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Abstract 

Drugs produce pharmaceutical and adverse effects that arise from the complex relationship between drug targets 
and signatures; by considering such relationships, we can begin to understand the cellular mechanisms of drugs. In 
this study, we selected 463 genes from the DSigDB database corresponding to targets and signatures for 382 FDA-
approved drugs with both protein binding information for a drug-target score (KDTN, i.e., the degree to which the 
protein encoded by the gene binds to a number of drugs) and microarray signature information for a drug-sensitive 
score (KDSN, i.e., the degree to which gene expression is stimulated by the drug). Accordingly, we constructed two 
drug–gene bipartite network models, a drug-target network and drug-signature network, which were merged into 
a multidimensional model. Analysis revealed that the KDTN and KDSN were in mutually exclusive and reciprocal rela‑
tionships in terms of their biological network structure and gene function. A symmetric balance between the KDTN 
and KDSN of genes facilitates the possibility of therapeutic drug effects in whole genome. These results provide new 
insights into the relationship between drugs and genes, specifically drug targets and drug signatures.
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Background
Drugs produce pharmaceutical and adverse effects 
according to the complex relationship between drug tar-
gets and drug signatures [1]. As gene analysis has become 
more prevalent, studies on the association between genes 
and drugs have also become more widespread in the field 

of drug research. As examples, Nagaraj et al. used a com-
putational drug-repositioning approach to rapidly iden-
tify potent drug candidates for epithelial ovarian cancer 
treatment [2], Kim et  al. assessed reversal gene expres-
sion profiles for gastric cancer using computational drug 
repositioning [3], and Grenie and Hu investigated drugs 
for inflammatory bowel disease using genetic informa-
tion and computational methods [4]. In such studies, 
genes are divided into two categories: drug-target genes 
and drug-signature genes. Drug-target genes (also known 
as “druggable genes”) code for proteins that physically 
bind with the drug compound [5, 6], whereas drug-sig-
nature genes (also known as “drug-sensitive” genes) are 
differentially expressed due to drug–protein binding 
following drug treatment [1]. Studying the interactions 
between drug targets and drug signatures is important 
for drug discovery, drug repositioning, and identifying 
inference from potential adverse drug reactions [7, 8].
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Ideally, the study of drug-related genes in both catego-
ries should extend to all human genes without any limi-
tations. However, conventional studies have been limited 
to specific genes and specific drugs related to only a few 
diseases, and they have focused on only drug targets or 
drug signatures. Because such studies have investigated 
specific genes and drugs, the characteristics of all human 
genes in living cells are not typically taken into account. 
Additionally, for these reasons, conventional drug devel-
opment studies may show effects on the phenotype of 
interest, and the presence of treated subjects is typically 
perceived as a cause of bias in genome-wide association 
studies [9]. Therefore, in the present study, we focused 
on the relationship between drug targets and signatures 
based on their characteristics. Our aim was to identify 
the genetic landscape via a multidimensional network 
using genome-wide drug–gene binding data and gene 
expression data.

In general, drugs affect the activity of proteins that 
correspond to target genes. During drug treatment, bio-
logical networks are disturbed and the expression of 
many other genes is significantly changed by unexpected 
responses to the drug. Thus, the pharmaceutical and 
adverse effects of the drug occur through complex rela-
tionships among drug targets and drug signatures [1]. 
Changes in gene expression by drug treatment can imply 
a therapeutic effect at the cellular level. From another 
perspective, drug treatment can have a perturbative 
effect in cells via gene networks [10]. Indeed, changes in 
gene expression in cells to maintain homeostasis arise 
due to perturbation [11].

