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Abstract 

Purpose: Previous studies showed that peroxisome proliferator-activated receptor gamma (PPARγ) and PPARγ coac-
tivator1 family (PPARGC1A and PPARGC1B) gene single nucleotide variants (SNVs)were strongly associated with cancer 
susceptibility. The purpose of this study was to investigate the association of PPARγ, PPARGC1A, and PPARGC1B variants 
with the risk of gastric cancer (GC).

Patients and methods: We performed a case-control study of 490 GC cases and 1,476 healthy controls from eastern 
China. PPARγ rs1801282 C > G, rs3856806 C > T, PPARGC1A rs2970847 C > T, rs8192678 C > T and PPARGC1B rs7732671 
G > C, rs17572019 G > A SNVs were selected to investigate the association between these SNVs and GC susceptibility. 
Genotypes of the SNVs were assessed by multiplex fluorescent PCR using a custom-by-design 48-Plex  SNPscantm Kit.

Results: The PPARγ rs1801282 SNV was associated with a decreased risk for GC (GC vs. CC: odds ratio (OR) = 0.62, 
95% confidence interval (95%CI) = 0.42–0.93, adjusted P = 0.019; GC + GG vs. GG: OR = 0.63 95%CI = 0.42–0.93, 
adjusted P = 0.019; respectively). In addition, stratified analysis revealed that the PPARγ rs1801282 SNV was correlated 
with the risk of GC in subgroups of age ≥ 61, no smoking, and no alcohol consuming. We also confirmed that the 
PPARγ rs3856806 C > T SNV promoted the risk of GC in women. The PPARGC1A rs8192678 TT genotype decreased the 
susceptibility of GC in men. The PPARGC1A rs2970847 C > T SNV decreased the susceptibility of GC in the subgroup of 
BMI ≥ 24 kg/m2. The PPARGC1B rs7732671 G > C and rs17572019 G > A SNVs promoted the risk of GC in the subgroup 
of BMI ≥ 24 kg/m2.

Conclusion: This study indicates that the PPARγ, PPARGC1A, and PPARGC1B SNVs may be associated with the suscepti-
bility of GC in eastern Chinese population. Future studies with larger populations, detailed H. pylori infection status for 
subgroup analysis, and functional study are needed to further clarify the relationship between these SNVs and GC risk.
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Introduction
Gastric cancer (GC) accounts for more than 5% of all 
new cancer cases worldwide, making it the fifth most 
common cancer and the third leading cause of cancer-
related deaths [1]. China is the worst affected, account-
ing for 45% of all cancer-related deaths and 42.6% of 
the incidence [2]. Notably, GC is often diagnosed at an 
advanced stage due to the lack of effective diagnostic 
markers, leading to a poor prognosis with a 5-year sur-
vival rate of below 40%  [3]. Various risk factors influ-
ence the incidence of GC, such as microbial infections, 
genetic factors, alcohol, dietary regime, and obesity [4]. 
Many hereditary factors were found to play an impact 
on susceptibility to GC.

Peroxisome activated receptor gamma (PPARγ), a 
type II nuclear receptor gene, located on chromosome 
3p25, is a member of the peroxisome activated recep-
tor (PPAR) superfamily involved in adipogenesis, lipid 
metabolism, cell proliferation, chronic inflammation, 
and insulin sensitivity [5]. The aberrant PPARγ sign-
aling pathway was associated with the development 
of obesity, diabetes, and cancers [6]. PPAR is overex-
pressed in various malignant tissues, including breast, 
esophageal, gastrointestinal, and prostate cancers 
[7]. Several studies suggested that PPARγ expression 
was associated with the prognosis of various tumors, 
including cancers of the breast, pancreas, and colo-
rectum [8–10]. When activated by ligands, PPAR can 
act as a tumor suppressor by inducing tumor cell dif-
ferentiation, inhibiting proliferation, promoting apop-
tosis, and reducing tumorigenic angiogenesis [11, 
12]. PPAR receptor agonists exert inhibitory effects 
on various types of tumor cells and exert synergistic 
effects on chemotherapy and radiotherapy [13–15]. 
PPARGC1A and PPARGC1B are transcriptional coac-
tivators of the PPAR superfamily, which share a high 
sequence identity [16–18]. They are well-established 
as master regulators of oxidative phosphorylation and 
fatty acid oxidation gene expression and are highly 
expressed in oxidative tissues such as brown adipose 
tissue, heart, kidney, skeletal muscle, and brain [19, 
20]. The PPARGC1 family has been reported to play 
an important role in cancer progression by promot-
ing the expression of antioxidant genes, regulating the 
expression of vascular endothelial growth factor, and 
promoting glucose metabolism and adipogenesis [21–
23]. Increased expression and activity of PPARGC1A 
in cancers of lung, prostate, cervical, breast, colon, and 
melanoma promoted cancer cell progression and chem-
oresistance [21, 24]. However, PPARGC1A expression 
was significantly lower in clear cell renal cell cancer 
tissues and associated with a favorable prognosis [25, 
26]. PPARGC1B enhances the mitochondrial activity 

