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Abstract 

Background  Hepatocellular Carcinoma (HCC) is a common malignant neoplasm with limited treatment options and 
poor outcomes. Thus, there is an urgent need to find sensitive biomarkers for HCC.

Methods  Gene expression and clinicopathological information were obtained from public databases, based on 
which a pyroptosis-related gene signature was constructed by the least absolute shrinkage and selection operator 
Cox regression. The applicability of the signature was evaluated via Kaplan–Meier curve and time-dependent ROC 
curve. TIMER, QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT, ssGSEA, and ESTIMATE were employed to assess the 
immune status. Comparisons between groups were analyzed with Wilcoxon test. Pearson and Spearman correlation 
analyses were adopted for linear correlation analysis. Genetic knockdown was conducted using siRNA transfection 
and the mRNA expression levels of interest genes were measured using quantitative reverse transcription PCR. Finally, 
protein levels in 10 paired tumor tissues and adjacent non-tumor tissues from HCC patients were measured using 
immunohistochemistry.

Results  A pyroptosis-related gene signature was established successfully to calculate independent prognostic risk 
scores. It was found that survival outcomes varied significantly between different risk groups. In addition, an attenu-
ated antitumor immune response was found in the high-risk group. Meanwhile, multiple immune checkpoints 
were up-regulated in high-risk score patients. Cell cycle-related genes, angiogenesis-related genes and tumor drug 
resistance genes were also markedly elevated. Knockdown of prognostic genes in the signature significantly inhibited 
the expression of immune checkpoint genes and angiogenesis-related genes. Besides, each prognostic gene was 
expressed at a higher level in HCC tissues than in adjacent normal tissues.

Conclusions  We successfully established a novel pyroptosis-related gene signature which could help predict the 
overall survival and assess the immune status of HCC patients.
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Introduction
Hepatocellular carcinoma (HCC) is one of the most fre-
quently diagnosed malignant tumors, accounting for 
more than 90% of all liver cancer cases [1], and ranking 
fifth of the incidence and third in mortality of all malig-
nancies worldwide [2]. Risk factors for HCC include 
chronic hepatitis B and C virus infections, alcohol abuse, 
nonalcoholic fatty liver disease, and exposure to dietary 
toxins such as aflatoxins [3]. Patients are often diag-
nosed with HCC at advanced stages with poor prognosis 
[1], and unclear molecular mechanisms lead to the poor 
understanding of HCC prognosis. The overall survival 
(OS) of HCC varies across the world, with a 5-year sur-
vival rate of 18% in the United States, and 12% in China 
[4]. Therefore, it is primarily important to clarify the 
molecular mechanisms underlying the poor prognosis of 
HCC and explore new prognostic biomarkers for HCC.

Pyroptosis, an inflammatory form of cell death trig-
gered by certain inflammasomes, is primarily mediated 
by caspase 1/4/5 (11)-cleaved GSDMD (gasdermin D). 
Afterwards, GSDMD-N oligomerizes form membrane 
pores, leading to the release of activated cytokines and 
pyroptotic cell death [5–7]. Some studies reported that 
pyroptosis played a double-edged role in cancer [8]. 
While still an ambiguous process in cancer, pyropto-
sis could not only play a potent and persuasive role to 
conquer apoptosis resistance but also a crucial role in 
immunity [9]. Conversely, pyroptosis can induce dam-
age to healthy tissues and establish a microenvironment 
suitable for tumor growth and metastatic progression 
[10]. Obviously, pyroptosis involves complex and conten-
tious processes, so that its role and detailed mechanism 
in oncogenesis deserves extensive exploration. Although 
the exact link between pyroptosis and HCC is presently 
unclear, increasing research has begun to focus on HCC 
and pyroptosis [11, 12].

In this study, we attempted to explore the association 
between pyroptosis and HCC by establishing a predic-
tive signature based on pyroptosis-related genes strongly 
related to poor outcomes of HCC, hoping that our find-
ings could provide a new signature that could predict the 
clinical survival outcome and help design individualized 
treatment for HCC patients.

