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Abstract 

Background:  Among the most lethal cancers, pancreatic adenocarcinoma (PAAD) is an essential component of 
digestive system malignancies that still lacks effective diagnosis and treatment methods. As exosomes and compet-
ing endogenous RNA (ceRNA) regulatory networks in tumors go deeper, we expect to construct a ceRNA regulatory 
network derived from blood exosomes of PAAD patients by bioinformatics methods and develop a survival prediction 
model based on it.

Methods:  Blood exosome sequencing data of PAAD patients and normal controls were downloaded from the exoR-
base database, and the expression profiles of exosomal mRNA, lncRNA, and circRNA were differentially analyzed by R. 
The related mRNA, circRNA, lncRNA, and their corresponding miRNA prediction data were imported into Cytoscape 
software to visualize the ceRNA network. Then, we conducted GO and KEGG enrichment analysis of mRNA in the 
ceRNA network. Genes that express differently in pancreatic cancer tissues compared with normal tissues and associ-
ate with survival (P < 0.05) were determined as Hub genes by GEPIA. We identified optimal prognosis-related differen-
tially expressed mRNAs (DEmRNAs) and generated a risk score model by performing univariate and multivariate Cox 
regression analyses.

Results:  205 DEmRNAs, 118 differentially expressed lncRNAs (DElncRNAs), and 98 differentially expressed circRNAs 
(DEcircRNAs) were screened out. We constructed the ceRNA network, and a total of 26 mRNA nodes, 7 lncRNA nodes, 
6 circRNA nodes, and 16 miRNA nodes were identified. KEGG enrichment analysis showed that the DEmRNAs in the 
regulatory network were mainly enriched in Human papillomavirus infection, PI3K-Akt signaling pathway, Osteoclast 
differentiation, and ECM-receptor interaction. Next, six hub genes (S100A14, KRT8, KRT19, MAL2, MYO5B, PSCA) were 
determined through GEPIA. They all showed significantly increased expression in cancer tissues compared with con-
trol groups, and their high expression pointed to adverse survival. Two optimal prognostic-related DEmRNAs, MYO5B 
(HR = 1.41, P < 0.05) and PSCA (HR = 1.10, P < 0.05) were included to construct the survival prediction model.

Conclusion:  In this study, we successfully constructed a ceRNA regulatory network in blood exosomes from PAAD 
patients and developed a two-gene survival prediction model that provided new targets which shall aid in diagnos-
ing and treating PAAD.
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Introduction
Pancreatic adenocarcinoma (PAAD) is one of the most 
common malignant tumors in the digestive system. 
Given the latest cancer statistics in the US, the five-
year survival rate of PAAD is less than 10% and ranks 
fourth among cancer-related deaths [1]. 53% of PAAD 
patients were already metastatic at diagnosis approxi-
mately, while the five-year survival rate in this group 
was only 2.4% [2]. Early detection and treatment are 
the only chance for patients to obtain radical treatment. 
However, due to the lack of typical clinical manifesta-
tions and specific tumor markers, the early screening 
of PAAD is strict. Carbohydrate antigen 19-9 (CA19-9) 
is currently the only serum biomarker for clinical use 
in pancreatic cancer management (an FDA-approved 
disease surveillance marker). However, neither CA19-9 
sensitivity (mainly increased in advanced cancer) nor 
specificity (increased in non-PAAD and some benign 
diseases) is reliable in disease detection [3]. Therefore, 
it is of great significance to explore potential new tar-
gets for diagnosing and treating PAAD.

Non-coding RNAs, which include microRNAs (miR-
NAs) and long non-coding RNAs (lncRNAs), are 
involved in the regulatory processes of multiple biolog-
ical information [4]. Researchers have recently found 
that non-coding RNAs are essential in regulating physi-
ological function [5]. The ceRNA theory proposes that 
RNA could hold each other by competing for miRNA 
response elements [6]. Considerable studies have 
proved the role of the lncRNA-miRNA-mRNA regu-
latory network and that specific oncogenes have been 
identified in various cancers based on the ceRNA the-
ory [7]. Therefore, the hypothesis of ceRNA regulatory 
networks  and the research on the role of various ceR-
NAs in PAAD [8] could provide important clues and 
new research directions for the mechanism of tumor 
occurrence and development.