and anabolic profile, contributing to the development 
of hepatocellular and intestinal cancers [27, 28]. Estro-
gen-related receptor α  (ERRα) was highly expressed 
in GC tissues and promoted cancer progression[29]. 
PPARGC1A, and PPARGC1B, are also co-activators of 
ERRα, which could be related to the development of 
GC.

Single nucleotide variant (SNV) is the most com-
mon type of genetic variant that affects gene expres-
sion through different mechanisms and is associated 
with genetic susceptibility to cancer [30]. In the previ-
ous studies, we compared the PPARγ, PPARGC1A, and 
PPARGC1B SNVs with susceptibility of esophageal, colo-
rectal, and hepatocellular carcinomas [31–33]. Therefore, 
we assumed that PPARγ, PPARGC1A, and PPARGC1B 
SNVs might be effective susceptibility markers of GC. 
According to the previous studies [31–35], PPARγ 
rs1801282 C > G, rs3856806 C > T, PPARGC1A rs8192678 
C > T rs2970847 C > T, and PPARGC1B rs7732671 G > C, 
rs17572019 G > A SNVs are chosen to investigate the 
association between these SNVs and GC risk in a Chi-
nese cohort.

Materials and methods
This cohort is part of a previous study [35]. GC group 
were recruited from in patients of the Affiliated People’s 
Hospital of Jiangsu University (Zhenjiang, Jiangsu prov-
ince, China) and the Affiliated Union Hospital of Fujian 
Medical University (Fuzhou, Fujian Province, China). 
Healthy controls were recruited from participants in 
health screening at the same hospitals. Only Han Chi-
nese population of East China residents without autoim-
mune diseases or other malignancies were included. The 
main inclusion criteria for GC cases were sporadic newly 
diagnosed primary GC patients with pathological confir-
mation; while GC cases who underwent chemotherapy 
prior to blood sample collection were excluded from the 
cohort. Healthy controls were age and gender-matched 
volunteers who underwent health checkups and were 
excluded from autoimmune diseases or malignancies. 
Demographic information and correlated risk factor were 
obtained through medical records and supplemental 
interviews. All participants enrolled were voluntary  and 
signed an informed consent document in advance. The 
protocol was approved by the institutional ethics com-
mittees of Fujian Medical University (No.K201433).

DNA extraction and genotyping
In this study, 2mlEDTA anticoagulant fasting peripheral 
venous blood was donated by each participant and stored 
at -70℃ until DNA extraction was performed. Genomic 
DNA extraction was conducted by using a commercial 
blood DNA extraction kit (Promega, Madison, USA) 
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following the procedure according to the manufacturer’s 
instructions.

Simply put, cryopreserved blood samples were 
water bath thawing. After erythrocyte lysis and 
removal, nuclear release, protein precipitation, and 
removal, genomic DNA precipitation, and re-dissolve, 
genomic DNA was obtained. The concentration and 
purity of DNA were assayed for quality control by a 
microspectrophotometer.

As with the prior, the genotypes of the six SNVs were 
assessed by multiplex fluorescent PCR using a custom-
by-design 48-Plex  SNPscantm Kit (Genesky Biotech-
nologies Inc., Shanghai, China) [34]. For quality control, 
seventy-nine samples (4%) were randomly drawn and 
retested. No alteration in the result of the genotype was 
found.