Methods
Data acquisition
The data were obtained from public databases. HCC 
samples collected before 2011 were excluded because of 
the excessive length of storage. Finally, data of 209 HCC 
patients were obtained from The Cancer Genome Atlas 
hepatocellular carcinoma (TCGA-LIHC) portal (https://​
portal.​gdc.​cancer. gov/repository). Additional 231 

tumor samples and 199 adjacent normal tissue samples 
were collected from the International Cancer Genome 
Consortium hepatocellular carcinoma (ICGC-LIRI-JP) 
portal (https://​dcc.​icgc.​org/​proje​cts/​LIRI-​JP). Also, an 
independent cohort containing 10 paired HCC sam-
ples was recruited. Clinical data for these patients are 
presented in Table  1. The present study follows access 
policies and publication guidelines. Then, 69 pyroptosis-
related genes were obtained from the previous literature 
[8, 13–17] (Additional file 1: Table S1).

Identification of prognostic genes
The differentially expressed genes (DEGs) between HCC 
and adjacent non-tumorous tissues were screened with 
an FDR < 0.05 and log2 (fold-change) > 0 from the whole 
genes for candidate genes by the "limma" R package. 
Univariate Cox analysis was implemented to identify 
significant prognostic genes from the DEGs (P < 0.05). 
Correlation networks were performed through “igraph” 
and “reshape2” packages. Protein–protein interaction 
(PPI) networks were constructed with the STRING 
database.

Gene signature establishment and validation
When constructing the prognostic gene model, the col-
lected data were processed based on the least absolute 

Table 1  Clinical characteristics of the HCC patients used in this 
study

TCGA-LIHC cohort ICGC-LIRP-JI cohort

No. of patients 209 231

Age (median, range) 59 (16–90) 67 (31–89)

Gender

Female 65 (31.1%) 61 (26.4%)

Male 144 (68.9%) 170 (73.6%)

Grade

Grade 1 35 (16.7%) NA

Grade 2 103 (49.3%) NA

Grade 3 62 (29.7%) NA

Grade 4 7(3.3%) NA

Unknown 2 (1.0%) NA

Stage

I 91 (43.5%) 36 (15.6%)

II 54 (25.8%) 105 (45.5%)

III 49 (23.4%) 71 (30.7%)

IV 1 (0.5%) 19 (8.2%)

Unknown 14 (6.7%) 0 (0%)

Survival status

Alive 159 (76.1%) 189 (81.8%)

Deceased 50 (23.9%) 42 (18.2%)

Follow up (median, range) 588 (1–1363) 900 (10–2160)

https://portal.gdc.cancer
https://portal.gdc.cancer
https://dcc.icgc.org/projects/LIRI-JP
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shrinkage and selection operator (LASSO) penalized 
Cox regression analysis, and the penalty parameters 
were obtained by cross validation with the R package 
"glmnet" tool. When the dataset was large, K-Fold Cross 
Validation analysis was used, so that the optimal model 
and parameters can be selected for function evaluation. 
When the dataset was small (N < 50), the leave-one-out 
Cross Validation analysis was used because it uses more 
training samples in each iteration. The LASSO analy-
sis was mainly used to select variables and determine 
the model that met the interpretation requirements 
according to the regression coefficient. The standardized 
expression matrix of candidate prognostic genes was the 
independent variable in the regression equation, and the 
dependent variables were OS and patient status. Based 
on the analysis of the expression value of each gene and 
the corresponding regression coefficient, the risk score 
of the patients was determined: score = esum (expression 
of each gene × Correspondence coefficient). All patients 
were divided into high- and low-risk groups based on the 
median score. The "Rtsne" R software was used for prin-
cipal component analysis to determine the distribution of 
each group. The survival status of patients was analyzed 
based on the Kaplan–Meier test. The ROC curve was 
drawn by processing the relevant data, and then the AUC 
value was calculated by the R package “survivalROC” so 
as to determine the sensitivity of variables.

Identification of independent prognostic factors for OS 
in HCC
To evaluate the predictive power of the risk score, 
each prognostic gene in the signature (CASP3, IRAK1, 
MAPK1, MAPK3 and YWHAB) and the clinical risk 
factors, including age (< 60 vs. ≥ 60), gender (male vs. 
female), tumor grade (G1/2 vs. G3/4), tumor stage (I/II 
vs. III/IV), univariate and multivariate Cox regression 
analyses were performed to identify independent prog-
nostic factors.

