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Abstract 

Background:  Oral squamous cell carcinoma (OSCC) accounts for a frequently-occurring head and neck cancer, 
which is characterized by high rates of morbidity and mortality. Metabolism-related genes (MRGs) show close associa-
tion with OSCC development, metastasis and progression, so we constructed an MRGs-based OSCC prognosis model 
for evaluating OSCC prognostic outcome.

Methods:  This work obtained gene expression profile as well as the relevant clinical information from the The Cancer 
Genome Atlas (TCGA) database, determined the MRGs related to OSCC by difference analysis, screened the prognosis-
related MRGs by performing univariate Cox analysis, and used such identified MRGs for constructing the OSCC prog-
nosis prediction model through Lasso-Cox regression. Besides, we validated the model with the GSE41613 dataset 
based on Gene Expression Omnibus (GEO) database.

Results:  The present work screened 317 differentially expressed MRGs from the database, identified 12 OSCC 
prognostic MRGs through univariate Cox regression, and then established a clinical prognostic model composed of 
11 MRGs by Lasso-Cox analysis. Based on the optimal risk score threshold, cases were classified as low- or high-risk 
group. As suggested by Kaplan–Meier (KM) analysis, survival rate was obviously different between the two groups 
in the TCGA training set (P < 0.001). According to subsequent univariate and multivariate Cox regression, risk score 
served as the factor to predict prognosis relative to additional clinical features (P < 0.001). Besides, area under ROC 
curve (AUC) values for patient survival at 1, 3 and 5 years were determined as 0.63, 0.70, and 0.76, separately, indi-
cating that the prognostic model has good predictive accuracy. Then, we validated this clinical prognostic model 
using GSE41613. To enhance our model prediction accuracy, age, gender, risk score together with TNM stage were 
incorporated in a nomogram. As indicated by results of ROC curve and calibration curve analyses, the as-constructed 
nomogram had enhanced prediction accuracy compared with clinicopathological features alone, besides, combining 
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clinicopathological characteristics with risk score contributed to predicting patient prognosis and guiding clinical 
decision-making.

Conclusion:  In this study, 11 MRGs prognostic models based on TCGA database showed superior predictive perfor-
mance and had a certain clinical application prospect in guiding individualized.

Keywords:  Metabolic studies, Oral squamous cell carcinoma, Prognosis, Nomogram, Bioinformatics

Background
Oral cancer (OC) accounts for the head and neck can-
cer that mainly originates from the cheek, tongue, 
lip and palate. There are more than 300,000 new oral 
cancer cases and more than 145,000 related deaths 
annually [1]. Oral squamous cell carcinoma (OSCC) 
occupies ninety percent of OC patients. The traditional 
treatment of OSCC is mainly surgical resection of the 
tumor, preoperative or postoperative chemotherapy, 
radiotherapy and adjuvant therapy [2]. As researchers 
continue to study this disease, the treatment options 
for these patients continue to improve. Image-based 
and adaptive radiotherapy, transoral robotic resec-
tion and immunotherapy are gradually being utilized 
to treat OSCC [3–5]. Unfortunately, most patients are 
diagnosed at a late stage, the local recurrence rate is 
high, and metastasis often occurs, making the 5-year 
survival rate much lower than that of other malignant 
tumors. In fact, during the previous 30 years, the sur-
vival rate of oral squamous cell carcinoma patients 
has been consistently less than 50% [6, 7]. More accu-
rate prediction of the prognosis of OSCC patients will 
allow doctors to better choose appropriate treatment 
strategies and improve the survival rate of patients [8]. 
Currently, the tumor, node, metastasis (TNM) classifi-
cation system has been mainly used to predict tumor 
prognosis and provide clinical guidance in choosing 
appropriate treatment methods. However, the OSCC-
related TNM system mainly focuses on the anatomi-
cal extent of the disease and ignores factors related to 
tumor prognosis, such as age, gender, and the presence 
of other diseases. Thus, patients who have the same 
TNM stage can have very different survival outcomes; 
in other words, the use of the TNM staging alone for 
the prediction of patient survival is insufficient [9]. 
The eighth American Joint Commission on Cancer 
(AJCC) staging system emphasizes the need for a "per-
sonalized" treatment approach for cancer patients [10]. 
In addition, inaccurate prognostic information can 
affect treatment decisions and subsequent outcomes. 
For example, high-risk cases are possibly associated 
with cancer migration and metastasis due to insuf-
ficient or delayed treatment, and low-risk patients 
may experience a loss of bone marrow function and 
organ function because of excessive treatment; both 

situations have substantial effect on patient treatment 
or recovery [11]. Consequently, it is urgently needed 
to construct the creditable prognostic approaches that 
can assist clinicians in selecting the suitable individu-
alized therapeutic strategies, thus improving OSCC 
prognosis.