The genotype frequency of each SNV in the control 
group was tested for deviation from Hardy-Weinberg 
equilibrium (HWE) by Pearson’s goodness-of-fit chi-
square using online Chi-square software (http:// ihg. gsf. 
de/ cgi- bin/ hw/ hwa1. pl). Genotype frequencies of the 
SNVs variants were compared using a Chi-square test 
(χ2) or Fisher’s exact test among GC cases and controls. 
The relationship of the SNVs with susceptibility to GC 
was assessed by Multivariate logistic regression analy-
sis to estimate by odds ratios (ORs) and 95% confidence 
intervals (CIs). The student’s t-test and chi-square (χ2) 
test were used to compare continuous variables and dis-
crete variables between CG patients and healthy con-
trols, respectively. A P < 0.05 (two-tailed) was considered 
statistically significant. All statistical analyses performed 
in the present study were conducted using the SPSS soft-
ware package (SPSS, Inc., version 19.0, Chicago, Illinois, 
USA).

Result
Clinical characteristics
The Demographic variables and risk factors of the cohort 
are summarized in Table 1. A total of 1,966 subjects (490 
GC cases and 1,476 health controls) were recruited for 
our study. No significant differences were found between 
GC patients and healthy controls in terms of gender and 
age ( Age: P = 0.026, Sex: P = 0.891). Thus, GC cases and 
controls were well matched. However, there was a sig-
nificant higher in tobacco smoking, alcohol consumption, 
and body mass index (BMI) < 24 (kg/m2) in GC cases 
than in healthy controls (Alcohol use: P < 0.001, Smoking 
status: P = 0.001, BMI: P < 0.001 ).

Data quality
As summarized in Table 2, the MAF values (minor allele 
frequency) of our controls were similar to the values for 
Chinese in the database.

Five P values of the SNVs rs1801282, rs3856806, 
rs8192678, rs2970847, rs7732671, and rs17572019) from 
Hardy–Weinberg equilibrium (HWE) test were more 
than 0.05 (P = 0.881, 0.954, 0.492, 0.497, 0.139 respec-
tively). However, the genotype distribution of rs3856806 
variants did not reach HWE (P = 0.026).

Overall, all genotyping successful rates for the SNVs 
were > 95%, suggesting that the study met the require-
ments of molecular epidemiology.

Association of PPARγ, PPARGC1A, and PPARGC1B SNVs 
with risk of GC
The distribution of genotypes and genotype frequencies 
are summarized in Table  3. We found that both in the 
additive and dominant model, the PPARγ rs1801282 SNV 
was associated with a decreased risk for GC (additive 
model: GC vs. CC: P = 0.033; dominant model: GC + GG 
vs. GG: P = 0.032; respectively). After adjusting for age, 
gender, BMI, smoking status, and alcohol consumption, 
the results remained statistically significant (GC vs. CC: 
adjusted P = 0.019; GC + GG vs. GG: adjusted P = 0.019; 
respectively). However, no significant relationship was 
found between GC risk and other genotypes assayed in 
genetic models (PPARγ rs3856806 C > T; PPARGC1A rs2
970847 C > T; PPARGC1A rs8192678 C > T; PPARGC1B 
rs17572019 and PPARGC1Brs7732671).

Table 1 Distribution of selected demographic variables and risk 
factors in GC patients and controls

Bold indicates statistical significance (P < 0.05)
a Two-sided χ2 test and Student t test

Variable Overall cases (n = 490) Overall 
controls 
(n = 1476)

Pa

N (%) N (%)

Age (years) 60.65 ± 11.43 61.30 ± 9.60 0.220

Age (years) 0.597

 ≥ 61 269 (54.90) 790 (53.52)

 < 61 221 (45.10) 686 (46.48)

Sex 0.891

 Male 331 (67.55) 1002 (67.89)

 Female 159 (32.45) 474 (32.11)

Alcohol use < 0.001
 Never 374 (76.33) 1319 (89.36)

 Ever 116 (23.67) 157 (10.64)

Smoking status 0.001
 Never 309 (63.06) 1051 (71.21)

 Ever 181 (36.94) 425 (28.79)

BMI (kg/m2) 22.41 ± 3.12 23.95 ± 3.05 < 0.001
BMI (kg/m2)