Exosomes are nano-sized (30–150  nm) extracellular 
vesicles released by a majority of distinctive types of cells 
and distributed in body fluid, such as cerebrospinal fluid, 
synovial fluid, saliva, cerebrospinal fluid, urine, breast 
milk, blood, and so on, carrying pathogenic miRNAs, 
lncRNAs, mRNAs, DNA fragments, and proteins [9, 10]. 
Exosomes transfer bioactive substances to receptor cells 
or activate signal transduction pathways in target cells 
to play the key function of intercellular communication, 
which has high clinical therapeutic and diagnostic value 
[11]. Research has validated that highly expressed exo-
somal CD44v6 and C1QBP are promising biomarkers to 

predict prognosis and liver metastasis in patients with 
PAAD [12]. However, ceRNA networks derived from 
exosomes have not been reported in PAAD.

This study aims to explore new targets for diagnosing 
and treating PAAD by constructing a survival predic-
tion model based on a blood exosome-derived ceRNA 
network.

Materials and methods
Data download and screening of differentially expressed 
mRNA, lncRNA, and circRNA
All methods were carried out following relevant guide-
lines. The exoRBase (http://​www.​exoRB​ase.​org) [13] is an 
online database encompassing mRNA, lncRNA, and cir-
cRNA extracted from RNA-seq investigations of human 
blood exosomes. First, we download the blood exosome 
sequencing data of PAAD patients and normal controls 
from exoRbase database 2.0 (http://​www.​exorb​ase.​org/) 
with the corresponding gene annotation files down-
loaded. The gene expression profile matrix was inte-
grated, and the gene annotation file was used to annotate 
the circRNA. The blood exosomes of PAAD patients 
were used as the experimental group (n = 164), and nor-
mal human blood exosomes as the control (n = 118). 
The differential expression profiles of mRNA, lncRNA 
and circRNA in exosomes were analyzed, respectively. 
The screening condition for differential expression was 
| log2FC |> 1, and the corrected screening condition was 
P-value < 0.01.

Prediction of interacting miRNA and construction of ceRNA 
network
Target Scan Human7.2 (https://​www.​targe​tscan.​org/​
vert_​72/) [14] and miRanda (http://​www.​micro​rna.​org/​
micro​rna/​home.​do) [15] were used to predict DEmR-
NAs-bound miRNAs. Next, we used miRcode (http://​
www.​mirco​de.​org/) [16] and ENCORI (http://​starb​ase.​
sysu.​edu.​cn/) [17]  to predict miRNAs binding to DEl-
ncRNAs while miRNAs that bind to DEcircRNAs were 
indicated by StarBase (http://​starb​ase.​sysu.​edu.​cn/) data-
base [18] and circbank (http://​www.​circb​ank.​cn/) [19]. 
Finally, we took the intersection of the miRNAs obtained 
from these three sets and imported the related mRNA, 
circRNA, lncRNA, and their corresponding miRNA pre-
diction data into Cytoscape (version 3.8.2) software to 
visualize the ceRNA network [20].

Functional enrichment analysis of differentially expressed 
mRNA
We used the GO annotation of the genes from the R soft-
ware package ‘org.Hs.eg.db’ (version 4.1.0) and the KEGG 
rest API (https://​www.​kegg.​jp/​kegg/​rest/​kegga​pi.​html) 
to acquire the latest KEGG Pathway gene annotation as 
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a background, and then mapped the genes to the back-
ground set for enrichment analysis using the R software 
package ‘clusterProfiler’ (version 4.1.0) to obtain the 
results of gene set enrichment. P value < 0.01 and false 
discovery rate (FDR) < 0.1 were considered statistically 
significant.

Expression and survival analysis of the Hub genes
The Gene Expression Profiling Interactive Analysis 
database (GEPIA;  http://​gepia.​cancer-​pku.​cn) [21] was 
used to compare the expression difference and over-
all survival  (OS) of genes in PAAD patients from the 
ceRNA network obtained before. Genes whose differen-
tial expression was evident and whose survival curve P 
value < 0.05 were determined as the Hub genes.

Construction and validation of the prognostic model
Robust prognostic genes were obtained using both uni-
variate and multivariable Cox regression based on the 
expression profiles and clinical information of 179 
patients in the TCGA-PAAD cohort. Based on the 
prognostic Hub gene expression and prognostic coef-
ficients, we calculated the risk score for each patient in 
the TCGA-PAAD cohort using the following formula: 
ExpGene1 * Coef1 + ExpGene2 * Coef2 + ExpGene3 * 
Coef3… The normalized expression value for each feature 
gene was Exp, and the regression coefficient for this gene 
in the multiple Cox regression analysis was Coef. After 
that, we classified the PAAD patients in the TCGA train-
ing set into the low-risk and high-risk groups according 
to the optimal cut-off value of risk score calculated by the 
R software package ‘maxstat’ (version 4.1.0). The Kaplan–
Meier analysis was used to examine overall patient sur-
vival in the low and high-risk categories. The ROC curves 
were used to assess the performance of the risk scoring 
model through the “survival ROC” R package (version 
4.1.0). In total, we validated 213 patients with the entire 

clinical features in the ICGC cohort to validate this risk 
model.

