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Abstract
Background Human endogenous retroviruses (HERV) are repetitive sequence elements and a substantial part of 
the human genome. Their role in development has been well documented and there is now mounting evidence 
that dysregulated HERV expression also contributes to various human diseases. While research on HERV elements has 
in the past been hampered by their high sequence similarity, advanced sequencing technology and analytical tools 
have empowered the field. For the first time, we are now able to undertake locus-specific HERV analysis, deciphering 
expression patterns, regulatory networks and biological functions of these elements. To do so, we inevitable rely 
on omics datasets available through the public domain. However, technical parameters inevitably differ, making 
inter-study analysis challenging. We here address the issue of confounding factors for profiling locus-specific HERV 
transcriptomes using datasets from multiple sources.

Methods We collected RNAseq datasets of CD4 and CD8 primary T cells and extracted HERV expression profiles for 
3220 elements, resembling most intact, near full-length proviruses. Looking at sequencing parameters and batch 
effects, we compared HERV signatures across datasets and determined permissive features for HERV expression 
analysis from multiple-source data.

Results We could demonstrate that considering sequencing parameters, sequencing-depth is most influential 
on HERV signature outcome. Sequencing samples deeper broadens the spectrum of expressed HERV elements. 
Sequencing mode and read length are secondary parameters. Nevertheless, we find that HERV signatures from 
smaller RNAseq datasets do reliably reveal most abundantly expressed HERV elements. Overall, HERV signatures 
between samples and studies overlap substantially, indicating a robust HERV transcript signature in CD4 and CD8 T 
cells. Moreover, we find that measures of batch effect reduction are critical to uncover genic and HERV expression 
differences between cell types. After doing so, differences in the HERV transcriptome between ontologically closely 
related CD4 and CD8 T cells became apparent.
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Background
Unique gene expression profiles define identity and activ-
ity of human cells in both physiological and pathological 
contexts. They can be determined by genome-wide anal-
ysis of cellular transcripts using high throughput next-
generation sequencing (NGS), so called transcriptome 
profiling. Transcriptomic analysis has vastly evolved 
since its beginnings in the 1990s and has been fundamen-
tal in studying and understanding molecular mechanisms 
of cell physiology and pathology. Standard transcriptomic 
studies focus on about 20.000 annotated protein-coding 
and up to 40.000 non-protein-coding genes present in 
the human genome. These make up around 4% of the 
human genomic content. However, transcription can 
occur genome-wide, also in the vast majority of genomic 
regions not classically defined as genes. Indeed, mount-
ing evidence suggests, that transcripts emerging from 
these often disregarded regions contribute actively to cell 
physiology though regulatory or instructive roles [1–4].

Human endogenous retroviruses (HERVs) are evolu-
tionary acquired genomic elements derived from retro-
viral germline infections [5]. HERVs classify as one type 
of transposable element and occupy a notable 8–10% of 
the human genome [6]. They all derive from a proviral 
structure, that originally consisted of the viral gag, pro, 
pol and env genes flanked by two long terminal repeats 
(LTR) containing regulatory elements such as promoter, 
poly-adenylation signals and multiple binding sites for 
nuclear proteins. Today, the majority of HERVs exist as 
fragmented remnants of this structure, often solitary 
LTRs [5, 7]. Notably, HERV elements show a very high 
degree of sequence similarity, in particular within HERV 
families. These families consist of 100s to thousands of 
single elements with different lengths dispersed through-
out the genome. HERVs thus classify as part of the repeti-
tive genome [2, 7–9].

Numerous studies have shown that HERV families are 
transcribed in human tissues in development, health and 
disease [10–14]. Depending on the structural arrange-
ment of the HERV element, transcription can generate 
non-coding as well as protein-coding RNA. In addition, 
even transcriptional activity arising from solo-LTRs or 
indeed their active repression can impact on transcript 
levels of human genes in physical proximity [15–17]. 
HERVs have thus been associated with various biological 
processes, e.g. placentation and maintenance of stemness 

in development, aging and innate immune responses, 
cancerogenesis, neurodegeneration and autoimmune 
activity [10, 17–23]. In many cases, these findings have 
been based on technical assays such as quantitative PCR 
or RNA expression microarrays that fail to address locus-
specific genome-wide transcription patterns. Analysis of 
the HERV transcriptome at genome-wide level through 
NGS-based RNA sequencing (RNAseq), has been ham-
pered by the repetitive sequence nature of HERV ele-
ments. With no possible clear assignment to a genomic 
source, ambiguous reads are traditionally disregarded 
and excluded from transcriptome analysis, making com-
prehensive HERV transcriptomics unattainable.