Changes in metabolic processes are closely related 
to tumor growth [12–15]. During the process of rapid 
growth and proliferation of tumor cells, the metabolic 
pathways of the body are in constant flux. In other words, 
during the process of tumorigenesis, progression and 
metastasis, tumor cells reprogram catabolic and anabolic 
pathways to satisfy the energy metabolism and biosyn-
thesis of cells by enhancing macromolecular biosynthesis, 
regulating the redox balance and allowing for the rapid 
production of ATP [16, 17]. In the 1920s, Otto Warburg 
discovered that under both aerobic and anaerobic condi-
tions, the ATP produced by tumor cells tends to undergo 
glycolysis rather than oxidative phosphorylation, which 
offers more energy for the rapid proliferation of tumor 
cells; this has been termed the “Warburg effect” [18]. 
In addition, the metabolic processes involved in tumor 
metabolic reprogramming include the pentose phosphate 
pathway, lipid metabolism, and nucleic acid and amino 
acid metabolism [19]. During tumorigenesis, progres-
sion and metastasis, changes in MRGs determine the 
changes in metabolic pathways [20]. For example, some 
studies have shown that PER1 and PER2 are significantly 
downregulated in OSCC and that their overexpression 
can inhibit glycolysis and tumor cell proliferation, thus 
inhibiting tumor growth [21, 22]. In contrast to PER1 
and PER2, the expression of SHMT2 in OSCC was found 
to be significantly upregulated, which predicts the dis-
mal OSCC survival [23]. In addition, the upregulation 
of PFKP in OSCC is related to the pathological differen-
tiation of tumors as well as lymph node metastasis [24]. 
According to the obtained results, metabolism-related 
genes (MRGs) are a prognostic marker and therapeutic 
target for OSCC.

As bioinformatics analysis is increasingly used for diag-
nosing and predicting cancer prognostic outcome, some 
researchers have connected metabolome with genome 
[25]. To date, many studies have used MRGs to construct 
clinical prognostic models of malignant tumors like gas-
tric cancer, cervical cancer, liver cancer and renal clear 
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cell carcinoma, and these studies have achieved good 
predictive results [26–28]. However, the development of 
clinical prognostic models for OSCC based on MRGs has 
been barely explored and are not comprehensive [29]. In 
this study, clinical data and gene levels for OSCC cases 
were acquired in The Cancer Genome Atlas (TCGA). 
This TCGA-OSCC cohort was then used as the train-
ing set to screen the differentially expressed MRGs that 
were closely related to OSCC by difference analysis. The 
MRGs found to be significantly related to prognosis 
were screened by univariate Cox analysis, and the clini-
cal prognosis model of OSCC based on 11 MRGs was 
constructed by Lasso-Cox analysis. Finally, risk score 
was calculated and identified as the factor that indepen-
dently predicted OSCC prognosis upon univariate as well 
as multivariate Cox regression. In addition, we further 
validated the dataset obtained using the Gene Expression 
Omnibus (GEO) database as the validation set. This study 
describes a new approach to predict overall survival (OS) 
of OSCC cases, which could help direct the individual-
ized treatment of OSCC patients.

Materials and methods
Data downloading and processing
This work obtained clinical data together with the FPKM-
normalized gene profiles for 340 cancers along with 32 
non-carcinoma samples in TCGA database OSCC cohort 
(https://​portal.​gdc.​cancer.​gov/). Apart from that, this 
work also obtained the GSE41613 dataset, which includes 
97 OSCC samples, in GEO database (https://​www.​ncbi.​
nlm.​nih.​gov/​geo/). According to annotation patterns 
obtained by relevant platform, this work transformed the 
gene matrix file of probe identification as gene symbols. 
In addition, samples collected in cases with a < 90-day fol-
low-up period from TCGA-OSCC cohort and GSE41613 
were excluded, and the survival time was changed from 
years/months to days. The TCGA-OSCC cohort was 
enrolled into training cohort, while the GSE41613 data-
set into external validation cohort. This work acquired 
a total of 851 MRGs (c2.cp.kegg.v7.4.symbols.gmt) in 
GSEA (http://​www.​gsea-​msigdb.​org/​gsea/​index.​jsp).