To elucidate genome-wide inter-relationships between 
drug-target genes and signatures, we selected genes cor-
responding to targets and signatures for drugs that have 
both protein binding information for drug-target score 
(KDTN) and microarray signature information for drug-
sensitive score (KDSN). KDTN represents the degree to 
which the protein corresponding to the gene binds to a 
large number of drugs, whereas KDSN represents the 
degree of the gene expression response following stimu-
lation by drugs. Overall, we explored the network-based 
genome-wide landscape by comparing the cellular and 
functional characteristics of drug targets and drug signa-
tures using the two variables KDTN and KDSN.

Results
Gene set analysis
Distribution of KDTN and KDSN in the DTSG set
First, the distributions of KDT and KDS for the DTSG 
set were analyzed. Each distribution and the three-
dimensional distribution for DTSG set were identified 
to elucidate the relationships between KDT and KDS. 
The three-dimensional plots demonstrate that the two 

distinct networks are reciprocally intertwined to consti-
tute a curved surface (Fig.  1). As shown in Fig.  1, KDT 
and KDS had high dimensional scale-free and power-
law distributions. It means genes highly connected in 
the drug-target network are least likely to be hubs in the 
drug-sensitive network, and vice versa [12].

Construction of the drug–gene network
The distributions of KDT and KDS for the DTSG set were 
compared with the D1 and D3 sets to determine whether 
the DTSG set had representativeness for the D1 and D3 
set and to show the tendency of the DTSG set before a 
drug–gene network was constructed. Results showed 
that the distributions of KDT and KDS for the DTSG 
set presented representativeness for D1 and D3 (Fig. 2). 
Once representativeness was confirmed, an integrative 
drug–gene interaction network for the DTSG set and the 
drugs was visualized. However, visualizing all the target 
genes and sensitive genes made it difficult to intuitively 
observe the characteristics of the network. Therefore, 
only the target genes and sensitive genes for about 5% of 
the 371 drugs included in the DTSG set were analyzed by 
random selection, and we also offer whole drug-gene net-
work of DTSG set as Additional file 2: Fig. S2.

The drug-target subnetwork and the drug-signature 
subnetwork were merged as a drug–gene subnetwork 
containing 253 nodes (16 drug and 237 genes) and 435 
edges. As shown in Fig.  3 (in which the black-colored 
nodes represent drugs, the blue-colored nodes represent 
sensitive genes, and the green-colored nodes represent 
target genes), the relationships between the target genes 
and sensitive genes were exclusive and independent 
(Fig. 3). The whole drug-gene network described as Addi-
tional file 2: Fig. S1B.

Enrichment analysis
GO/KEGG pathway [13] analysis for the DSG, DTSG, 
and DTG sets. Through GO analysis, the cellular com-
ponents, biological processes, and molecular functions 
associated with each gene set were investigated. In the 
DTG set, 257 genes were associated with 13 cellular com-
ponents, 28 biological processes, 20 molecular functions, 
and 11 KEGG pathways (FDR-adjusted p-value < 0.05). 
In the DSG set, 8,770 genes were associated with 41 cel-
lular components, 63 biological processes, 21 molecu-
lar functions, and 8 KEGG pathways (FDR-adjusted 
p-value < 0.05). In the DTSG set, 463 genes were asso-
ciated with 24 cellular components, 95 biological pro-
cesses, 35 molecular functions, and 28 KEGG pathways 
(FDR-adjusted p-value < 0.05).

GO analysis revealed that most proteins synthesized 
by drug-sensitive genes were located in inner cellular 
zones such as the nuclear chromosome, nuclear pore, 
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and nucleosome rather than in outer cellar zones such as 
the cell wall. The proteins synthesized by drug-sensitive 
genes were shown to be involved in gene transcription, 
gene expression regulation, and DNA replication, and to 
function in DNA, RNA, and protein binding. In contrast, 
GO analysis showed that most proteins synthesized by 
drug-target genes were located in outer cellular zones and 
played roles, for example, in receptor complexes, voltage-
gated channel complexes, synapses, and cell junctions. 
Most proteins synthesized by drug-target genes were 
found to be involved in the catabolic process of cGMP 
and cAMP and in transmission and transport processes; 
they played roles in ion channels and enzyme activity.