To overcome this issue, different bioinformatic tools 
dedicated to HERV RNAseq data have recently been 
described that aid with mapping of ambiguous transcript 
reads [24, 25]. These tools use statistical approaches 
based for example on the Bayesian mixture model or 
heuristic approaches, implementing specific filtering 
criteria for transcript mapping. Mapping is done on spe-
cific HERV loci annotations, often manually curated, 
that specify genomic positions of HERV elements. By 
implementing these tools, first studies on comprehensive 
genome-wide locus-specific analyses of HERV transcrip-
tion have been undertaken [24–26]. They demonstrate a 
cell-type and disease-specific pattern of HERV transcrip-
tional activity, reminiscent of the unique and state-spe-
cific cellular transcriptome of classical genes [25]. These 
studies also begin to show an intriguing complexity of 
HERV and host gene interplay. For example, deregula-
tion of HERVs in acute myeloid leukemia appears to alter 
adjacent gene expression through exposure of HERV-
inherent enhancers, promoting oncogenesis [27]. On the 
other hand, activation of HERV elements in various solid 
cancer types has been demonstrated to upregulate tran-
scriptional suppressors of the Krüppel-associated box 
domain-containing zinc-finger protein family (KZFPs) 
encoded adjacent to deregulated HERVs. This in turn was 
associated with tumor suppression and improved disease 
conditions [28]. As for viral infections, locus-specific 
HERV transcriptome signatures have been proposed to 
differentiate between cellular infections with distinct 
viruses, again indicating a complex and locus-specific 
HERV/host interplay [26].

These data argue that genome-wide HERV tran-
scriptome studies could provide new insights into the 

Conclusion In our systematic approach to determine sequencing and analysis parameters for detection of locus-
specific HERV expression, we provide evidence that analysis of RNAseq datasets from multiple studies can aid 
confidence of biological findings. When generating de novo HERV expression datasets we recommend increased 
sequence depth ( > = 100 mio reads) compared to standard genic transcriptome pipelines. Finally, batch effect 
reduction measures need to be implemented to allow for differential expression analysis.
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complexity of human genome function at a level so far 
unexplored. HERV transcriptomics could lead to a better 
understanding of human pathology, aiding with the quest 
for disease-specific biomarkers and therapeutic targets. 
In future, studies are hence likely to be focusing increas-
ingly on the contribution of HERV elements to cell physi-
ology. This will require extensive mining of RNAseq 
datasets. Since RNAseq experiments are costly, require 
considerable technical skill and source materials can be 
rare, the community will rely heavily on the wide array of 
datasets already available in the public domain. However, 
RNAseq datasets are not per se standardized as to tech-
nical parameters and quality of input material. They differ 
in depth of coverage, i.e. the number of reads per sample 
collected within one sequencing run, and in read lengths, 
i.e. the number of base pairs (bp) read at a time. Further-
more single-end versus paired-end reading can be distin-
guished, specifying whether sequencing is done from one 
or both ends of the cDNA fragment. Standard RNAseq 
experiments vary between 20 million (mio) up to 200 mio 
read depth with 50 to 150  bp read length, using single 
or paired end technology. Quality of the input material 
also differs greatly and is generally assessed using estab-
lished quality control parameters (e.g., phred score per 
bp, PCR duplicated reads, read length distribution, per-
centage of mappable reads). For analysis of cellular genes, 
certain optimal technical parameters have been empiri-
cally determined depending on the query. For HERV 
transcriptomic analysis however, it is largely unknown 
how technical specifics of the RNAseq dataset impact on 
the results. While there are indications that for example 
single and paired-end technologies might influence out-
comes [24, 29], a detailed, comprehensive analysis in this 
context is lacking.