Screening differentially expressed genes (DEGs)
After genes from training cohort were intersected with 
those from metabolic gene cohort, the MRGs in the 
TCGA gene expression profile were extracted. This work 
employed R software (Version 4.1.2) limma R package 
for screening metabolic DEGs within cancer compared 
with non-carcinoma samples upon |log2FC|> 0.5 and 
FDR < 0.05 thresholds. Then, we used the glmnet R pack-
age to integrate survival status, survival time, as well as 
DEGs expression profiles.

Construction of the MRGs‑based prognostic signature
By univariate Cox regression, this work calculated hazard 
ratios (HRs) as well as relevant 95% confidence intervals 
(CIs) and obtained 12 genes related to overall survival. 
Next, we selected the most appropriate lambda value 
to obtain the optimal model through lasso analysis, and 
screened the above 12 genes into 11 MRGs. Meanwhile, 
the present study calculated risk score by the gene cor-
relation coefficient obtained by Lasso-Cox analysis. 
Survminer R and survival R packages were utilized to 
conduct Kaplan–Meier (KM) analysis, and the cutoff 
value of continuous variables in survival data was meas-
ured through survminer R package surv_cutpoint func-
tion. In addition, pROC package roc function was also 
adopted for analyzing 1, 3 and 5  years receiver operat-
ing characteristic (ROC) curves, separately, whereas area 
under the curve (AUC) values and CIs were adopted for 
calculating pROC package ci function for obtaining the 
final AUC results and determining risk score’s sensitivity 
and accuracy in the prediction of OSCC prognosis at 1, 
3 and 5 years. Then, this work carried out univariate as 
well as multivariate Cox analysis for comparing the asso-
ciation of risk score with additional clinicopathological 
factors in prognosis prediction for training set (includ-
ing age, gender, stage, grade, T stage and N stage). Finally, 
association of risk score based on MRGs with clinical fac-
tors was analyzed for better confirming that our progno-
sis model was accurate. M stage was excluded because of 
the lack of data.

Taking GSE41613 as the verification set, this work 
determined risk score by the calculation formula used 
for training cohort. All cases were classified as low- and 
high-risk groups based on optimal threshold. ROC sur-
vival analysis was carried out on the verification set.

Construction and verification of nomogram
According to age, gender, risk score and TNM stage, R 
software rms package was adopted to integrate the data 
of seven characteristics, such as survival status or survival 
time. This work then predicted 1, 3 and 5 year survival for 
OSCC cases by adding the total scores of the points of 
each factor into that as-constructed nomogram. The high 
score indicates the low survival probability. Thereafter, 
we evaluated the nomogram performance in prognosis 
prediction by ROC curves and calibration curves.

Enrichment analysis
With the purpose of understanding the gene function in 
the model, R software was employed to conduct enrich-
ment analysis by adopting Gene Ontology (GO) along 
with Kyoto Gene and Genomic Encyclopedia (KEGG) 
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databases to obtain the gene set enrichment results. 
Then, we used GSEA (Version 4.1.0) software for the 
analysis. P < 0.05 was defined as a significantly enriched 
pathway to explore the differences in the low-risk and 
high-risk groups in the training set.

Immune cell infiltration
Single-sample gene set enrichment analysis (ssGSEA) 
was used to calculate the relative ratio of infiltrating 
immune cells.

Single‑cell sequencing and cell type identification
ScRNA-Seq data from the GSE172577 was obtained from 
the GEO database. Seurat package is used to process the 
expression matrix of. Cells that meet the following condi-
tions (> 15,000 UMI/cell, < 6000 genes/cell, > 6000 genes/
cell and > 20% mitochondrial genes) were considered 
low-quality cells and were removed. DoubletFinder pack-
age was used to identify and remove potential doublets. 
We use principal component analysis (PCA) to reduce 
the dimensionality of the scRNA-Seq dataset. Top 30 
principal components (PCs) were used for UMAP. The 
main cell clusters were identified with the FindClusters 
function offered by Seurat.

Statistical analysis
R software (Version 4.1.2) was employed for performing sta-
tistical analysis. KM curve analysis and log-rank test were 
performed for analyzing different survival rates between 
both groups. p-value was determined according to two-sided 
statistical tests. Except for the statistical standards specified, 
all statistically significant results needed to satisfy P < 0.05.