As shown in Fig.  4, only 6 terms (GO and KEGG) 
from 114 terms associated with the three gene sets 

(DTG, DSG, and DTSG) overlapped. Two cellular com-
ponent terms overlapped in the DTG and DTSG sets: 
postsynaptic membrane and voltage-gated calcium 
channel complex. Of the molecular function terms, 
3′,5′-cyclic-nucleotide phosphodiesterase activity and 
3′,5′-cyclic-AMP phosphodiesterase activity over-
lapped in the DTG and DTSG sets. From the biologi-
cal processes terms, only one term overlapped between 
the DTG and DTSG sets: cAMP catabolic process. 
Similarly, one KEGG pathway term, morphine addic-
tion pathway, overlapped in the DTSG and DTG sets. 
These results suggest that drug-target genes and drug-
sensitive genes are exclusive and independent in terms 
of their cellular locations, genetic functions, processes, 
and pathways.

Fig. 1  Degree distribution of the DTSG set. A Reverse-cumulative distribution of KDT within the DTSG set. B Reverse-cumulative distribution of KDS 
within the DTSG set. C Reciprocal relationships of the multidimensional network shown through three-dimensional plots
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Transcription factor (TF) analysis
In gene set analysis, it is important not only to character-
ize the gene set but also to identify the number and type 
of TFs as this can help to improve understanding of gene 
regulatory networks. Thus, we examined whether there 
were differences in the number of TFs involved in each 
gene set (Fig. 5b). We used X2Kweb [14] as a TF analy-
sis tool to examine the binding frequency and types of 
TFs for each gene set. Results showed that TFs bound on 
DNA strands on average six times per gene in the DSG 
set, which was three-fold greater than the TF binding in 
the DTG and DTSG sets (both two times per gene on 
average, Fig.  5a). In total, 737 TFs were associated with 
the three gene sets. Of these, 30 TFs overlapped between 
two or more gene sets as shown in Fig. 5b. Therefore, the 
TFs involved in each gene set differed. Of the 30 overlap-
ping TFs, 9 were derived from essential genes in humans 
(< 10% of all human genes are considered essential) [15].

Core gene analysis of DTN and DSN
Characterization of the core genes in KDT and KDS 
for the DTG and DSG sets was examined by applying 
a peeling algorithm. Each network that included > 50 

genes was analyzed according to m-core. m-core of 
network is defined as a maximal connected subgraph 
of network in which all vertices have a degree of at 
least m [12]. As a result, m-coreDSN had 1 to 36 core 
gene groups whereas m-coreDTN had 1–17 core gene 
groups. Figure 6 indicates the gene ontological charac-
terization in each network according to m-core. In cel-
lular component analysis, the core genes of each DSN 
and DTN showed exclusive distributions. Proteins syn-
thesized by core genes of the DSN were located in the 
cytosol, cytoplasm, nuclear chromosome, and nucleo-
some. Conversely, proteins synthesized by the core 
genes of the DTN were located in the synapses, den-
drites, plasma membrane, and axon terminus. In molec-
ular function analysis, the core genes of each DTN and 
DSN were also exclusively distributed. Proteins synthe-
sized by the core genes of the DSN functioned during 
cell–cell adhesion and in protein heterodimerization 
activity by binding proteins and cadherin. The proteins 
synthesized by the core genes of the DTN functioned in 
ion binding, hormone binding, chemical receptor activ-
ity, and enzyme activity functions (Additional file 1: Fig. 
S1A). In biological processes analysis, the core genes 