Immune status in distinct risk groups
Five algorithms (TIMER, QUANTISEQ, MCPCOUN-
TER, EPIC and CIBERSORT) were applied to evaluate 
the correlation between immune cells and risk scores 
by “immunedeconv” R package [18]. The differences 
between these five algorithms are shown in Additional 
file 2: Table S2. Single-sample gene set enrichment analy-
sis (ssGSEA), ESTIMATE and CIBERSORT were per-
formed to assess the immune status in high- and low-risk 
groups by the "GSVA", “estimate” and “limma” R package 
based on all of the expressed genes. The expression lev-
els of immune checkpoint genes in different risk groups 
were analyzed by Wilcoxon test.

Gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analyses
To detect the potential biological functions and path-
ways in different risk groups, GO and KEGG pathway 
analyses were carried out using the “clusterProfiler” 
and “enrichplot” packages based on all of the expressed 
genes [19–21].

Cell cycle and angiogenesis‑related genes expression 
in different risk groups
The expression of cell cycle and angiogenesis-related 
genes in different risk groups was compared using the 
Wilcoxon test.

Tumor drug resistance genes and chemotherapy sensitivity 
analysis
The NCI-60 database containing 60 different cancer 
cell lines from 9 different types of tumors was accessed 
through the CellMiner interface (https://​disco​ver.​nci.​
nih.​gov/​cellm​iner/). Altogether 263 drugs on clinical 
trials or approved by the US Food and Drug Adminis-
tration, were used to evaluate the correlation between 
prognostic gene expression and drug sensitivity, and 
that between the prognostic model and tumor drug 
resistance genes by Pearson and Spearman correlation 
analyses respectively.

Cell lines, cell culture and cell transfection
HCC cell line Huh7 was purchased from the Cell Bank 
of the Chinese Academy of Sciences (Shanghai, China). 
To reduce the risk of microbial contamination, cells 
were cultured in a suitable medium containing 10% fetal 
bovine serum (FBS; Gibco) and supplements of penicillin 
(100 U/mL) and streptomycin (100 g/mL) in a humidified 
environment with 5% CO2/95% air at 37 °C. Gene silenc-
ing was achieved using siRNA. siRNA was transfected 
into cells using Lipofectamine 3000 (Life Technologies), 
according to the manufacturer’s instructions. Transfected 
cells were analyzed 48  h after transfection with siRNA. 
siRNA sequences are listed in Additional file 3: Table S3.

Quantitative reverse transcription PCR (qRT‑PCR)
Total RNA was extracted from the cells using TRIzol rea-
gent (Thermo Scientific, Cat# 15596018). Then, the RNA 
was quantified using Nanodrop. The RNA was reverse-
transcribed into DNA using a Prime Script RT Reagent 
Kit (Takara, Cat#RR036A) following the manufacturer’s 
instructions. Isolated DNA was subjected to qRT-PCR 
analysis using the CellAmp™ Direct TB Green® RT-qPCR 

https://discover.nci.nih.gov/cellminer/
https://discover.nci.nih.gov/cellminer/
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Kit (Takara, Cat# 3735A). Primer sequences are listed in 
Additional file 4: Table S4.

Immunohistochemistry (IHC)
Ten pairs of HCC and adjacent non-tumorous tissues 
collected by the First Affiliated Hospital of Wenzhou 
Medical University (Wenzhou, China) were selected as 
samples for IHC detection, so as to determine the protein 
expression of prognostic genes in these samples and eval-
uate the prognostic value of these genes. The research 
content was approved by the ethics review commit-
tee of the university, and all the subjects were informed 
and agreed. The samples were collected and then fixed 
in 10% formalin, placed at room temperature for half an 
hour, subsequently embedded in paraffin, processed into 
4-μm slices, deparaffinized, rehydrated, and boiled for 
10  min. Then immerse the slice in 3% hydrogen perox-
ide solution for 10 min, which could achieve the purpose 
of inactivation and avoid non-specific binding. Incubate 
the slice with 1% FBS in PBS for half an hour. After incu-
bation, the sections were stained by the secondary anti-
body combined with the primary antibody and HRP. The 
antibodies are detailed in Additional file 5: Table S5. Then 
the sections were stained continuously with 3,3′-diam-
inobenzidine and hematoxylin. After dehydration, the 
samples were sealed, observed and photographed. Repre-
sentative pictures of prognostic genes were displayed in 
our study. Finally, a quantitative analysis of IHC staining 
was conducted by ImageJ software.