Results
Identification of differentially expressed MRGs
In this study, the training set included 319 patients diag-
nosed with OSCC, and the GSE41613 validation set 
included 94 patients diagnosed with OSCC. This work 
enrolled altogether 413 OSCC cases in both datasets. 
In the Limma software package, 317 MRGs heatmaps 
(Fig. 1a) and volcano maps (Fig. 1b) were screened by dif-
ference analysis, including 175 up-regulated genes and 
142 down-regulated genes.

Construction and verification of the MRGs‑based 
prognostic signature
The expression of each index within training cohort 
was examined through univariate Cox regression, as 
shown in Fig.  2a: Twelve differentially expressed MRGs 
related to prognosis were detected as potential prognos-
tic molecular markers. Red is used to depict the genes 
that are positively correlated with a poor prognosis, and 
the results indicate that all 12 prognosis-related genes 
screened are risk genes (HR > 1). Eleven prognostic gene 
models were established by Lasso-Cox analysis, which 
included SHMT2, HPRT1, POLD2, HADHB, POLE3, 
ADK, GOT1, ATIC, MGST1, ADA and GNPDA1 (Fig. 2b 
and c). Table 1 lists the correlation coefficients of diverse 
genes. Risk scores were determined by using the correla-
tion coefficient of the gene, as follows: (0.004 * expression 
of SHMT2 + 0.003 * expression level of HPRT1 + 0.002 
* expression level of POLD2 + 0.016 * expression level 
of HADHB + 0.002 * expression level of POLE3 + 0.002 
* expression level of ADK + 0.001 * expression level 
of GOT1 + 0.006 * expression level of ATIC + 0.006 * 
expression level of MGST1 + 0.014 * expression level of 

Fig. 1  A total of 175 upregulated and 142 downregulated metabolic genes were identified in the tumor dataset compared to the normal dataset, 
using | log2FC |> 0.5, FDR < 0.05 as the screening criteria. A Heatmap. B Volcano plot
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ADA + 0.039 * expression level of GNPDA1). For train-
ing cohort, its risk scores were 0.566–2.989, then cases 
were classified as low-risk (n = 160) or high-risk (n = 159) 
group based on the optimal threshold. KM curve analysis 
in Fig.  3a was conducted for analyzing survival of low- 
and high-risk patients. As a result, high-risk patients had 
markedly decreased survival in comparison with low-risk 
patients (P < 0.0001). With regard to risk score, expres-
sion pattern and survival status distributions (Fig.  3b), 
from left to right, the risk scores of the patients were 
sorted from the lowest to the highest, and the dots rep-
resent the OSCC patients. Meanwhile, in heatmap, the 

green-to-red color stands for low-to-high expression 
level. Based on the above results, the 11 MRGs showed 
increased levels with risk score, while OSCC survival 
declined. As revealed by ROC curves at 1, 3 and 5 years 
(Fig. 3c), the AUC values of training cohorts were deter-
mined to be 0.63, 0.70, and 0.76, separately, which indi-
cated that our as-constructed 11 MRGs-based model 
served as the favorable prognostic tool with good predic-
tive accuracy and sensitivity. We also constructed a ROC 
curve (Fig. 3d) involving clinical risk factors like age and 
gender as well as the risk score. The results showed that 
compared with age (AUC = 0.575), gender (AUC = 0.563), 

Fig. 2  Construction a prognostic signature using univariate Cox regression analysis and Lasso-Cox regression analysis. A Risk ratio forest plot shows 
the prognostic value of 12 candidate genes screened out by univariate Cox regression. B Lasso coefficient spectrum of eleven MRGs. C On account 
of 1000 cross-validation for tuning parameter selection via Lasso
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stage (AUC = 0.556), grade (AUC = 0.557), T stage 
(AUC = 0.559) and N stage (AUC = 0.567), the risk score 
had a larger AUC (AUC = 0.670), suggesting that the risk 
score based on MRGs could have a certain role in pre-
dicting prognosis.