To address this issue, we have undertaken HERV tran-
scriptome analysis of primary CD4 and CD8 T cells, 
using several publicly available RNAseq datasets with dif-
fering technical parameters. Our analysis is based on the 
ERVmap tool, determining expression of 3220 near full-
length HERV elements from 3 different HERV classes 
(12 supergroups, 71 groups) [7, 25]. We focus in par-
ticular on how differences in sequencing depth and read 
length impact on the recovered HERV transcriptome and 
whether datasets of the same cell type lead to comparable 
results between different studies.

Methods
RNA-seq datasets
We obtained RNA sequencing datasets from multiple 
studies via the NCBI Sequence Read Archive (SRA) using 
the SRA Toolkit v3.00 (https://trace.ncbi.nlm.nih.gov/
Traces/sra/sra.cgi?view=software SRA Toolkit Develop-
ment Team). Dataset descriptions are provided in Table 1. 
Dataset accession numbers: Tan et al. [30] (SRR11031268, 

SRR11031269, SRR11031270, SRR11031271, 
SRR11031272, SRR11031273, SRR11031274, 
SRR11031275, SRR11031276); DFG (SRR12095608, 
SRR12095609, SRR12095616, SRR12095617); Lopusna 
et al. [31] (SRR12224910.16 (combined SRR12224910 to 
SRR12224916), SRR12224917, SRR12224918.24 (com-
bined SRR12224918 to SRR12224924), SRR12224925); 
Linsley et al. [32] (SRR1550989, SRR1550990, 
SRR1551050, SRR1551051, SRR1551057, SRR1551058, 
SRR1551071, SRR1551072); White et al. [33] 
(SRR5891091, SRR5891092, SRR5891093, SRR5891094); 
UWashington.HREMP (SRR643766, SRR644512, 
SRR644513, SRR644514, SRR453391, SRR980471); 
Bediaga et al. [34] (SRR8534322, SRR8534326, 
SRR8534327, SRR8534328); ENCODE.SUNY-Albany 
(SRR3192487, SRR3192488, SRR3192489); CSHL 
(SRR307911.2 (combined SRR307911 and SRR307912)); 
Caltech(SRR521477.84 (combined SRR521477 to 
SRR521484), SRR521501.2 (combined SRR521501 
and SRR521502), SRR52150, SRR521513.5 (combined 
SRR521513 to SRR521515)).

Dataset Quality Control
Datasets derived from one biological sample available 
as multiple files in the SRA database were combined 
using the Unix ‘cat’ function, prior to read mapping. 
Initial dataset quality was visualized using FastQC and 
MultiQC reports [35, 36]. Subsequently, Illumina reads 
were quality trimmed using TrimGalore! (v0.6.4; https://
github.com/FelixKrueger/TrimGalore), removing low 
quality reads and sequencing adapter in automatic detec-
tion mode. These quality validated fastq files went into 
downstream read alignment pipelines.

HERV expression quantification using ERVmap pipeline
Read mapping was done on the human genome reference 
build GRCh38 (hg38). HERV expression analysis was 
performed on the 3220 near-full length HERV elements, 
gathered in Tokuyama et al. [25], since the chance of 
detecting HERV transcripts is highest in these elements 
compared to solo-LTR elements for instance.

Reads were aligned with Burrows-Wheeler Aligner 
(BWA v0.7.17) using standard settings (‘bwa mem’) [37]. 
Subsequently, mapped reads with high accuracy where 
filtered following the ERVmap criteria and using the 
original, unmodified ERVmap perl script parsing the 
CIGAR field of mapped reads [25] (https://github.com/
mtokuyama/ERVmap). In summary, the script filters 
for reads that have (i) one best match for alignment, (ii) 
the second best match must have at least one additional 
mismatch and (iii) must not have more than X mis-
matches in total (X is calculated relative to read length of 
sequence data; i.e. X equals 3 in 150 bp paired-end reads)
[25]. Next, SAM to BAM file conversion and processing 

https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software
https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore
https://github.com/mtokuyama/ERVmap
https://github.com/mtokuyama/ERVmap
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was performed using samtools (v1.10) ’view’, ’sort’ and 
’index’ commands [38]. With bedtools (v2.5.1) [39] func-
tion ’coverage’ raw read counts for the 3320 near full-
length HERV elements were obtained. All datasets were 
analyzed using this ERVmap pipeline, whereas selected 
datasets were additionally analyzed using the Telescope 
pipeline (Figure S3).