Statistical analyses
Group comparison was made by the Wilcoxon test. Chi-
square test was used to check the difference of results of 
categorical variables, and Kaplan Meier test was used for 
the difference of survival rates between the two groups. 
Cox regression analysis was conducted on the collected 
data to determine the factors closely related to OS, and 
the corresponding regression analysis model was estab-
lished based on the results. The relationship between risk 
scores and drug resistance genes was determined by the 
Spearman method. The relationship between prognos-
tic gene expression and drug sensitivity was judged by 
the Pearson coefficient. R4.0.2 and SPSS23.0 software 
were used for data statistical analysis, and the correlation 
curves were drawn. P < 0.05 indicates that the difference 
of results is statistically significant.

Results
Screening of pyroptosis‑related prognostic genes
The flowchart for the screening of candidate genes was 
exhibited in Fig.  1. Among the 69 pyroptosis-related 
genes, 45 of them were expressed differentially between 
tumor and adjacent non-tumorous tissues, and 19 of 

them were linked to OS (Fig.  2A). Ultimately, 17 genes 
were survival-related and discovered to have significant 
differential expression, based on which a pyroptosis-
related gene signature was constructed. Figure  2B–C 
shows the prognostic genes and their hazard ratio. PPI 
networks and gene correlation networks revealed the 
interactions among these prognostic genes (Fig. 2D–E).

Construction of the prognostic signature
Five genes with maximum prognostic value (CASP3, 
IRAK1, MAPK1, MAPK3 and YWHAB) were found 
using LASSO Cox regression analysis (Fig.  2F–G). 
A pyroptosis-related prognostic model was con-
structed using the genes mentioned above in the 
TCGA cohort. The risk score = 0.97 × 10–2 × expres-
sion level of CASP3 + 0.65 × 10–2 × expression 
level of IRAK1 + 0.53 × 10–2 × expression level 
of MAPK1 + 0.83 × 10–2 × expression level of 
MAPK3 + 0.18 × 10–2 × expression level of YWHAB. 
According to the median cut-off value, the patients were 
grouped into either a high-risk group or a low-risk group 
(Fig. 3A). It was clearly demonstrated that patients in dis-
tinct risk groups were separated in discrete directions 
(Fig. 3B). In addition, patient survival in high-risk score 
group was significantly poorer than that in low-risk score 
group (Fig.  3E). Besides, time-dependent ROC analysis 
showed excellent performance of the prognostic signa-
ture (TCGA: 1-year AUC = 0.716, 2-year AUC = 0.665, 
3-year OS = 0.707) (Fig. 3F).

Validation of the prognostic signature
We further examined the prognostic signature in the 
ICGC cohort for additional independent validation. 
Patients were separated into different risk groups using 
the same formula and median value from the TCGA 
cohort (Fig. 3C). The results in the ICGC cohort were vir-
tually consistent with those in the TCGA cohort. Patients 
in different risk groups were separated in two directions 
and OS of patients in the high-risk group was signifi-
cantly worse than that in the low-risk group. (Fig. 3D, G). 
The AUC of the pyroptosis-related signature for 1-, 2-, 
and 3-year OS were 0.755, 0.721 and 0.707, respectively 
(Fig. 3H).

Clinical characteristics of patients in different risk groups
The proportion of tumor stage I-II patients in the high-
risk score group was significantly higher than that in the 
low-risk score group (P < 0.05), and vice versa for the pro-
portion of tumor stage III-IV (Fig. 4D). Likewise, a simi-
lar trend was seen in the ICGC cohort (Fig. 4G), though 
the difference was not statistically significant (P = 0.055). 
In addition, no significant difference in age, gender and 
tumor grade was observed between the two groups 
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(Fig.  4A–C, E–F). All these findings suggest that the 
tumor stage tended to be higher in patients with high-
risk scores.