Statistical analysis
Perl (version strawberry-Perl-5.32.) programming lan-
guage is used to sort data, and R language (version 4.1.0) 
is used for data analysis and drawing. The measurement 
data are expressed as mean ± standard deviation, and the 
statistical test adopts a t-test or analysis of variance. P 
value < 0.05 was statistically significant.

Results
Data download and difference analysis
Sequencing data of the normal population (n = 118) 
and PAAD patients (n = 164) were downloaded from 
the exoRbase database. The mRNA expression profile, 
lncRNA expression profile, and circRNA expression pro-
file matrix were integrated. The differences in mRNA, 
lncRNA, and circRNA were analyzed by network ana-
lysts, and the DEmRNAs (n = 205), DElncRNAs (n = 118), 
and DEcircRNAs (n = 98) were screened. Volcano maps 
(Fig. 1a–c) revealed the differential expression.

Construction of miRNA‑related ceRNA regulatory network
We used Targetscan Human7.2 and miRanda data-
bases to predict the miRNA combined with DEmRNAs 
(n = 26), miRcode and ENCORI were used to predict the 
miRNA combined with DElncRNAs (n = 7), and Starbase 
and circbank database were used to indicate the miRNA 
combined with DEcircRNAs (n = 6). The ceRNA network 
was constructed by Cytoscape software, including 26 
mRNA nodes, 7 lncRNA nodes, 6 circRNA nodes, and 16 
miRNA nodes (Fig. 2).

GO and KEGG pathway enrichment analysis
After the DEmRNAs in the constructed ceRNA network 
was converted from gene symbol to Entrez ID, GO and 

Fig. 1  Volcano plots of differentially expressed profiles of exosomal RNAs between PAAD patients and normal controls. (a) mRNAs, (b) lncRNAs, (c) 
circRNAs. Red and green indicate up and downregulation, respectively

http://gepia.cancer-pku.cn
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KEGG enrichment analysis was performed on the differ-
ential gene sets by R. GO annotation enrichment analysis 
showed that DEmRNAs were mainly enriched in ana-
tomical structure formation involved in morphogenesis, 
connective tissue development, epithelial cell apoptotic 
process, positive regulation of endothelial cell apoptotic 
process, and cell differentiation involved in embryonic 

placenta development in biological processes (BP). Fibro-
blast growth factor binding, fibronectin binding, corecep-
tor activity, extracellular matrix binding, and fibrinogen 
binding were the most affected in molecular function 
(MF). The most abundant cell components (CC) were 
extracellular space, extracellular exosome, extracellular 
vesicle, dystrophin-associated glycoprotein complex, and 

Fig. 2  ceRNA network of differentially expressed genes. The red circle represents lncRNAs, the purple triangle represents mRNAs, the blue diamond 
represents circRNAs, and the green circle represents miRNAs

Fig. 3  Bubble Diagram of GO and KEGG enrichment analysis of differential mRNAs. (a) BP, CC, and MF of the top 5 GO enrichment. (b) Top 10 KEGG 
enrichment. The gradient of green to red represents a change of P values from low and high, and the sizes of the dots represent related mRNA 
numbers. BP biological processes; CC cell components; MF molecular function
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glycoprotein complex (Fig. 3a). KEGG enrichment analy-
sis showed that the DEmRNAs in the regulatory network 
were mainly enriched in Human papillomavirus infec-
tion, PI3K-Akt signaling pathway, Amphetamine addic-
tion, ECM-receptor interaction, Longevity regulating 
pathway, Aldosterone synthesis, and secretion, Choliner-
gic synapse, Osteoclast differentiation, Estrogen signaling 
pathway, and Phagosome (Fig. 3b).

Screening of the Hub genes
We analyzed genes from the previous ceRNA network in 
GEPIA. We determined the genes that express differently 
in pancreatic cancer tissues compared with normal tis-
sues and associate with survival (P < 0.05) as Hub genes, 
yielding a total of six Hub genes, including S100A14, 
KRT8, KRT19, MAL2, MYO5B, and PSCA (Fig. 4). These 
six genes were significantly highly expressed in pancre-
atic cancer tissues, and the high expression in pancreatic 
cancer patients was significantly associated with a poor 
prognosis.