Samples that had insufficient clinical data and the 
M stage, and those also had a large amount of miss-
ing data (n = 168) were excluded, the clinical informa-
tion, pathological features and risk scores were analyzed 
through univariate as well as multivariate Cox regres-
sion. As revealed by univariate Cox regression (Fig. 4a), 
risk score showed significant relation to patient progno-
sis (HR = 5.125, 95% CI 3.162–8.392, P < 0.001). Besides, 

clinicopathological characteristics like age, grade and 
stage were adjusted, as a result, risk score remained the 
factor independently predicting OSCC upon multivariate 
Cox regression (Fig.  4b) (P < 0.001). Clinical correlation 
analysis further compared the relation of risk score with 
clinicopathological features like age, gender, stage, and 
grade. Figure 4c shows that the risk scores based on gen-
der, stage and grade in the training set were statistically 
significant; the risk score of stage III-IV was obviously 
higher than that of stage I-II (P < 0.05), that of G3-G4 
markedly increased compared with G1-G2 (P < 0.05), 
while that of male patients remarkably increased relative 
to female patients (P < 0.05). Therefore, the MRGs-based 

Fig. 3  KM survival analysis, risk score assessment by the MRGs risk signature and time- dependent ROC curve in the training set. A KM survival 
analysis of high- and low- risk samples in the training set. Patients in high‐risk group had a shorter OS compared to those in low‐ risk group. B Risk 
scores, survival status distribution, and heat map for prognosis-associated metabolic genes of patients with OSCC in the training set. C ROC curve 
analysis results show the accuracy and reliability of the prognostic signature in determining the 1, 3 and 5 years survival outcomes (AUC values are 
shown in parentheses). D ROC curves of the prognostic signature and clinical risk factors for 1 year survival
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risk score was tightly associated with clinical features, 
especially staging, grading and gender.

For verifying that our as-constructed model was accu-
rate in predicting OSCC prognosis, we used GSE41613 
to verify prognosis model. Cases from verification 
cohorts were classified as low- (n = 37) or high-risk 
(n = 57) group based on optimal threshold, by adopting 
identical formula to that in training cohort to calculate 
risk score. As suggested by the survival curve (Fig.  5a), 
high-risk cases had decreased survival compared with 
low-risk cases (P < 0.001). Figure  5b presents risk score, 
survival time and survival status distributions between 
both groups. As a result, the same trend as the training 
set was observed; that is, an increased risk score pre-
dicted the lower survival rate, and the more frequently 
the patients expressed risk genes. For ROC curves at 1, 3 
and 5 years (Fig. 5c), their AUC values were determined 
to be 0.78, 0.70, and 0.68, separately, while that for ROC 
curve of risk score (Fig. 5d) was 0.777, indicating that our 
model better predicted OSCC prognosis than that based 
on clinical factors alone. Upon univariate as well as mul-
tivariate Cox regression (Fig.  6a and b), risk score was 
significantly correlated with prognosis. The above results 
are basically consistent with the verification set, which 
more full (P < 0.001) proves that our model was accurate 
in prediction.

Construction and verification of nomogram
Based on the above predictors, we constructed a nomo-
gram (Fig. 7). The calibration curves at 1, 3 and 5 years 
(Fig.  8a–c) approached 45°, which proves that the 
nomogram is accurate in predicting OSCC survival 
at 1, 3 and 5  years ROC curve analysis (Fig.  8d–f) was 
used to test the accuracy of the nomogram score, risk 
score, and clinical and pathological features at 1, 3 and 
5  years. The results showed that relative to additional 
factors, like age, risk score, T, N stage and grade, the 

nomogram had higher accuracy in predicting progno-
sis at 1  year (AUC = 0.710), 3  years (AUC = 0.741) and 
5 years(AUC = 0.753). According to the above results, our 
constructed nomogram well predicted OSCC survival.

Enrichment analysis
The function of 11 MRGs in OSCC biology was explored 
by GO as well as KEGG analysis. According to GO analy-
sis results (Fig. 9a), those MRGs were mainly linked with 
purine ribonucleoside monophosphate metabolic pro-
cess, purine nucleoside monophosphate metabolic pro-
cess, nucleoside metabolic process, glycosyl compound 
metabolic process and so on. Upon KEGG analysis 
(Fig.  9b), MRGs were mostly associated with metabolic 
pathways, purine metabolism, drug metabolism-other 
enzymes, carbon metabolism, phenylalanine metabo-
lism and so on. Next, we used GSEA software (Fig.  9c) 
to select five pathways markedly associated with high-
risk patients, such as "β-Alanine metabolism", "cysteine 
and methionine metabolism", "purine metabolism", and 
"pyrimidine metabolism". The low-risk group showed 
α-linolenic acid metabolic enrichment. The above results 
illustrate the significantly different biological processes in 
low- versus high-risk patients.