HERV expression quantification using Telescope pipeline
Another pipeline that was used for HERV expression 
analysis was the Telescope pipeline, which contains a ref-
erence annotation containing 14,968 manually curated 
HERV loci and is designed for solving multimapping 
reads [24]. These HERV loci are defined by combining 
RepeatMasker annotations located in adjacent or nearby 
genomic regions, and belonging to the same HERV sub-
family (https://github.com/mlbendall/telescope_anno-
tation_db)(24). It uses a generative model of RNA-seq 
for reassigning the ambiguously mapped fragments to 
the most probable source transcript, and thus addresses 
the uncertainty in fragment assignment [24]. Here, first 
reads were subjected to a very sensitive local alignment 
(--very-sensitive-local) to the human reference genome 
hg38 using Bowtie 2 with a minimum alignment score 
threshold of 95% (--score-min L,0,1.6) along with a maxi-
mum of 100 alignments per reads (-k 100)[24, 40]. The 
mapped BAM files were then analyzed using Telescope, 
which includes Bayesian reassignment and up to 200 iter-
ations of the expectation-maximization algorithm[24]. 
Finally, from the resulting report, “final counts” columns 
were retrieved, which represented the HERV count data.

Gene expression quantification
Read mapping was done on the human genome reference 
build GRCh38 (hg38). Reads were mapped with HISAT2 
(v2.1.0) [41]. SAM to BAM file conversion was handled 
as stated above using samtools (v1.10) ’view’, ’sort’ and 
’index’ commands [38]. Finally, raw cellular transcript 
counts were quantified using the HTSeq-count tool 
(v0.13.5) [42].

Expression data analysis
Further downstream analysis and visualization was per-
formed in R (v4.2.0) including the packages DESeq2 
(v1.36.0) [43], limma (v3.52.4) [44], ggplot2 (v3.3.6), 
pheatmap (v1.0.12), ggVennDiagram (v1.2.0) and plot_
matrix (v1.6.2). DESeq2 read normalization method 
(median of ratios) was used on cellular gene transcript 
counts to obtain size factors for each dataset. These size 
factors were then applied to HERV transcript counts, 
allowing comparison between samples [25, 43, 45].
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Results
Genome-wide detection of HERV transcripts in primary 
human T cells is susceptible to technical parameters of 
RNAseq datasets
The primary goal of our study was to understand how 
different RNAseq datasets perform for HERV transcrip-
tomic analysis. We decided to focus on two well-char-
acterized human immune cell types, namely CD4 + and 
CD8 + T cells. For both cell types, a considerable number 
of RNAseq datasets is available in the public domain. In 
addition, we selected primary cell types for increased 
translatability. We mined public repositories and 
retrieved 25 RNAseq datasets from 7 studies for primary, 
non-activated CD4 + T cells and 12 datasets from 5 stud-
ies for primary, non-activated CD8 + T cells (study details 
summarized in Table 1). Our dataset collection includes 
samples from larger sequencing consortia (Human 
Reference Epigenome Mapping Project (HREMP) & 
ENCODE) as well as datasets from smaller research 
groups. All studies applied Illumina-based sequencing 
technology but utilizing different platforms and technical 
parameters (Table 1). All but two studies used paired-end 
sequencing (Table 1). All but two studies (T cell isolation 
from cord blood) had lymphocytes isolated from periph-
eral blood samples. In five studies, CD4 and CD8 T cells 
were isolated from the same donor (matching datasets). 
Depth of sequencing ranged between 18,7 and 546,5 mio 
reads per sample (mean ± SD: 115,0 ± 128,3 mio) and read 
lengths ranged from 50 to 150 bp per reads.

Datasets were subsequently analyzed to retrieve HERV 
transcripts using ERVmap as previously described [25]. 
This pipeline allows for genome-wide locus-specific 
HERV expression analysis based on stringent filtering 
criteria for mapping. In essence, reads must be uniquely 
mapped to the reference genome with high confidence 
and the second-best match must have at least one addi-
tional mismatch in sequence alignment. A manually 
curated annotation of 3220 near-full length HERVs 
(average 7,5 kb in length) was used [25]. In parallel, each 
dataset was analyzed for cellular gene transcripts using 
standard sequence read alignment and quantification 
tools.