 < 24 356 (72.65) 761 (51.56) < 0.001
 ≥ 24 134 (27.35) 715 (48.44)

http://ihg.gsf.de/cgi-bin/hw/hwa1.pl
http://ihg.gsf.de/cgi-bin/hw/hwa1.pl
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Stratified analyses of the association of PPARγ, PPARGC1A, 
and PPARGC1B SNVs with the risk of GC
To determine whether the effects of these SNVs were 
modified by factors such as smoking, age, sex, alco-
hol consumption, and BMI, a stratified analysis was 
performed(Table  4, Table  S1-5). For PPARγ rs1801282 
C > G SNV, stratified analysis revealed that this vari-
ant constituted a GC protective factor in subgroups of 
age ≥ 61 years, no smoking, and no alcohol consum-
ing (age ≥ 61years: additive model: GC vs. CC: adjusted 
P = 0.043; no smoking: additive model: GC vs. CC: 
adjusted P = 0.033, dominant model: GC + GG vs. 
CC: adjusted P = 0.032; no alcohol consuming: addi-
tive model: GC vs. CC: adjusted P = 0.006, dominant 
model: GC + GG vs. CC: adjusted P = 0.008; respectively, 
Table 4).

For PPARγ rs3856806 C > T SNV, stratified analysis 
revealed that this variant constituted a GC risk factor in 
females (additive model: CT vs. CC: adjusted P = 0.037; 
dominant model: CT + TT vs. CC: adjusted P = 0.038, 
Additional file 1: Supplementary Table S1).

For the PPARGC1A rs8192678 TT genotype, strati-
fied analysis revealed that this variant constituted a GC 
protective factor in males. (homozygote model: TT vs. 
CC: adjusted P = 0.045, Additional file  2: Supplemen-
tary Table S2)

For PPARGC1Ars2970847 C > T SNV, stratified analy-
sis revealed that this variant constituted a GC protec-
tive factor in subgroups of BMI ≥ 24  kg/m2. (additive 
model: CT vs. CC: adjusted P = 0.028, Additional file 3: 
Supplementary Table S3)

For PPARGC1B rs7732671 G > C SNV, stratified anal-
ysis revealed that this variant constituted a GC risk fac-
tor in subgroups of BMI ≥ 24  kg/m2. (additive model: 
GC vs. GG: adjusted P = 0.027; dominant model: 
GC + CC vs. GG: adjusted P = 0.033, Additional file  4: 
Supplementary Table S4)

For PPARGC1B rs17572019 G > A SNV, stratified 
analysis revealed that this variant constituted a GC 
risk factor in subgroups of BMI ≥ 24  kg/m2. (addi-
tive model: GA vs. GG: adjusted P = 0.028; dominant 
model: GA + AA vs. GG: adjusted P = 0.034, Additional 
file 5: Supplementary Table S5)

Discussion
This study revealed that PPARγ rs1801282 C > G SNV 
was associated with a decreased risk for GC. In addition, 
PPARγ  rs1801282 C > G SNV conferred decreased risk 
for GC patients among subgroups of age ≥ 61 years, no 
smoking and no alcohol consuming; PPARγ  rs3856806 
C > T SNV conferred risk for GC patients in females; 
PPARGC1A rs8192678 TT genotype conferred decreased 

Table 2 Primary information for PPARγ rs1801282 C > G, rs3856806 C > T, PPARGC1A rs8192678 C > T, rs2970847 C > T, PPARGC1B 
rs7732671 G > C, rs17572019 G > A polymorphisms

Bold indicates statistical significance (P < 0.05)
a https:// www. regul omedb. org/.
b MAF: minor allele frequency
c HWE: Hardy–Weinberg equilibrium
d The genotype distribution of rs3856806 variant did not reach HWE
e https:// www. ncbi. nlm. nih. gov/ snp/

Genotyped SNPs PPARγ 
rs1801282C > G

PPARγ 
rs3856806C > T

PPARGC1A 
rs8192678 C > T

PPARGC1A 
rs2970847 C > T

PPARGC1B 
rs7732671 G > C

PPARGC1B 
rs17572019 G > A

Chromosome: 
position

chr3: 12,393,125 chr3: 12,475,557 chr4: 23,815,662 chr4: 23,815,924 chr5: 149,212,243 chr5: 149,212,471

Function Missense Coding- 
synonymous

Missense Coding- 
synonymous

Missense Missense

Regulome DB 
 scorea

– 2b 6 – 5 5

Clinical  significancee Likely-benign Benign/likely-
benign

– – Benign –

MAFb for Chinese in 
database

0.07 0.25 0.35 0.28 0.09 0.07

MAF in our controls 
(n = 1476)