Association between risk signature and immune cell
As shown in Fig. 10, dendritic cells (DC), immature den-
dritic Cells (iDC), mast cells, and T helper cell 17 (Th17) 
were more enriched in low-risk group (P < 0.05). T helper 
cell 2 (Th 2) were more enriched in high-risk group 
(P < 0.05). DC are the most potent antigen precursor cells 
in the immune system. DC-mediated cross-initiation of 
tumor-specific T cells plays a crucial role in initiating 
and maintaining anti-tumor immunity. Their presence in 
tumors tends to induce t-cell responses that slow cancer 
progression and is associated with improved patient sur-
vival [30]. Mast cells also play a multifaceted role in the 
tumor microenvironment by regulating multiple tumor 
biological events such as cell proliferation and survival, 
angiogenesis, invasion and metastasis [31]. These find-
ings suggest that immune function is more active in 
low-risk group. Low-risk patients tend to have a better 
prognosis.

A single‑cell transcriptome atlas in OSCC
31,719 single cells were clustered into seven major cell 
types through marker genes: epithelial cells (marked with 
EpCAM, KRT18 and KRT8); T cells (marked with CD2, 
CD3G, CD3D and CD3E); myeloid cell (marked with 
LYZ, MS4A6, PECAM1, ENG); fibroblasts (marked with 
COL6A1, DCN, COL3A1, COL1A1 and COL1A2); endo-
theliocyte cell (marked with PECAM1, ENG and VWF); 

Table 1  Prognostic associated metabolic genes

HR HR.95L HR.95H P value Coef

SHMT2 1.026 1.011 1.041 0.001 0.004

HPRT1 1.022 1.008 1.036 0.002 0.003

POLD2 1.014 1.003 1.024 0.009 0.002

HADHB 1.031 1.015 1.048 0.000 0.016

POLE3 1.019 1.009 1.029 0.000 0.002

ADK 1.035 1.011 1.059 0.004 0.002

GOT1 1.028 1.010 1.046 0.002 0.001

ATIC 1.037 1.012 1.062 0.004 0.006

MGST1 1.036 1.012 1.060 0.003 0.006

ADA 1.034 1.017 1.052 0.000 0.014

GNPDA1 1.116 1.058 1.177 0.000 0.039
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B cell (marked with MS4A1, CD79A and CD79B); mast 
cell (marked with CPA3, KIT and TPSAB1) (Fig. 11a and 
c). Then, we explored the expression of prognosis-related 
MRGs in various cells of OSCC (Fig. 11b). We found that 
five genes are basically expressed in epithelial cells. In other 
words, as epithelial-derived tumors, the abnormal meta-
bolic patterns in OSCC tumor tissues may be limited to 
tumor cells. The other six MRGs that make up the prognos-
tic model are not expressed in tumor microenvironment 
and tumor cells. The reason may be that single cell RNA-
seq data usually contain many missing values caused by 
the failure of original RNA amplification. The proportion 

of each cell lineage varies greatly among different samples 
(Fig. 11d).

Disscussion
Oral squamous cell carcinoma originates from oral 
keratinocytes. It has an insidious onset, making diag-
nosis difficult, and exhibits rapid development. Due 
to these characteristics, it is often not detected at an 
early stage; and the diagnosis of OSCC is usually made 
at the advanced stage, and the diagnosed patients usu-
ally develop distant metastasis upon diagnosis [32, 33]. 
Thus, accurate prognostic prediction is highly valuable, 

Fig. 4  Univariate and multivariate Cox regression analysis of MRGs and clinical significance of the prognostic signature in OSCC patients of training 
set. A univariate Cox regression analysis. B multivariate Cox regression analysis. C Distribution of the risk score in different clinicopathological 
features in training set
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as it can aid in selecting the most suitable treatment for 
patients with OSCC, thereby improving their survival 
[34]. Therefore, it is significant to identify prognosis-
related molecular markers comprehensively reflecting 
tumor biological features, so as to prevent and treat 
OSCC. With the development of bioinformatics, sev-
eral large cancer databases, such as TCGA and GEO, 
have provided researchers access to large-scale gene 
expression data and corresponding clinical information 
[35]. Therefore, scholars can explore and develop new, 

more accurate prognostic models from the perspective 
of tumor cell biological behavior to optimize the treat-
ment strategy of OSCC. An OSCC prognostic model 
constructed by using ferroptosis- and autophagy-
related genes has been established to investigate the 
ability in predicting OSCC prognosis and the possibil-
ity of targeted treatment [36–38]. Many articles suggest 
the involvement of metabolism in OSCC genesis and 
progression, but little research regarding MRGs’effect 
on prognosis prediction of OSCC is available [39–41].