We first addressed the question of how different RNA-
seq datasets with differing technical parameters perform 
in quantitative detection of locus-specific HERV expres-
sion. In particular, we asked how RNAseq datasets with 
low sequencing depth, i.e. 20 mio reads per sample as 
recognized standard for cellular transcriptomics analy-
sis, could deliver. We found that expression of HERVs 
could be detected in all datasets, ranging between 13,8% 
and 67,1% of annotated HERV loci (mean ± SD: 26,9% ± 
12,7%) (Fig. 1A; Figure S1A). This finding is in line with 
previous data, that show around 50% overall HERV 
expression levels in different primary cells [25]. As 

expected, datasets with higher sequencing depth showed 
higher relative number of expressed HERV as compared 
to datasets with lower sequencing depth (Fig. 1A & S1A). 
We did not find differences between CD4 + and CD8 + T 
cells concerning quantitative HERV expression (Figure 
S1E). Hence, locus-specific HERV expression can be 
detected also in datasets with low sequencing depth.

We next asked, to which extent HERV transcrip-
tomes derived from low sequencing depth datasets 
could reflect HERV expression signatures derived from 
deep-sequenced sets. We defined a HERV element as 
being expressed, if at least one read was mapped in the 
ERVmap pipeline. Next, we qualitatively compared the 
set of expressed HERVs in the dataset with the lowest 
sequencing depth (18,7 mio reads (CD4+, SRR11031269) 
/ 25,8 mio reads (CD8+, SRR12095616)) to the dataset 
with highest sequencing depth (481 mio reads (CD4+, 
SRR644513) / 547 mio reads (CD8+, SRR644514)) 
(Fig. 1B, Figure S1B). For CD4 + T cells, we observed that 
transcripts for 13 (2,5%) HERVs were solely detected in 
the smaller dataset, while transcripts for 499 (97,5%) 
HERVs were detected in both datasets. Transcripts for 
additional 1662 HERV loci were only detected in the 
larger dataset. For CD8+, 67 (7,9%) HERVs were solely 
detected in the smaller dataset, while transcripts for 785 
(92,1%) HERVs were detected in both datasets. Addi-
tional transcripts for 1346 HERV loci were only detected 
in the larger dataset. This suggests that HERV expres-
sion derived from datasets with low sequencing depth 
can reflect the majority of expressed HERVs as detected 
in datasets with more than 20-fold greater sequencing 
depth. To assess whether the overlap in expressed HERV 
elements correlates with expression levels, we ranked 
HERV elements from most to least expressed based on 
associated read counts (Fig. 1C and S1C). Statistical anal-
ysis using Spearman’s coefficient reveals positive corre-
lation between HERV expression levels in both datasets 
(Spearman’s coefficient CD4 + 0,719; CD8 + 0,697), indi-
cating that indeed RNAseq datasets with low sequenc-
ing depth allow faithful detection of most abundantly 
expressed HERV elements.

Comparison of the dataset with the lowest sequencing 
depth to the dataset with highest sequencing depth also 
revealed a subset of HERV transcripts solely detected in 
the low or high depth dataset (Fig. 1B and S1B). Whereas 
HERV elements detected in the high depth dataset only 
could be explained by greater transcript depth, the find-
ing that low depth datasets show uniquely transcribed 
HERV elements was somewhat not anticipated. To 
explore this further, we stratified the data according to 
the number of mapped reads for these elements. This 
analysis revealed that most transcripts detected in the 
low depth dataset just met the threshold level of one 
mapped read (12 out of 13 (92%) in CD4 + T, 46 out of 
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67 (68,7%) in CD8 + T cells). Considering the low chosen 
threshold for expression (> 0 mapped reads), it is hence 
plausible that these HERVs were detected as artefacts 
and are not actually expresssed. Most HERV elements 
detected solely in the high depth datasets showed higher 
read counts supporting their status as transcribed ele-
ments (Fig. 1B and S1B).