Construction and validation of the prognostic models
We evaluated the prognostic value of the six Hub genes 
in the TCGA-PAAD cohort, assessed by both univari-
ate and multivariate Cox regression analysis. PSCA 
and MYO5B were identified as prognostic biomarkers 
(Fig.  5a, b). Based on the expression levels and coeffi-
cients of the PSCA and MYO5B, we calculated the risk 
score for each patient as follows: Risk score = (0.1431) 
* PSCA + (0.4294) * MYO5B. The PAAD patients in 
the TCGA were classified into high-risk and low-risk 
groups based on the above formula. The survival state 
diagram clearly shows the survival state of each patient, 
and the heat map revealed the gene expression values 
of the model genes in each sample by color distribution 
(Fig.  5c). The Kaplan–Meier analysis demonstrated that 
the high-risk group had a significantly poorer OS com-
pared with the low-risk group (hazard ratio [HR]: 3.26, 
95% confidence interval [CI]: 1.83–5.80,  P < 0.0001) 
(Fig.  5d). The area under the ROC curve (AUC) values 
showed that the risk score model performed well in pre-
dicting 1,3, and 5-year survival with AUC of 0.66, 0.77, 
and 0.74, respectively (Fig. 5e). In addition, we assessed 
the risk score model of 213 PAAD patients in the ICGC 

Fig. 4  Expression boxplot and Kaplan–Meier survival curves of the DEmRNAs that are significantly associated with OS in PAAD patients. (a–b) 
S100A14, (c–d) KRT8, (e–f) KRT19, (g–h) MAL2, (i–j) MYO5B, (k–l) PSCA. *P < 0.05

Fig. 5  Construction and validation of the prognostic models by TCGA-PAAD dataset and ICGC dataset, respectively. (a–b) Univariate and 
Multivariate Cox regression analysis of six Hub genes with OS. (c) Risk score distribution and heatmap of the two genes in the model based on the 
TCGA-PAAD dataset. (d) Kaplan–Meier curve for the two-gene model based on the TCGA-PAAD dataset. (e) Time-dependent ROC analysis of the 
two-gene model for 1-, 3- and 5-year OS based on the TCGA-PAAD dataset. (f) Risk score distribution and heatmap of the two genes in the model 
based on the ICGC dataset. (g) Kaplan–Meier curve for the two-gene model based on the ICGC dataset. (h) Time-dependent ROC analysis of the 
two-gene model for 1-, 3- and 5-year OS based on the ICGC dataset

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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verification set and detected similar results (Fig.  5f–h). 
The overall survival time of the high-risk group was sig-
nificantly lower than that of the low-risk group. The 
time-dependent ROC analysis showed that the AUC of 
the risk score model was 0.53 at 1-year, 0.54 at 3-years, 
and 0.54 at 5-years, indicating that it is reliable for pre-
dicting the survival of patients with PAAD. Although 
we did not include S100A14, KRT8, KRT19, and MAL2 
in the prognostic model, the ROC curve showed that 
they also have predictive value for the survival of PAAD 
patients (Fig. 6a–d).

Discussion
PAAD is one of the most common malignant tumors of 
the digestive tract. It has rapid progression, a low early 
detection rate, a poor prognosis, and an inferior survival 
rate [22, 23]. Early diagnosis and screening of PAAD is 
the best way to reduce its mortality rate and improve its 
prognosis, so early diagnosis of PAAD is a top priority.

With the understanding of exosomes going deeper, 
their roles in tumors achieve increasing interest [24, 25]. 
Reports showed that exosomes participate in the whole 
process of tumor development and development, mainly 
including the formation of the tumor microenviron-
ment, tumor growth and metastasis, and the induction 
of the immune response [26]. Tumor cells can secrete 
more exosomes compared to normal cells, and exosomes 
provide a powerful diagnostic tool because their rela-
tive stability and composition cover all cancer-related 
biomarkers, including proteins, metabolites, DNA, 
DNA modifications, coding, and non-coding RNA, thus 
directly obtaining basic information about tumor cells 
[27, 28]. Our investigation constructed a ceRNA regula-
tory network in blood exosomes from PAAD patients and 
developed a two-gene survival prediction model, which 
shall be prospective biomarkers and therapeutic targets 
of PAAD. With the development of public databases, 

there are increasing methods for us to find effective bio-
markers in various cancers [29]. This study utilized a 
complete exosome analysis via the exoRBase database on 
PAAD and normal blood samples; 205 DEmRNAs, 118 
DElncRNAs, and 98 DEcircRNAs. Next, the ceRNA net-
work was constructed by Cytoscape software, and a total 
of 26 mRNA nodes, 7 lncRNA nodes, 6 circRNA nodes, 
and 16 miRNA nodes were identified. Among them, 
TPT1-AS1 acts as an endogenous sponge of miR-30a-5p, 
increasing the levels of integrin β 3 (ITGB3) in pancreatic 
cancer cells [30]. Overexpression of miR-29a resulted in 
a significant decrease in the CEACAM6 protein levels, 
thereby inhibiting the migration and invasion of pancre-
atic cancer cells [31]. This ceRNA network narrowed the 
scope of research on potential candidate biomarkers for 
prognosis and treatment in PAAD.