Fig. 5  The prognostic signature comprising eleven metabolic genes was verified in the testing set. A KM survival curves indicating the overall 
survival rates of high- and low-risk groups. B The ranked dot plot illustrating the predictor‐score distribution, a scatter plot presenting the patients’ 
overall survival status, a heatmap showing the expression profile of the eleven signature genes of OSCC patients. C–D ROC curve validation of 
prognostic value of the prognostic index
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Fig. 6  Univariate and multivariate Cox regression analysis of MRGs and clinical indicators based on GEO dataset (GSE41613). A Univariate Cox 
regression analysis. B Multivariate Cox regression analysis

Fig. 7  Nomogram for predicting the survival of patients with OSCC. Clinical features (T, grade, and age) and risk score were analyzed to assess the 
survival time at 1-, 3-, and 5-years for OSCC patients
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To analyze MRGs associated with OSCC survival, this 
work selected 12 prognostic MRGs from TCGA-OSCC 
cohort through univariate Cox and differential analy-
ses. A clinical prognostic model of OSCC based on 11 
MRGs was established by Lasso-Cox analysis, including 

11 genes (SHMT2, HPRT1, POLD2, HADHB, POLE3, 
ADK, GOT1, ATIC, MGST1, ADA and GNPDA1).

Among these 11 genes, SHMT2, encoded by SHMT2, 
is an important enzyme related to carbon metabolism in 
OSCC, as it catalyzes the conversion of serine to glycine 

Fig. 8  Evaluation of the nomogram. A–C Calibration curves of the nomogram for overall survival prediction at 1, 3, and 5 years. D–F The ROC 
curves for 1, 3 and 5 years overall survival of nomogram score, risk score and other clinical variables to evaluate the predictive ability of the 
nomogram
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[42]. SHMT2 level is discovered to be up-regulated in 
OSCC tissues, which has been linked to a poor prog-
nosis; the increased expression predicts the worse the 
pathological state of the tumor [43]. In addition, the 
silencing of SHMT2 in OSCC cells can affect cell cycle 
regulatory factors and induce cell G1 phase arrest, result-
ing in decreased cancer cell growth as well as inhibited 
cancer proliferation in  vivo [44]. SHMT2 is also highly 
expressed in thyroid cancer, bladder cancer and intrahe-
patic cholangiocarcinoma, and is closely related to the 
poor prognosis of these three cancers [45, 46]. HPRT1 

participates in regulating cell cycle mainly by regulat-
ing the production of purine and inosine in the remedial 
synthesis pathway [47]. The overexpression of HPRT1 
predicts the dismal survival of OSCC and enhances the 
resistance to cisplatin by promoting the MMP1/PI3K/
AKT signaling pathway [48]. In addition, HPRT1 over-
expression dramatically decrease immunocyte activities, 
thus promoting the formation of an immunosuppres-
sive tumor microenvironment [49]. ADA and ADK are 
mainly involved in adenosine metabolism. In the process 
of adenosine metabolism, ADA deaminates adenosine 

Fig. 9  Gene functional enrichment analysis via GSEA of the eleven MRGs in the prognostic signature. A GO enrichment analysis of the eleven 
prognostic MRGs. B KEGG pathway enrichment analysis of the eleven prognostic MRGs. C Five representative KEGG pathways in high-risk patients 
and one representative KEGG pathways in low-risk patients
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to yield inosine, and ADK phosphorylates adenosine to 
yield adenosine monophosphate [50, 51]. As indicated 
in this work, the levels of saliva ADA and serum ADA in 
OSCC cases markedly increased compared with healthy 

subjects, and the level of serum ADA increased with 
increasing histopathological grade [52, 53]. Some stud-
ies have confirmed that ADA is down-regulated in lym-
phocytes of advanced lung cancer [54]. GOT1 is mainly 