0.05 0.22 0.44 0.22 0.06 0.06

P value for  HWEc 
test in our controls

0.881 0.026d 0.954 0.492 0.497 0.139

Genotyping 
method

SNPscan SNPscan SNPscan SNPscan SNPscan SNPscan

% Genotyping value 99.64% 99.64% 99.64% 99.64% 99.64% 99.53%

https://www.regulomedb.org/
https://www.ncbi.nlm.nih.gov/snp/
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Table 3 Logistic regression analyses of associations between PPARγ rs1801282 C > G, rs3856806 C > T, PPARGC1A rs8192678 C > T, 
rs2970847 C > T, PPARGC1B rs7732671 G > C, rs17572019 G > A polymorphisms and risk of GC

Genotype Cases (n = 490) Controls (n = 1476) Crude OR (95%CI) P Adjusted  ORa(95%CI) P

PPARγ rs1801282 C > G

CC 452 92.24 1317 89.23 1

GC 34 6.94 151 10.23 0.66 (0.45–0.97) 0.033 0.62 (0.42–0.93) 0.019

GG 1 0.2 4 0.27 0.73 (0.08–6.53) 0.777 0.83 (0.08–8.25) 0.874

GC + GG 35 7.14 155 10.5 0.66 (0.45–0.96) 0.032 0.63 (0.42–0.93) 0.019

CC + GC 486 99.18 1468 99.46 1

GG 1 0.2 4 0.27 0.76 (0.08–6.77) 0.802 0.86 (0.09–8.59) 0.9

G allele 36 3.67 159 5.39

PPARγ rs3856806 C > T

CC 278 56.73 868 58.81 1

CT 188 38.37 544 36.86 1.08 (0.87–1.34) 0.486 1.08 (0.87–1.35) 0.482

TT 21 4.29 60 4.07 1.09 (0.65–1.83) 0.736 1.02 (0.60–1.74) 0.931

CT + TT 209 42.65 604 40.92 1.08 (0.88–1.33) 0.465 1.08 (0.87–1.33) 0.501

CC + CT 466 95.1 1412 95.66 1

TT 21 4.29 60 4.07 1.06(0.64–1.76) 0.818 0.99 (0.59–1.68) 0.977

T allele 230 23.47 664 22.49

PPARGC1A rs8192678 C > T

CC 169 34.49 454 30.76 1

CT 236 48.16 726 49.19 0.87 (0.69–1.10) 0.248 0.89 (0.70–1.13) 0.346

TT 82 16.73 292 19.78 0.75 (0.56–1.02) 0.067 0.78 (0.57–1.07) 0.121

CT + TT 318 64.9 1018 68.97 0.84 (0.68–1.04) 0.113 0.86 (0.69–1.08) 0.189

CC + CT 405 82.65 1180 79.95 1

TT 82 16.73 292 19.78 0.82 (0.63–1.07) 0.145 0.84 (0.63–1.11) 0.209

T allele 400 40.82 1310 44.38

PPARGC1Ars2970847 C > T

CC 303 61.84 890 60.3 1

CT 160 32.65 515 34.89 0.91 (0.73–1.14) 0.415 0.90 (0.72–1.14) 0.384

TT 24 4.9 67 4.54 1.05 (0.65–1.71) 0.837 1.16 (0.70–1.91) 0.567

CT + TT 184 37.55 582 39.43 0.93 (0.75–1.15) 0.491 0.93 (0.75–1.16) 0.521

CC + CT 463 94.49 1405 95.19 1

TT 24 4.9 67 4.54 1.09 (0.67–1.75) 0.732 1.20 (0.73–1.97) 0.471

T allele 208 21.22 649 21.99

PPARGC1B rs7732671 G > C

GG 436 88.98 1299 88.01 1

GC 50 10.2 166 11.25 0.90 (0.64–1.25) 0.526 0.96 (0.68–1.36) 0.821

CC 1 0.2 7 0.47 0.43 (0.05–3.47) 0.425 0.42 (0.05–3.47) 0.42

GC + CC 51 10.41 173 11.72 0.88 (0.63–1.22) 0.442 0.94 (0.67–1.32) 0.708

GG + GC 486 99.18 1465 99.25 1

CC 1 0.2 7 0.47 0.43 (0.05–3.51) 0.431 0.42 (0.05–3.48) 0.423

 C allele 52 5.31 180 6.1

PPARGC1B rs17572019 G > A

GG 435 88.78 1298 87.94 1

GA 50 10.2 165 11.18 0.90 (0.65–1.26) 0.555 0.98 (0.70–1.39) 0.916

AA 1 0.2 9 0.61 0.33 (0.04–2.63) 0.296 0.27 (0.03–2.21) 0.224

GA + AA 51 10.41 174 11.79 0.88 (0.63–1.22) 0.427 0.94 (0.67–1.32) 0.706

GG + GA 485 98.98 1463 99.12 1

AA 1 0.2 9 0.61 0.34 (0.04–2.65) 0.3 0.27 (0.03–2.22) 0.224

 A allele 52 5.31 183 6.2

Bold indicates statistical significance (P < 0.05)
a Adjusted for age, sex, smoking status, alcohol use and BMI status
