risk groups. Kaplan–Meier survival analysis of C 
B cells naïve, D macrophages M0, E mast cells resting, and F plasma cells for patients with high- and low abundance. G Box plot and H correlation 
graph showed the differences in immune checkpoint CD274 in high and low-risk groups
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16]. The MYCN-amplified subtype constitutes the most 
aggressive and least treatable form of NBL. Despite 
intensive treatment models, the long-term survival of 
high-risk NBL is still around 50% [14]. Tumors with 
MNA have a unique gene expression profile, and the 
altered gene expression is considered to be the primary 
oncogenic function of MYCN [17]. However, targeting 
this oncogene remains challenging in clinical treatment. 
In this study, we analyzed EDGs between the two MYCN 
status groups. Based on the ImmPort and InnateDB data-
bases. 343 DEIRGs, including 320 down-regulated and 
23 up-regulated genes in the MNA group were extracted 
from DEGs based on the IRGs list. Functional enrich-
ment analysis showed that these DEIRGs participated in 
leukocyte adhesion-related signaling pathways, includ-
ing the regulation of leukocyte cell–cell adhesion, leu-
kocyte cell–cell adhesion, leukocyte mediated immunity, 
and positive regulation of leukocyte cell–cell adhesion. 
Several cell adhesion molecules (CAMs) are involved in 
leukocyte adhesion. These CAMs are associated with the 
adhesion and metastatic behavior of NBL cells [18, 19]. 
These enriched pathways might mean that leukocyte 
adhesion is partially responsible for the malignant pro-
gression of NBL.

Based on the WGCNA, we screened 3 gene co-expres-
sion modules, of which the turquoise and grey modules 
were closely correlated with MNA (p < 0.01), and a total 

of 228 DEIRGs were selected for the following research. 
Through univariate and multivariate regression analy-
ses, we finally selected five genes (PLXNC1, CHGA, 
PTGER1, SHC3, and TRIM55) to construct the risk 
model. The survival curves showed a poorer prognosis in 
the high-risk group which was validated in the GSE49711 
and the E-MTAB-8248 datasets. Two kinds of tumor 
cells immune escape mechanisms have been founded at 
present. TIDE was used to identify the potential factors 
of tumor cells immune evasion mechanisms. However, 
except for dysfunction, the other three TIDE, MSI, and 
exclusion showed no significant differences in the two 
risk groups. TIDE was calculated in different cancer data-
bases. The number of our samples is limited and all of 
them were from the TARGET database, which may lead 
to bias. Larger research is needed to explore the specific 
mechanisms in the future.

Here, the prediction accuracy of the risk AUC was 
better than the TIS and TIDE. Therefore, the signature 
based on the five MYCN-related DEIRGs had an excel-
lent predictive effect. The signature may be helpful to 
evaluate the prognosis and update treatment for NBL 
patients. Heterogeneous diseases have a large num-
ber of clinicopathological characteristics and risk fac-
tors. So, we should analyze whether the risk model can 
be an independent factor. Through univariate and mul-
tivariate analyses, we concluded that the risk score was 

Fig. 7  Kaplan–Meier analysis for 29 immune functions. A K–M curve to compare the difference of immune functions between the high- and 
low-risk groups, respectively. B–O *p < 0.05; **p < 0.01; ***p < 0.001, n. s. statistically insignificant
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an independent prognosis factor in our model. However, 
former studies have proved that MYCN is related to poor 
prognosis in NBL patients. Subsequently, we performed 
univariate and multivariate analyses in the E-MTAB-8248 
and GSE49711 datasets, the results showed that the risk 
score, age, and MYCN all can serve as independent prog-
nostic factors for NBL patients. After our analysis, data 
collections in the TARGET database can lead to bias in 
our model. Thus, more datasets are needed to identify 
the result.

When it comes to clinical characteristics, the risk 
model was strongly correlated with age, histology, MKI, 
and COG. International Neuroblastoma Risk Group [20] 
uses histologic category, age, grade, MYCN status, DNA 
ploidy, etc., as a risk group for NBL patients, which helps 
to develop individualized treatment options according to 
different risk characteristics.