Fig. 2  Reverse-cumulative distribution of KDT for D1 and the DSTG set; reverse-cumulative distribution of KDS for D3 and the DTSG set. A 
Reverse-cumulative distribution of KDT for 720 genes from the D1 target genes. B Reverse-cumulative distribution of KDSN for 9,233 genes from the 
D3 sensitive genes. C Reverse-cumulative distribution of KDTN for 463 genes from the DTSG set. C Reverse-cumulative distribution of KDSN for 463 
genes from the DTSG set
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of the DSN and DTN networks also showed exclusive 
distributions. Proteins synthesized by the core genes of 
the DSN were involved in the PERK-mediated unfolded 
protein response, response to hypoxia, positive regu-
lation of angiogenesis, and regulation of cell death. In 

contrast, proteins synthesized by the core genes of the 
DTN were involved in the response to drugs, dopamine 
transport, receptor signaling pathways, and monoter-
penoid metabolic processes (Additional file 1: Fig. S1B).

Fig. 3  The drug–gene subnetwork of the DTSG set. The subnetwork of the drug–gene multidimensional network included about 5% of the drugs 
in the DTSG set. (black: drugs, blue: sensitive genes, green: target genes, purple: PTGER2)

(See figure on next page.)
Fig. 4  Gene Ontology analysis of each gene set. Top 10 GO terms for A cellular component, B biological process, and C molecular function from 
each gene set. D Top 8 KEGG pathway terms from each gene set. Through KEGG pathway analysis (figure), it was revealed that drug-sensitive genes 
were involved in central dogma-related pathways such as the spliceosome, transcriptional regulation, and protein-processing progress. However, 
drug-target genes were involved in neural signaling pathways such as addiction to nitrogen, nicotine, and morphine, serotonergic synapses, and 
retrograde endocannabinoid signaling
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Fig. 4  (See legend on previous page.)
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In summary, characterizations of genes in the DSG, 
DTG, and DTSG sets in terms of GO and KEGG path-
ways could clearly be distinguished. In addition, the 
numbers and types of TFs differed among the DSG and 

DTG sets with different binding frequencies of the TFs 
on DNA strands. Finally, m-core analysis of the core 
genes in each DSN and DTN exhibited reciprocal bal-
anced characteristics.

Fig. 5  (A) Binding frequency of transcription factors per gene involved in the DSG, DTG, and DTSG sets. B The number of transcription factors 
derived from the DSG, DTG, and DTSG sets

Fig. 6  Cellular component analysis of the core genes from each gene set
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Discussion
Here, we investigated the relationships between two major 
gene groups, i.e., target and signature genes, according to 
various perspectives related to drug discovery and develop-
ment. Our purpose was not only to investigate the relation-
ship between DTG and DSG sets but also to demonstrate 
the genome-wide landscape of drug–gene multidimen-
sional networks based on relationships between DTNs and 
DSNs. We classified genes into three sets based on their 
operational roles such as their physical binding and/or 
response to drugs. First, we constructed DTNs and DSNs 
from experimental data such as drug-target and drug-sig-
nature data. Subnetworks were constructed using experi-
mental data from drug targets and drug signatures. In a 
multidimensional network model constructed by merging 
each subnetwork, the KDTN and KDSN of the DTG, DSG, 
and DTSG sets were calculated; thus, the mean network 
interaction degree of each subnetwork was calculated. The 
three gene sets, namely DTG, DSG, and DTSG, were com-
pared in four ways: (1) the distribution between KDTN and 
KDSN, (2) GO and KEGG pathway analysis, (3) the num-
ber and type of TFs, and (4) GO analysis with m-coreDSN 
and m-coreDTN according to KDSN and KDTN.

Sorting gene processes using D1 and D3 showed that 
drug targets are not usually affected by the drug as 
reported in a previous conventional study [16]. Therefore, 
only 463 genes intersected between 720 DTG and 9,233 
DSG sets. The degree distributions of KDTN, KDSN, 
and subnetwork visualization showed that the relation-
ship between the DTG and DSG sets was exclusive. Each 
degree of KDTN and KDSN showed a power-law dis-
tribution and their relationship was reciprocal. This is 
indirect evidence that the response of cells to drugs is 
structured and organized systematically [17, 18].