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risk for GC patients in male; PPARGC1A rs2970847 C > T 
conferred decreased risk for GC patients in a subgroup 
of BMI ≥ 24  kg/m2; both PPARGC1B rs7732671 G > C 
and PPARGC1B rs17572019 G > A conferred risk for GC 
patients in a subgroup of BMI ≥ 24 kg/m2.

The rs1801282 SNV has been reported to be associ-
ated with susceptibility to a variety of tumors. How-
ever, in some studies such as on breast and colorectal 
cancers, the correlation tended to vary by race and/or 
cancer type [34, 36–42]. Several studies focused on the 
association of rs1801282 SNV with the susceptibility of 
GC. An Iranian population-based study found that the 
rs1801282 SNV G allele increased the risk of non-cardia 
gastric cancer in people with H. pylori infection [43]. A 
Turkish-based study found that rs1801282 C > G SNV 
not only has an increased risk of GC but is also asso-
ciated with poor differentiation and metastatic disease 
in GC [44]. Our study was based on eastern Chinese 
population, suggesting that rs1801282 SNV is a protec-
tive factor for GC, especially in the subgroup aged ≥ 61 
years, non-smokers, and no alcohol consuming.

The impact of PPARγ on cancers is complex and bidi-
rectional, PPARγ acts as a tumor promoter by induc-
tion of lipogenic gene ACLY, MIG12, FASN, and NR1F1, 
stem cell-related gene KLF4, ALDH and upregulation 
Nox1 ROS, and VEGF. PPARγ act as a tumor suppres-
sor by inducing apoptosis through the upregulation of 
PTEN, suppression of NF-κB, and many other signaling 
pathways [7, 45, 46]. PPARγ mainly plays an anti-tumori-
genesis role in GC. PPARγ expression was low in normal 
gastric mucosa and significantly higher in GC tissues and 
was an independent prognostic factor for GC [15, 47] . 
Enhanced PPARγ activity reduced GC cell migration, 
invasion, and EMT through upregulation of galectin-9 
[47]. Increased expression of PPARγ may reduce prolifer-
ation and metastatic potential in GC by inhibiting TERT 
and ENAH through the Wnt/β-Catenin signaling path-
way [48, 49].

Variants in the PPARγ affect gene transcription and 
expression, which has been intensively studied in meta-
bolic diseases. An in  vitro experiment demonstrated 
that rs1801282 SNV reduced the binding affinity of the 

Table 4 Stratified analyses between PPARγ rs1801282 C > G polymorphism and GC risk by sex, age, smoking status, alcohol 
consumption and BMI

Bold indicates statistical significance (P < 0.05)
a The genotyping was successful in 487 (99.39%) gastric cancer cases, and 1472 (99.73%) controls for PPARγ rs1801282 C > G
b Adjusted for age, sex, BMI, smoking status, alcohol use and BMI (besides stratified factors accordingly) in a logistic regression model

Variable (Case/control)a Adjusted  ORb (95% CI); P

CC GC GG Additive model Homozygote model Dominant model Recessive model

Sex

 Male 301/892 26/103 1/3 0.68 (0.43–1.08) P: 0.102 1.07 (0.10–11.44) P: 
0.959

0.69 (0.44–1.09) P: 
0.109

1.10 (0.10–11.81) P: 0.938

 Female 151/425 8/48 0/1 0.47 (0.21–1.04) P: 0.061 – P: 0.989 0.47 (0.21–1.03) P: 
0.058