Independent prognostic analysis of the pyroptosis‑related 
signature
The independent prognostic value of the risk score, 
each prognostic gene in the signature and clinical fea-
tures was evaluated by univariate and multivariate Cox 
analyses. Tumor stages, YWHAB and risk scores in the 
TCGA cohort and gender, tumor stages, CASP3, IRAK1, 
MAPK1, MAPK3, YWHAB and risk scores in the ICGC 
cohort significantly correlated with the patient sur-
vival prognosis in univariate analysis were subjected to 
multivariate analysis, and the results showed that the 
risk score and the tumor stage were statistically signifi-
cant (P < 0.05) (Fig. 5A, C). Clearly, the risk score was a 

prominent risk predictor after adjustment for known 
clinical and pathologic factors, but no single gene showed 
an independent prognostic value. Furthermore, the com-
bination of the risk score with the tumor stage could pro-
vide a more accurate prediction of 1-, 2-, 3- year OS in 
HCC (TCGA: 1-year AUC = 0.746, 2-year AUC = 0.745, 
3-year OS = 0.771; ICGC: 1-year AUC = 0.855, 2-year 
AUC = 0.747, 3-year OS = 0.756) (Fig. 5B, D).

Association between the signature and immune status
Next, five algorithms were performed to evaluate the 
correlation between immune cells and risk scores. It was 
found that the risk score was positively correlated with 
the infiltration of macrophages, myeloid dendritic cells, T 
cell regulatory (Treg), macrophage/monocytes and can-
cer-associated fibroblasts (Additional file 6: Fig. S1A, C). 
The expression of immune checkpoint genes including 

Fig. 1  Flowchart of the identification of candidate genes. The whole gene expression data set was subset to putative pyroptosis-related genes, and 
then differentially expressed genes (DEGs) from differential analysis were intersected with prognostic genes from univariate cox regression



Page 6 of 12Lin et al. BMC Medical Genomics            (2023) 16:2 

PDCD1 (PD-1), PDCD1LG2 (PD-L2), CTLA4, CD80, 
CD86, HAVCR2, LGALS9, CD276 and VTCN1 were also 
up‐regulated in the high‐risk group (Additional file 6: Fig. 
S1B, D). To further explore the immune status in different 

risk groups, we performed ssGSEA algorithm. In both 
the TCGA and the ICGC cohorts, the immune cell sub-
populations including aDCs, iDCs, macrophages, Tfh 
as well as Treg showed high infiltration in the high-risk 

Fig. 2  Screening pyroptosis-related prognostic genes and constructing a prognostic signature model. A Venn diagram of DEGs and prognostic 
genes. B The heatmap of candidate genes expression. C Forest plots showed the univariate Cox regression analysis of the candidate genes. D The 
PPI network of the candidate genes. E Gene correlation networks of candidate genes. Red color means a positive correlation, blue color means a 
negative correlation. F Selection of the penalty parameter (λ) in the LASSO model by tenfold cross-validation. The lower x-coordinate is the value 
of Log(λ), the upper x-coordinate is the number of candidate genes, and the dashed line is the number of candidate genes corresponding to the 
cutoff value of Log(λ). G LASSO coefficient profiles of the expression of 21 candidate genes

Fig. 3  Prognostic analysis of the pyroptosis-related signature in TCGA and ICGC cohorts. TCGA cohort (A, B, E, F), ICGC cohort (C, D, G, H). A, C 
Distribution of the risk scores. B, D PCA analysis shows the distribution of different risk groups. E, G Kaplan–Meier curves for OS of patients in 
high- and low-risk groups. F, H Time-dependent ROC curves of 1-year, 2-year and 3-year OS
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group (P < 0.05) (Additional file  6: Fig. S2A, B). Moreo-
ver, the scores of immune-related functions (CCR, Check 
point, MHC class I and parainflammation) in the high-
risk group were significantly higher than those in the 
low-risk group (Additional file  6: Fig. S2C, D). Besides, 
CIBERSORT and ESTIMATE were also performed to 

distinguish immune status in high- and low-risk groups 
(Additional file 6: Fig. S2E–H).

Function enrichment analysis
GO terms, such as cell cycle checkpoint, cell cycle G2/M 
phase transition, cell cycle G1/S phase transition, cell 

Fig. 4  Clinical characteristics in different risk groups. A, E Age-stratified patients (< 60 year and ≥ 60 year) in high- and low-risk groups. B, F 
Gender-stratified patients (male and female) in high- and low-risk groups. C Patients at different grades (G1-2 and G3-4) in high- and low-risk 
groups. D, G Patients at different stages (stage I-II and stage III-IV) in high- and low-risk groups