The relationships of GO terms (cellular component, 
molecular functions, and biological process) and KEGG 
pathways between the DTG, DSG, and DTSG sets was 
also reciprocal. This shows that the DTG and DSG sets 
have distinct functional differences in cells. Thus, studies 
to investigate target genes, not signature genes, should be 
conducted according to aspects of GO and KEGG path-
ways, as shown in the current study.

TF analysis of each gene set showed that the average 
binding frequency of TFs involved in the DSG set was six 
times per gene. The TFs involved in each gene set were 
also exclusive and different. Thus, genes acting as drug 
signatures seem to be regulated with binding frequencies 
three-fold greater than those of genes acting as drug tar-
gets. Consequently, genes regulated with 1–3 TFs would 
be good candidates for drug-target genes.

GO analysis using the m-core of each network showed 
that the functional and spatial characteristics of the 

target gene core and the signature gene core differ. Mutu-
ally exclusive characteristics were also exhibited.

In conclusion, the expression of target genes was barely 
affected by drug treatments. Therefore, the pharmaceutical 
effect of drugs was due to the DSGs for which expression 
levels were significantly changed by drug treatment rather 
than the direct action of DTGs. These complex drug–
gene relationships can produce drug side effects as well 
as therapeutic effects. This study provides a potential new 
approach to discovering drugs. However, further studies 
are needed to identify the therapeutic effects and adverse 
drug reactions associated with the relationship between the 
DTN and DSN.

Methods
Data
The drug and genome database DSigDB (http://​dsigdb.​
tanlab.​org/​DSigD​Bv1.0/) [19] is an open-source database 
that currently includes 22,527 gene sets and consists of 
17,389 unique compounds covering 19,531 genes. Gene 
sets provide seamless integration by which to link gene 
expression with drugs/compounds. DSigDB organizes 
drugs and small molecule-related gene sets into four 
domains based on data for drug-induced quantitative 
inhibition and/or changes in gene expression. The data 
from DSigDB contains four domains (D1–D4) that col-
lect drug and genome data for four purposes, as shown 
in Table  1. The D1 and D3 domain datasets were used 
to construct each drug-target network (DTN) and drug-
sensitive network (DSN) in this study.
Construction of the network
FDA-approved drugs for which both protein binding data 
and microarray experiment data were available were used 
from the DSigDB database. Following these principles, the 
D1 and D3 datasets were used and matched to their drug 
and gene ID terms.

In the process of matching terms from each domain, the 
Pubchem compound term (https://​pubch​em.​ncbi.​nlm.​nih.​
gov/) [23] and Entrez term (https://​www.​ncbi.​nlm.​nih.​gov/​
Web/​Search/​entre​zfs.​html) [24] were used as the drug and 
gene ID. Consequently, 382 drug compounds and 9,490 
genes intersecting with D1 and D3 were extracted (Fig. 7A). 
Using these data, the DTN and DSN were constructed 
from calculated gene scores, i.e., KDTN and KDSN, based 
on the relationship between drugs and genes as follows:

Tj = (KDTN ) =
∑

j

tij

tij = 1(Drug i binds gene j)
= 0(else)

http://dsigdb.tanlab.org/DSigDBv1.0/
http://dsigdb.tanlab.org/DSigDBv1.0/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/Web/Search/entrezfs.html
https://www.ncbi.nlm.nih.gov/Web/Search/entrezfs.html
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Si = (KDSN ) =
∑

j

sij ,

where the range of KDTN and KDSN was from 1 to 186 
and from 1 to 104, respectively, and the number of genes 
with KDTN ≥ 1 and KDSN ≥ 1 was 720 and 9,233, respec-
tively. Among these genes, 463 simultaneously had both 
KDTN ≥ 1 and KDSN ≥ 1. From the relationship between 
the KDTN and KDSN of genes, the genes were divided 
into three groups as shown in Fig. 1A: the DTG set (drug-
target genes: 257 genes), DSG set (drug-sensitive genes: 
8,770 genes), and the DTSG set (drug-target and -sensi-
tive genes: 463 genes).