Through univariate Cox regression analysis, we 
selected 12 genes, including CRABP1, AMH, CHGA, 
PTGER1, SHC3, GAL, MAPT, PLXNC1, SCG2, LIFR, 
TRIM55, and OPTN. These 12 genes are associated with 
the progression and prognosis of cancer. For example, the 
expression of CRABP1 of cancers from various origins 

are significantly different. High levels of CRABP1 were 
detected in NBL but not in NSCLC, ovarian cancer, and 
glioblastoma. By DNA methylation analysis, CRABP1 
was identified as a hypermethylated target gene of ovar-
ian cancer [21]. The decreased expression of CRABP1 is 
associated with the poor prognosis of serous and clear 
cell ovarian adenocarcinoma [22]. MAPT is aberrantly 
expression in some cancers. The aberrantly expression 
of MAPT is an independent prognostic factor in pros-
tate cancer, and its knockdown can reduce cell growth 
[23]. Marachelian et  al. [24]. first reported that the 
mRNA quantification of 5-related genes (CHGA, DCX, 
DDC, PHOX2B, and TH) could be used as biomark-
ers for relapsed/refractory NBL. In a pan-cancer study, 
the overall expression of PLXNC1 is up-regulated in 
primary and metastatic tumors and may be associated 
with a more aggressive cancer phenotype [25]. SCG2 
is an independent prognostic factor in colorectal can-
cer, which is associated with macrophage polarization 
and immune infiltration [26]. The expression of gene 
LIF/LIFR is overexpressed in solid tumors, and plays an 
essential role in cancer metastasis, progression, and inva-
sion [27]. PTGER1, one of the prostaglandin receptors, 

Fig. 8  The mutation profile and TMB in the low- and high-risk groups. A waterfall plot of the top 20 most mutated genes in different patients 
shows the relationship with gender and MYCN status. B Counting mutations in seven common classifications, separately. C–D Waterfall plot of top 
10 mutated genes in MYCN-related DEIRGs between the two risk groups. E Boxplot and F correlation graphs indicated the difference in TMB in the 
two risk score groups



Page 11 of 14Ma et al. BMC Medical Genomics          (2022) 15:242 	

conjugates G-proteins to activate the protein kinase C. 
DNA methylation is a critical link in tumor transforma-
tion, PTGER1 is closely related to DNA methylation in 
non-functioning adrenocortical adenoma [28]. In addi-
tion, the high-level expression of PTGER1 is correlated 
with a poor prognosis in clear cell renal cell carcinoma 
[29]. SHC3 is ectopically overexpressed in various can-
cers and associated with their progression. The interac-
tion between SHC3 and HIF- 1α may prevent NBL cells 
from hypoxia. 8 IRGs, including TRIM55, were associ-
ated with the survival and clinical features of lung squa-
mous carcinoma (LUSC) [30]. By augmenting protein 
degradation of Snail1 via promoting the ubiquitination 
pathway, TRIM55 inhibits the malignant behavior of lung 
adenocarcinoma [31]. The expression of OPTN is down-
regulated in urothelial carcinoma [32]. Overexpression 
of OPTN increases mitophagy and is related to worse 
prognosis in hepatocellular carcinoma (HCC) patients 
[33].The expression of GAL up-regulated in neuroblastic 
cancers. The expression of Galanin and galanin recep-
tors are correlated with abnormal differentiation of neu-
roblastic tumors [34]. However, except for MAPT, the 
other 11 genes have not been reported to be associated 
with the prognosis of NBL. MAPT microarray values are 
associated with MNA. High level expression of MAPT 
can improve the survival of NBL, which is consistent 
with the apoptosis-effector and proliferation genes [35]. 
ADAM22, GAL, KLHL13, and TWLST1 are up-regu-
lated in ultra-high risk NBL, and they are overexpressed 
in patients with MNA [36]. Furthermore, GAL can be an 
independent prognosis factor for high-risk NBL. These 
twelve genes were closely associated with MNA. Some 
genes have been reported to be associated with cancer 
progression. So, further researchs are needed to explore 
the relationship between the 12 genes and MNA and 
their roles in NBL prognosis.

TMB can be used as a new immunotherapy biomarker. 
We analyzed the mutation profiles of NBL patients to 
explore the potential mechanisms. The C > A mutations 
accounted for the majority. The three commonly mutated 
genes were ALK (10%), MUC16 (8%), and FLG (4%). 
MUC16, encoding cancer antigen 125 (CA125), pro-
motes tumor proliferation and metastasis and can play 
an immunosuppressive role. ALK is the most common 
single-gene alteration in family NBL. Bresler et  al. [37] 
found that ALK amplification and MNA concomitantly 
occurred in almost all cases, and both of them indicated 
that NBL had a poor prognosis. TMB is associated with 
the overall survival of malignant tumors. By analyzing 
459 NBL patients, a higher somatic mutational burden 
is associated with lower survival in NBL [38]. Accord-
ing to the waterfall plot, there was no significant differ-
ence in TMB between the two groups, and there was no 

significant correlation between TMB and the risk score. 
However, the top 20 most common mutated genes were 
different. Overall, NBL patients have low mutational fre-
quencies. Therefore, larger data and specific researches 
are needed to analyze the relationship between TMB and 
the prognosis.