– P: 0.990

Age

 < 61 206/622 14/59 0/2 0.66 (0.35–1.24) P: 0.196 – P: 0.981 0.63 (0.34–1.19) P: 
0.155

– P: 0.981

 ≥ 61 246/695 20/92 1/2 0.59 (0.35–0.98) P: 
0.043

1.93 (0.17–22.23) P: 
0.597

0.61 (0.37–1.01) P: 
0.055

2.02 (0.18–23.22) P: 0.572

Smoking status

 Never 289/944 18/101 1/4 0.33 (0.33–0.95) P: 
0.031

0.81 (0.08–8.10) P: 
0.861

0.57 (0.34–0.95) P: 
0.032

0.85 (0.09–8.48) P: 0.893

 Ever 163/373 16/50 0/0 0.72 (0.39–1.33) P: 0.288 – 0.72 (0.39–1.33) P: 
0.288

–

Alcohol consumption

 Never 350/1180 21/133 1/3 0.51 (0.32–0.83) P: 
0.006

1.62 (0.16–16.30) P: 
0.682

0.53 (0.33–0.85) P: 
0.008

1.71 (0.17–17.14) P: 0.650

 Ever 102/137 13/18 0/1 1.11 (0.51–2.43) P: 0.789 – P: 0.986 1.03 (0.48–2.23) P: 
0.941

– P: 0.986

BMI (kg/m2)

 < 24 329/677 25/80 1/1 0.65 (0.40–1.04) P: 0.071 1.98 (0.11–34.90) P: 
0.640

0.66(0.41–1.06) P: 0.085 2.06 (0.12–36.28) P: 0.622

 ≥ 24 123/640 9/71 0/3 0.57 (0.28–1.19) P: 0.137 – P: 0.984 0.55 (0.27–1.15) P: 
0.113

– P: 0.984
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receptor to the reactant and induced a reduction in tran-
scriptional activity and was associated with lower BMI 
and improved insulin sensitivity [50, 51]. However, in a 
study on obesity, it was observed that the expression of 
PPARγ2 in subcutaneous fat was higher in heterozygote 
CG carriers than in the CC genotype [52]. Similar result 
was observed in another study on metabolic diseases, in 
which the PPARγ2 mRNA expression level in adipose tis-
sue was higher in rs1801282 GG genotype carriers than 
in CC genotype carriers [53]. This supports our study to 
some exten that the rs1801282 heterozygous CG geno-
type may play an anti-tumorigenesis role in gastric can-
cer through overexpression of PPARγ2. However, studies 
on the function of rs1801282 SNV in GC are still lack-
ing. A recent study examined PPARγ rs1801282 SNV in 
multiple human cancer cell lines, and a heterozygous CG 
genotype was detected in AGS and Caki-1 cancer cell 
lines. PPARγ mRNA expression in these cell lines was 
found to be lower than in cell lines with wild-type such 
as MCF10A, SK-BR-3, and MDA-MB-468 [54]. There-
fore, the impact of rs1801282 SNV on the expression 
of the PPARγ may vary by tumor type and race. Further 
functional studies are needed to clarify the impact of 
rs1801282 SNV on GC.

Rs3856806 C > T variant, in exon 6, is a synonymous 
variant. It is an exon splice enhancement site that may 
reduce transcription of PPARγ [55]. There is a contro-
versy between rs3856806 C > T variant and cancer sus-
ceptibility. In a study, the heterozygous CT genotype of 
rs3856806 was found to be protective against colorectal 
cancer, however, in contrast, studies by Jiang et  al. and 
Lin et  al. showed an increased risk of colorectal cancer 
with this genotype [31, 56, 57]. Similarly, several stud-
ies have been conducted on breast cancer susceptibility, 
but the results remain debated [38, 58, 59] . Recently, 
two meta-analyses reported that the PPARγ rs3856806 
C > T variant increased overall cancer susceptibility [60, 
61]. In a recent study of GC, rs3856806 SNV was found 
not related to cancer risk [62]. Our results suggested that 
PPARγ rs3856806 C > T constituted a risk factor for GC 
in women.