Fig. 10  Immune infiltration cell score in high-risk and low-risk population

Fig. 11  Cellular atlas of gastric tumours and non- tumour OSCC tissues. A UMAP plots showing cell types for the 31,719 cells. B The expression of 
five MRGs in OSCC cells C Violin plots showing the smoothed expression distribution of marker genes in seven cell types. D The proportion of each 
cell type in six samples
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involved in amino acid metabolism and the urea and tri-
carboxylic acid cycle [55, 56]. Another study confirmed 
that, in OSCC, GOT1 is related to tumor invasion as 
well as shorter survival [57]. In addition, GOT1 is also 
closely related to esophageal squamous cell carcinoma 
[58] and can be used as a biomarker of prostate cancer 
[59]. However, the relationship among POLD2, HADHB, 
POLE3, ATIC, MGST1, GNPDA1 and OSCC remains 
unclear. POLD2 and POLE3 are necessary for DNA rep-
lication [60]. The expression of PLOD2 has been discov-
ered to be increased in patients with bladder cancer and 
ovarian cancer, which predicts dismal patient survival 
[61, 62]. HADHB is related to fatty acid metabolism and 
has been reported to be elevated in renal clear cell car-
cinoma and colorectal cancer [63, 64]. The expression of 
ATIC is abnormally upregulated in hepatocellular carci-
noma patients, which has a potential tumor-promoting 
effect [65]. Overexpression of MGST1 in tumor tissue 
can inhibit tumor cell apoptosis by inhibiting apoptosis-
related signaling [66]. GNPDA1 is mainly related to gly-
colysis and amino acid metabolism; studies have shown 
that GNPDA1 is overexpressed in hepatocellular car-
cinoma [67]. It is speculated that the above genes could 
become prognostic markers of OSCC.

According to the results of these studies, we hypoth-
esized that our identified gene signature composed of 11 
MRGs could accurately predict OSCC prognosis. Accord-
ing to KM curve for training cohort, high-risk patients 
had markedly decreased OS compared with low-risk 
patients. The AUC of ROC curve for the risk score were 
0.63, 0.70, 0.76 at 1, 3, and 5 years. A prediction models 
constructed by four autophagy-related genes perform 
well in predicting the overall survival of OSCC. The AUC 
values of these four genes was 0.65  [68]. Another study 
build a prognostic model for OSCC using 7 genes related 
to tumor mutational burden. From time-dependent ROC 
analysis, the AUC of 1, 3, and 5 years survivals of patients 
in the TCGA database were 0.67, 0.67 and 0.64 [69]. It 
indicated that this score predicted OSCC survival and 
that our as-constructed model performed well in predict-
ing OSCC prognostic outcome. According to univariate 
as well as multivariate Cox regression on clinical features 
and risk scores of the patients, risk scores was the factor 
independently predicting prognosis. The 11 MRGs model 
performed well in prognosis prediction compared with 
additional clinicopathological characteristics alone. The 
above results were verified in the verification set, illus-
trating that our model has good universality and reliabil-
ity. Finally, we established a nomogram by combining the 
risk model and the characteristics of clinical cases. The 
ROC curve and calibration curve both showed that our 
nomogram performed well in predicting OSCC prog-
nosis. These findings suggest that combining risk score 

and additional clinical factors contributes to the accurate 
prediction of patient survival. As suggested by GSEA, the 
genes related to the regulation of metabolism were more 
highly associated with high-risk patients, which indicated 
the potent impact and regulation of MRGs on high-risk 
patients compared with low-risk counterparts. We also 
evaluated the relationship between immune infiltrat-
ing cells and risk scores, and the results suggest that the 
prognosis of the low-risk group seems to be better than 
that of the high-risk group. In addition, the results of 
single-cell sequencing and cell type identification show 
that the genes that make up OSCC prognosis model are 
limited to tumor cells rather than other cells. Collectively, 
our as-constructed 11 MRGs-based prognosis model 
may be adopted for predicting OSCC survival and pro-
viding more individualized treatment to OSCC patients.

MRGs can predict the prognosis of OSCC to some 
extent and are helpful for guiding patient treatment 
decision-making as well as follow-up visits. However, 
our study has some limitations. The data used in this 
study were acquired from public databases, so we cannot 
guarantee the integrity of patient data. In addition, due 
to the retrospective design of the study, there are poten-
tial biases related to imbalanced clinical characteristics. 
More experimental research and prospective works 
should be conducted for verifying MRGs’ prognosis pre-
diction ability in OSCC.

Conclusion
In this study, we screened 11 MRGs related to the prog-
nosis of OSCC through a variety of bioinformatics meth-
ods. Based on these 11 MRGs, a nomogram combining 
age, gender, staging and risk score was established. This 
nomogram can help clinicians more accurately determine 
the prognosis of OSCC and provide more individualized 
treatment to these patients.
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