Fig. 5  Univariate and multivariate Cox regression analyses and time-ROC curves of clinical characteristics with risk scores. TCGA cohort (A, B), 
ICGC cohort (C, D). A, C Univariate and multivariate Cox regression analyses of clinicopathological parameters (age, gender, tumor grade, tumor 
stage), each prognostic gene in the signature (CASP3, IRAK1, MAPK1, MAPK3 and YWHAB) and the risk score. B, D The time-ROC curves of clinical 
characteristics, risk score, and risk score combined with tumor stage



Page 8 of 12Lin et al. BMC Medical Genomics            (2023) 16:2 

cycle DNA replication, signal transduction involved in 
cell cycle checkpoint and cellular response to hypoxia, 
were significantly enriched by GO enrichment analy-
sis (Additional file  6: Fig. S3A, C). In addition, KEGG 
pathway terms including cell cycle, hepatitis B, PD-L1 
expression and PD-1 checkpoint pathway in cancer, T 
cell receptor signaling pathway, VEGF signaling pathway, 
HIF-1 signaling pathway, EGFR tyrosine kinase inhibi-
tor resistance and hepatocellular carcinoma were signifi-
cantly enriched by KEGG analysis (Additional file 6: Fig. 
S3B, D). Intriguingly, the KEGG HCC signaling pathway 
was significantly enriched, whether in the TCGA data-
base or the ICGC database.

Expression levels of genes related to cell cycle and tumor 
angiogenesis
Wilcoxon tests showed that the expressions of cell cycle 
(CCNA2, CCNB1, CCNB2, CCND2, CCND3, CDC20, 
CDC23, CDC25A, CDC25B, CDC25C, CDK1, CDK2, 
CDK4, CDK7, CHEK1, CHEK2, E2F1, E2F3, E2F4 
and GSK3B) and angiogenesis-related genes (HIF1A, 
FDGFRA, FDGFRB, FDGFA, FDGFB, NRP1, NRP2, 
ANGPT2, VEGFB, FGFR1, FGFR2, FGFR3, RCBO1, 
RCBC3, SLIT1 and SLIT2) were increased in the high-
risk group than those in the low-risk group (Additional 
file 6: Fig. S4).

Tumor drug resistance analysis
So far, tumor drug resistance remains a main problem 
in tumor therapy, which urged us to further explore the 
correlation between the risk score and tumor drug resist-
ance. It was found in our study that the expression levels 
of MRP1, MRP4 and MRP5 in the high-risk group were 
higher than those in the low-risk group. Furthermore, the 
expression levels of MRP1, MRP4 and MRP5 were posi-
tively correlated with the risk score (Additional file 6: Fig. 
S5A–B). Besides, Pearson correlation analysis revealed an 
inverse correlation (P < 0.05) between the expression lev-
els of the prognostic genes and chemosensitivity (Addi-
tional file 6: Fig. S5C).

Knockdown of prognostic genes in HCC cell lines
To further substantiate the functions of the prognostic 
genes in the signature, siRNA knock-down experiments 
were performed. siRNA was transfected into HCC cells 
to inhibit the expression of CASP3, IRAK1, MAPK1, 
MAPK3, and YWHAB, respectively. Subsequently, we 
examined the changes in mRNA expression of immune 
checkpoint genes and angiogenesis-related genes. qRT-
PCR results showed that the majority of immune check-
point genes (PDCD1, HAVCR2, LGALS9 and VTCN1) 
and angiogenesis-related genes (PDGFRA, PDGFB, 
VEGFB and FGFR1) had significantly lower levels of 

mRNA expression in the GMPS knockdown group than 
in the control group (Additional file 6: Fig. S6).

IHC
The protein expression of the target genes was deter-
mined by IHC. The results showed that the expression of 
CASP3, IRAK1, MAPK1, MAPK3 and YWHAB in HCC 
tissues was significantly higher than that in adjacent 
non-tumorous tissues, which is consistent with RNA-
sequencing data from the public databases (Additional 
file 6: Fig. S7).

Discussion
Despite considerable advances toward the understanding 
of the molecular mechanism of HCC [22–24], it remains 
a major public health problem, especially in China [25, 
26]. The existing prognostic staging system still has many 
limitations in accurate prognosis prediction and individ-
ualized precision therapy [27, 28]. Therefore, continued 
efforts are needed to find better prognostic signatures to 
guide individualized treatment so that patients can profit 
more from precision therapy.