In GC tissues and GC cell lines, PPARGC1A expression 
was upregulated and associated with metastasis, invasion, 
and induce apoptosis of GC cells [63].   Rs8192678 SNV 
is the most well-studied variant of the PPARC1A, which 
substitutes glycine with serine at amino acid position 482 
in exon 8. Research has also shown that the expression 
of PPARGC1A is significantly lower in those carrying the 
minor allele [64]. A study of prostate cancer showed no 
effect of rs8192678 SNV on cancer susceptibility [65]. In 
previous studies, the rs8192678 CT genotype represented 
a protective factor against colorectal cancer, and the 
rs8192678 TT genotype reduced esophageal squamous 

carcinoma risk [31, 33]. The present study showed that 
the rs8192678 TT genotype reduced GC susceptibility 
in men in a homozygote model. A study based on Span-
ish population showed that the rs8192678 C > T variant 
affects insulin sensitivity through a genotype-sex interac-
tion. Men with T allele carriers have lower insulin sensi-
tivity [66]. Since metabolic abnormalities are definite risk 
factors for gastric cancer, the rs8192678 SNV may affect 
the development of GC through a similar genotype-sex 
interaction. Relevant studies and evidence are still lack-
ing and further research is needed.

PPARGC1A rs2970847 is a synonymous variant, which 
is reported associated with the risk of type 2 diabetes, 
obesity, and insulin resistance [67, 68]. In the previous 
studies, no association was found between PPARGC1A 
rs2970847 SNV and susceptibility of esophageal, colo-
rectal, and hepatocellular carcinomas [31–33], however, 
the present study showed that it was a protective factor 
for GC in the group of BMI ≥ 24  kg/m2 in an Additive 
model. A study of an Iranian population revealed that 
rs2970847 SNV downregulates insulin signaling path-
ways and is associated with insulin resistance. Carriers of 
the T allele of rs2970847 had decreased performance of 
PPARGC1A and higher risk for obesity [69]. The correla-
tion of rs2970847 with CG and other cancers is still lack-
ing, and further studies are needed.

PPARGC1B is located on chromosome 5 and con-
sists of 1023 amino acids. PPARGC1B is highly simi-
lar to PPARGC1A in terms of structure, function, and 
mechanism [70]. Studies showed that the PPARGC1B 
rs7732671 variant increases breast cancer risk and 
affects cancer progression [71, 72]. The risk of esopha-
geal squamous carcinoma in the high alcohol intake 
subgroup was promoted by the PPARGC1B rs17572019 
G > A SNV [33]. In the current study, both PPARGC1B 
rs7732671 G > C and rs17572019 G > A SNVs were 
found to be a risk factor for GC in the additive and 
dominant models in the group with BMI ≥ 24  kg/m2. 
A study on breast cancer found that rs7732671 G > C 
enhances ERRα and ERRγ signaling and modulates 
aerobic glycolysis [72].  Since the ERRα signaling path-
way was shown to promote GC [29], further studies are 
needed to clarify whether rs7732671 SNV affects GC 
development through ERRα or other pathways.

To our knowledge, the present study is the largest 
sample size study to date exploring the relationship 
between PPARγ, PPARGC1A, PPARGC1B variants, 
and GC susceptibility. This study demonstrated that 
the PPARγ, PPARGC1A, and PPARGC1B SNVs were 
associated with genetic susceptibility to GC. It could 
be a potential biomarker in the prevention and screen-
ing of GC in the Chinese population. However, there 
were several limitations in this study. First, H. pylori 



Page 8 of 10Chen et al. BMC Medical Genomics          (2022) 15:274 

infection status was inaccessible, which affect the fur-
ther subgroup analysis. Second, since both the GC 
cases and controls were hospital-based, the potential 
selection bias might have occurred. Third, many other 
environmental and personal factors might be associ-
ated with the etiology of GC, such as socioeconomic 
status, literacy, and diet, but were not collected and 
analyzed adequately in this study.

In conclusion, this study indicates that the PPARγ 
rs1801282 C > G SNV was associated with a decreased 
risk for GC in eastern Chinese population. Future studies 
with larger populations, detailed H. pylori infection sta-
tus, and functional studies are needed to further clarify 
the relationship between these SNVs and GC risk.
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