By GSEA functional enrichment analysis, the 12 
MYCN-related DEIRGs may be involved in the patho-
genesis of NBL. The high-risk group was closely associ-
ated with DNA replication, cell cycle, mismatch repair, 
ribosome, and spliceosome. In contrast, the low-risk 
group was correlated with complement and coagula-
tion cascades, PPAR signaling pathway, drug metabolism 
of xenobiotics by cytochrome P450, drug metabolism 
cytochrome P450, retinol metabolism. and cell cycle. 
DNA replication is a potential pathway for the ini-
tiation and treatment of NBL. Studies have shown that 
MYC proto-oncogene participates in DNA replication 
through transcriptional or nontranscriptional mecha-
nisms and can control the initiation of DNA replication 
[39]. Alterations of defects-related genes associated with 
DNA damage response (DDR) are frequently observed 
in the high-risk NBL [40]. MYCN is involved in regu-
lating gene expressions related to ribosomal biogenesis. 
MYC transcription factors induced ribosome hyperactiv-
ity is related to the poor prognosis of NBL [41]. By RNA 
sequencing analysis, the high level expression of spliceo-
some factors is associated with high-risk NBL [42]. PPAR 
agonists and target the retinol signaling pathway may be 
involved in the treatment of NBL [43]. Ethanol Induce 
Cytochrome P450 protects against MPP + induced NBL 
toxicity [44]. These studies have proved that these path-
ways can serve as potential therapeutic targets for NBL.

Growing evidence shows that the efficacy of immuno-
therapy is associated with TME. The dynamic balance 
of anti-tumor and pro-tumor immune cells lead to the 
malignant progression of tumors. The TIICs infiltration 
may affect immunotherapy. Several studies have analyzed 
the relationship between TIICs infiltration abundance 
and MNA [45]. Therefore, we explored the immune sig-
natures of NBL. We used ssGSEA, CIBERSORT, and 
immune checkpoint to analyze the TME. The TIICs 
infiltration showed no significant differences in the two 
risk groups. According to the survival curves, four TIICs 
infiltration abundance, including the B cells naïve, mac-
rophages M0, mast cells resting, and plasma cells were 
screened associated with NBL prognosis. The high abun-
dance of B cells naïve, plasma cells, and mast cells resting 
were tightly related to a poor prognosis. APC-co-inhibi-
tion, neutrophils, T-helper cells and type-II-IFN-reponse 
were suppressed in the high-risk group. Except for CCR, 
the other 13 showed a better prognosis in a more active 
of immune functions. Several kinds of studies are similar 
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to the conclusion of this study [46, 47]. However, some 
reports are different [48]. Therefore, we still require fur-
ther analysis to realize the relationship between immune 
functions and the prognosis, which may be helpful for 
immunotherapy. The high level expression of the immune 
checkpoint is related to immune cell infiltration and poor 
prognosis of children with solid tumors. Immunocheck-
point inhibitor is a novel method of immunotherapy. 
In this study, the immune checkpoint gene CD274 was 
negatively correlated with the risk score, and the level 
expression of CD274 was higher in the low-risk group. 
The conclusion is consistent with other studies [49]. The 
result suggests that the low-risk group has a better thera-
peutic effect on anti-PD-L1 therapy. Some reports have 
indicated that anti-PD-L1 immunotherapy can enhance 
the response of T-cell to control tumor progression [50]. 
According to the IMvigor210 cohort, we concluded that 
patients in the low-risk group had a higher CR/PR rate. 
Thus, this immune checkpoint can be considered as a 
predictive marker and a potential therapeutic target.

Conclusion
Our study has several limitations. First, although we 
used the GEO database for external verification, it is 
still a retrospective study, lacking long-term follow-up. 
Second, the role of these five genes in NBL progression 
and prognosis should be confirmed using in  vivo and 
vitro experiments. Therefore, we still need correspond-
ing clinical trials. In conclusion, we selected and ana-
lyzed DEIRGs between the two MYCN status and then 
constructed a well-performed five immune-related gene 
signature to predict the prognosis of NBL patients. A risk 
AUC indicated an excellent prediction result combined 
with the independent prognostic factor. GSEA indicated 
the potential pathways of NBL, which may help identify 
the underlying mechanisms. Furthermore, we explored 
the value of immune signatures and immune checkpoints 
in different risk score groups, which will help identify the 
prognostic indicator and immune treatment target. Col-
lectively, these results provide new treatment strategies 
for NBL patients.
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