In this study, we built a pyroptosis-related gene sig-
nature, knowing that patients with similar clinical char-
acteristics such as the tumor stage may have different 
outcomes due to the heterogeneity of different epigenetic 
and genetic backgrounds in tumor subtypes [29]. Our 
study identified that the risk score was an independent 
prognostic factor of OS and it was superior to the tumor 
stage in predicting the OS of HCC patients. Combined 
with the tumor stage, the prognostic signature performed 
better in predicting OS. Therefore, the combined use of 
the five-gene signature and tumor stage may be more 
conducive to predicting the prognosis of HCC.

CASP3 used to be assumed as an executioner of apop-
tosis. However, the latest viewpoint proposes that cas-
pase-3 can cause GSDME-mediated pyroptosis [30, 31]. 
Also, it can promote cancer cell growth, cellular migra-
tion, invasiveness, and tumor angiogenesis [32–35]. 
IRAK1 is a critical mediator of toll-like receptor and 
interleukin-1 (IL-1) signaling pathways, playing a crucial 
role in innate immunity and inflammation. Disruption 
of these pathways is associated with numerous diseases, 
including malignancies including HCC [36, 37]. MAPK1 
(also known as ERK2) and MAPK3 (also known as ERK1) 
belong to the MAP kinase family. Both of them are asso-
ciated with the development and progression of multi-
ple tumors including HCC [38–40]. YWHAB encodes a 
number of 14–3-3 family proteins, of which 14–3-3β reg-
ulates multiple signaling pathways in normal and cancer 
cells [41]. Up-regulation of the 14–3-3β enhances HCC 
cell migration and proliferation [42, 43]. Collectively, all 
these prognostic genes in the model have been reported 
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to be involved in cancer initiation and progression and 
most of them show a close link with HCC, suggesting 
that these genes can potentially be used as prognostic 
biomarkers for HCC. Nevertheless, whether these genes 
affect the prognosis of HCC remains to be elucidated.

Subsequently, GO and KEGG pathway analyses were 
used to identify the potential role of DEGs. These genes 
were primarily manifested in cancer-associated path-
ways, such as cell cycle [44], focal adhesion [45, 46], ras 
protein signal transduction [47], canonical wnt signaling 
pathway [48, 49], cellular response to hypoxia [50], Notch 
signaling pathway [51, 52], VEGF signaling pathway [53], 
AMPK signaling pathway [54], HIF-1 signaling path-
way [55, 56], NF-kappa B signaling pathway [57], mTOR 
signaling pathway [58, 59], MAPK signaling pathway 
[60] and HCC. Of these, HCC is in line with our study 
subject. Based on these results, we speculated that these 
DEGs may contribute to the poor prognosis of HCC via 
activating the above biological pathways. Simultane-
ously, immune-related pathways, including T cell recep-
tor signaling pathway, B cell receptor signaling pathway, 
regulation of T cell activation, regulation of T cell differ-
entiation and antigen processing and presentation were 
significantly enriched, implying that immune dysfunction 
may also account for poor outcomes in HCC patients.

Additionally, we also noted that cell cycle-related path-
ways (cell cycle checkpoint, cell cycle G1/S phase tran-
sition, cell cycle DNA replication and cell cycle G2/M 
phase transition) and tumor angiogenesis-related path-
ways (HIF-1 signaling pathway, VEGF signaling pathway, 
mTOR signaling pathway and MAPK signaling pathway) 
were markedly enriched [53, 55, 61–64]. Aberrant cell 
cycle is known as a common feature of tumorigenesis 
[65]. Also, tumor angiogenesis is a pivotal step in tumor 
growth, invasion and migration [66]. So, we performed 
a further study on the cell cycle and tumor angiogenesis 
and found that cell cycle and angiogenesis genes were 
aberrantly up-regulated in the high-risk group. Further-
more, we discovered that the knockout of prognostic 
genes in the signature significantly reduced the expres-
sion of angiogenesis genes in HCC cells. Accordingly, 
high-risk scores are likely to be associated with cancer 
cell proliferation and angiogenesis through regulating the 
aforementioned genes and pathways. Meanwhile, inhibit-
ing the expression of pyroptosis-related prognostic genes 
can suppress tumor angiogenesis, thereby improving the 
prognosis of high-risk populations.