The possible relevant functions of DEmRNAs in the 
ceRNA network were then investigated. In light of the 
KEGG analysis results, the DEmRNAs were abundant 
primarily in the Human papillomavirus infection, PI3K-
Akt signaling pathway, Osteoclast differentiation, and 
ECM-receptor interaction. Among these pathways, the 
PI3K-Akt signaling pathway is widely involved in the 
development and development of pancreatic cancer [32, 
33]. It is demonstrated that HOXA10-AS/miR-340-3p/
HTR1D ceRNA axis promotes the adverse outcome of 
pancreatic cancer through the PI3K-AKT signaling path-
way [34]. In addition, exosomes from pancreatic cancer 
cells have also been proven to induce osteoclast differ-
entiation via the miR125a-5p/TNFRSF1B pathway [35]. 
Our findings on Human papillomavirus infection and 
ECM-receptor interaction are consistent with previous 
pancreatic cancer studies [36, 37].

Next, we screened the mRNAs in the ceRNA network 
by GEPIA to identify the genes highly expressed in pan-
creatic cancer tissues and associated with prognosis as 
Hub genes. S100A14, KRT8, KRT19, MAL2, MYO5B, 

Fig. 6  The time-dependent ROC analysis of the other four genes in univariate Cox regression analysis. (a) Time-dependent ROC analysis of KRT8 
for 1-, 3- and 5-year OS. (b) Time-dependent ROC analysis of KRT19 for 1-, 3- and 5-year OS. (c) Time-dependent ROC analysis of MAL2 for 1-, 3- and 
5-year OS. (d) Time-dependent ROC analysis of S100A14 for 1-, 3- and 5-year OS
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and PSCA were determined as hub genes. S100A14 was 
significantly highly expressed in pancreatic cancer cells 
and tissues and promoted progression in pancreatic 
cancer [38]. KRT8 is composed of the main intermedi-
ate filament proteins expressed in single-layered epi-
thelial cells of the gastrointestinal tract [39]. In gastric 
cancer, high KRT8 expression is illustrated to promote 
tumor progression and metastasis [40, 41]. Pistoni   
et  al. [42] also discovered overexpression of KRT8 in 
pancreatic cancer and its association with a high risk of 
developing pancreatic ductal adenocarcinoma. Accord-
ing to studies, KRT19 expression engages adverse 
tumor differentiation and aggressive behavior in hepa-
tocellular carcinoma [43]. KRT19 is also proven to par-
ticipate in immune evasion and is associated with poor 
prognosis in pancreatic cancer [44, 45]. Accumulating 
investigations pointed out that high MAL2 expression 
prompted pancreatic cancer progression and predicted 
adverse survival in patients with pancreatic cancer [46–
48]. Notably, MYO5B was also up-regulated in pancre-
atic cancer and associated with poor prognosis [49]. 
PSCA is expressed in multiple cancers, and 60–80% of 
pancreatic tumors are documented to express PSCA in 
prior investigations [50]. Preclinical studies have dem-
onstrated that targeting PSCA shall be a successful 
anti-tumor therapy for pancreatic cancer [50–53]. To 
screen genes showing a more significant advantage in 
pancreatic cancer prognosis, we then selected MYO5B 
and PSCA to establish a prognostic prediction model 
by univariate and multivariate cox regression analysis. 
Eventually, the risk-scoring model was also evaluated 
in the ICGC test verification set to ensure the accuracy 
and reliability of the prognostic prediction model, and 
similar results were detected. Collectively, the predic-
tion model constructed above showed a significant 
advantage in pancreatic cancer and can be prognostic 
biomarkers and treatment targets.

There are still limitations in this study. First, the sam-
ple size is insufficient, and a validation set is required 
in the future. Second, the mechanisms by which the 
ceRNA network and Hub genes participate in the 
development of PAAD are unknown. In the future, fur-
ther studies in cellular and animal experiments will be 
needed.

This study is the first to explore the differences in 
lncRNA, miRNA, and mRNA expression profiles to 
construct a ceRNA network in PAAD blood exosomes. 
Moreover, we developed and validated a survival pre-
diction model based on this ceRNA network, which 
shall provide a potential target for the follow-up study 
of PAAD and even provide a potential biological marker 
for diagnosing and treating PAAD.
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