Figure 7B shows the process by which a drug–gene net-
work was constructed. Two kinds of bipartite network 
(DTN and DSN) were constructed, which were then 
merged into a multidimensional network. For example, 
Gene A binds to three drugs among nine drugs in the 
DTN (drug 2, 3, and 4) but its expression was changed 
by only one drug in the DSN (drug 7). Using such analy-
ses, the target score and drug-sensitive score of each gene 
from the binary network model were calculated.

Analysis
Gene enrichment analysis and network analysis were 
conducted in three groups of genes (DTG, DTSG, and 
DSG) using Gene Ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway analy-
ses via DAVID (https://​david.​ncifc​rf.​gov/) [25]. The top 
10 GO terms and top 8 KEGG pathway terms for each 
gene group, i.e., those terms that were most enriched, 
were determined and are shown in Fig. 4. The distribu-
tions among KDTN of D1, KDSN of D3, and KDTN and 
KDSN of DTSG were compared using the ggplot pack-
age in R. We then constructed a drug-target bipartite 
network for the drugs and genes involved in the DTSG 
set using Cytoscape. For network visualization, 19 
drugs and 170 genes were used; these 19 drugs repre-
sented about 5% of the 371 drugs included in the DTSG 

(

sij = 1(adjust p-value < 0.05 and FC > 2 or FC < 0.5)
= 0(else)

)

Table 1  DB table from DSigDB

Domain Purpose

D1 A total of 1,202 Food and Drug Administration (FDA)-approved drugs including 1,288 target genes. Here drug-target gene refers to the gene-
coded proteins that physically bind and interact with drug compounds

D2 In total, 1,220 kinase inhibitors (1,065 unique kinase inhibitors) covering 407 kinases that frequently mutate in various cancers

D3 Gene expression profiles obtained by induction with compounds. In total, 7,064 gene expression profiles were collected from three cancer 
cell lines perturbed by 1,309 compounds from CMap (build 02) [20]. Compounds that were profiled by multiple cell lines were unified and 
genes with > twofold change relative to the control (either up- or downregulation) were considered as gene sets

D4 In total, 10,830 and 5,163 gene sets were compiled from the Therapeutics Targets Database [21] and the Comparative Toxicogenomics Data‑
base [22], respectively, which were extracted from literature using a mixture of manual curation and text mining approaches

Fig. 7  Construction of the drug–gene network. A Venn diagram of 
gene groups and the number of genes in each gene set for 382 drugs 
(DTGs: drug-target genes; DTSGs: drug-target and sensitive genes; 
DSGs: drug-sensitive genes). B Process of the drug–gene network 
construction

https://david.ncifcrf.gov/
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set. Furthermore, network analysis was conducted 
using the concept of m-core decomposition to analyze 
the central function according to KDTN and KDSN. A 
“peeling algorithm” aims to characterize a network hub 
and elucidate the relationships between nodes based on 
network connectivity [12]. In a multidimensional net-
work, the nodes represent the drugs and genes of the 
DTG and DSG sets, respectively, and the edges repre-
sent the relationships between drug-target genes or 
drug signatures. In the present study, we applied a peel-
ing algorithm represented by m-core [12]. Specifically, 
m-coreDSN and m-coreDTN are defined as the maxi-
mal connected subgraph of the DSN and DTN, respec-
tively, in which all genes have a degree of KDSN and 
KDTN greater than the m value.

Abbreviations
KDSN	� Degree of Drug-Sensitivity Network
KDTN	� Degree of Drug-Target Network
D1	� Domain 1 (DSigDB)
D2	� Domain 2 (DSigDB)
D3	� Domain 3 (DSigDB)
D4	� Domain 4 (DSigDB)
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