The tumor microenvironment (TME) plays an impor-
tant role in tumor progression and metastasis [67]. It was 
found in this study that the infiltration of macrophages 
and Treg in the high-risk group was significantly higher 
than that in the low-risk group and the risk scores were 
positively correlated with the infiltration of macrophages, 

Treg and cancer associated-fibroblasts, which are known 
as important components of TME [68, 69]. Macrophages 
as well as Treg are known to suppress anti-tumor immu-
nity and facilitate tumor progression [69–72]. Can-
cer-associated fibroblasts have also been reported to 
contribute to cancer progression [73, 74]. Intriguingly, 
immune checkpoint molecules of PD-1, PD-L2, CTLA4, 
CD80, CD86, HAVCR2, LGALS9, CD276 and VTCN1 
were up-regulated in the high-risk group. Moreover, 
our study demonstrated a significant decrease in the 
expression of PDCD1, HAVCR2, LGALS9 and VTCN1 
after silencing the prognostic genes in the signature. It 
is known that immune checkpoint inhibitory molecules 
can facilitate immune escape of cancer cells [75]. Hence, 
together with the immune dysfunction discussed above, 
we conclude that induction of immunosuppressive 
microenvironment seems to be associated with an unfa-
vorable prognosis of high-risk patients, and inhibiting the 
expression of pyroptosis-related prognostic genes may 
improve tumor immunosuppression.

Unexpectedly, we discovered that aDCs, iDCs and 
MHC class I were enriched in the high-risk group, and 
all of them are related to antigen presentation. Notably, 
antigen processing and presentation was enriched in the 
high-risk group suggesting the prognostic genes in our 
study may change the TME and immune status through 
affecting antigen presentation, but specific mechanisms 
warrant further investigation.

Additionally, PD1/PDL1 checkpoint attracted our spe-
cial attention. To the best of our knowledge, tumor cells 
can mediate tumor immune escape by utilizing the PD1 
/ PDL1 checkpoint [76, 77]. Interestingly, recent studies 
suggested that pyroptosis-induced inflammation could 
activate anti-tumor immune responses and sensitize 
cancer cells to anti-PD-1 therapy [78, 79]. More impor-
tantly, KEGG analysis revealed that PD-L1 expression 
and PD-1 checkpoint pathway in cancer was enriched 
in the high-risk group. Thus, the synergistic effect of 
pyroptosis induction and PD-1 inhibitors might pro-
duce potent anti-tumor effects in patients with high-risk 
scores, though additional studies are required to verify 
our supposition.

HCC is extremely resistant to traditional chemothera-
peutics, with only certain drugs yielding effective clinical 
responses [80]. Knowing that chemoresistance is a difficult 
problem in HCC treatment, we examined the impact of 
pyroptosis-related genes on chemosensitivity. Of note, the 
expression levels of target genes were inversely related to 
chemosensitivity and tumor drug resistance genes (MRP1, 
MRP4 and MRP5) were overexpressed in the high-risk 
group. Based on the aforementioned results, it is reason-
able to believe that chemotherapy resistance in high-risk 
patients may be caused by up-regulated expression of 
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MRP1, MRP4 and MRP5. In addition, target genes were 
significantly enriched in HIF-1 signaling pathway and cel-
lular response to hypoxia in our study. Hypoxia is known 
to closely contribute to chemoresistance in cancers and 
HIF1A is an important target for hypoxia-driven drug 
resistance [81, 82]. Therefore, we speculate that hypoxia 
is one of the possible causes of chemoresistance in the 
high-risk group. Chemotherapy drugs can activate caspase 
3, thereby specifically cleaving GSDME and ultimately 
inducing pyroptosis [31, 83]. Recently, a combined ther-
apy consisting of DNA demethylation (promote GSDME 
expression) and chemotherapy (trigger caspase-3-involved 
pyroptosis of tumor cells) attracts our sight. This combina-
tion strategy could stimulate immune responses through 
pyroptosis-induced cytokine release and suppress tumor 
growth, metastasis, and recurrence [84]. It is clear that cas-
pase-3 overexpression played a significant role in this pro-
cess in the high-risk group, indicating that this combined 
therapy strategy can better improve the poor outcome in 
the high-risk group.

Conclusion
In this study, we successfully generated a strong prog-
nostic signature which we believe can help further refine 
the prognostic predictive power of HCC. This pyropto-
sis-related signature may provide new insights into the 
immunity of HCC and suggest a possible direction for 
individualized treatment of HCC in future.
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