To circumvent this potential drawback, we next set 
the threshold level of expression to > 1 or > 2 mapped 
reads in our analysis. This resulted as expected in an 
overall decrease of detected HERV elements, which was 
however strongest in the intersect of unique low depth 
dataset-expressed HERVs (Figure S3). Nevertheless, a 
small fraction of HERV elements solely detected in the 
low depth datasets demonstrated a substantial number of 
reads (one element with 5 mapped reads in CD4 T cells; 
10 elements with 3 to 19 mapped reads in CD8 T cells). 
We therefore would consider these elements to be actu-
ally expressed in the dataset, reasoning that lack of their 
detection in high depth datasets is likely a result of data-
set-inherent differences due to for example sample han-
dling prior and during sequencing.

To verify that potential artefacts of HERV expression 
in low depth datasets are not specific to applied ERVmap 
analysis pipeline, we next re-analysed low and high-depth 
sequenced datasets using the Telescope pipeline [24]. In 
contrast to ERVmap, Telescope was developed to map 
ambiguous reads utilizing a statistical expectation-max-
imization algorithm and also contains a broader annota-
tion list comprising 14,968 individual HERV elements. In 
agreement with our results obtained using ERVmap, we 
found that Telescope also calls a small number of HERV 
elements that are solely expressed in low sequencing 
depth datasets for different expression thresholds (Figure 
S3). This observation argues against an analysis pipeline-
specific effect.

To further compare HERV expression profiles among 
all datasets, we generated a pairwise comparison matrix 
(Fig.  1D; Figure S1D). We observed an overlap of at 
least 64% and up to 99% among expressed HERVs. As 
indicated in our previous finding, datasets with low 
sequencing depth and therefore relatively low number of 
expressed HERVs showed highest percent overlap with 
datasets sequenced deepest.

Taken together, our data show that while the extent of 
HERV transcript detection in RNAseq datasets increases 
with sequencing depth, datasets with low sequencing 
depth, such as standard cellular transcriptome analy-
sis can still be used for detection of most prominently 
expressed HERV elements. In general, we made simi-
lar observations for HERV transcriptome analysis in 
CD4 + T cell and CD8 + T cell RNAseq datasets, arguing 
that our findings are not cell type-specific (Figure S1).

Sequencing depth over read length and seqmode as 
decisive RNAseq parameter for HERV transcriptomics
We next asked, how individual technical parameters 
of RNAseq datasets might impact on HERV transcript 
detection and compared our findings to detection of 
cellular gene transcripts. We plotted the number of raw 
HERV reads versus cellular gene reads for each dataset, 
whereas datasets were grouped by sequencing param-
eters, i.e. read length, seqmode (single- vs. paired-end 
sequencing) and sequencing depth (Fig. 2 and S2). Each 
study contributed multiple datasets of the same technical 
parameters.

As expected, for all technical parameter groupings, 
we observed a positive correlation between mapped 
HERV and cellular transcripts in all datasets (Fig.  2). 
Both read length and seqmode had little influence on 
the level of detected HERV transcripts in relation to cel-
lular transcripts (Fig.  2A and B). However, increasing 
sequencing depth clearly associated with an increase in 
mapped HERV transcripts as well as cellular transcripts 
(Fig. 2C). This correlates well with the increased number 
of expressed HERVs in datasets with high numbers of 
input reads (Fig. 2D). Taken together, sequencing depth 
of RNAseq datasets appears to be the critical param-
eter that positively impacts on the number of detectable 
locus-specific HERV transcripts.

We furthermore examined, how different datasets per-
formed for quality and if this affected HERV transcript 
detection. The percentage of high-quality mapped reads 
(% filtered reads) that were used for HERV transcript 
analysis was used as quality parameter for each data-
set. This parameter reflects for example quality devia-
tions derived from RNA extraction, cDNA synthesis and 
library preparation. We found that 40–60% of input reads 
were mapped with high confidence in all datasets across 
all studies (Fig.  2E), which indicates an overall similar 
quality of data. Within this range, no correlation of qual-
ity score with number of detectable locus-specific HERV 
reads was observed (Fig. 2E). This finding indicates that 
dataset quality was not a confounding parameter in our 
multi-study analysis.

We also extended our analysis to a limited number 
of RNAseq datasets derived from additional cell types 
namely CD19 + and CD34 + immune cells, keratinocytes 
and human embryonic stem cells (H1). We obtained 
comparable results to our data on CD4 + and CD8 + T 
cells, indicating that our findings are independent of cell 
type (Figure S2). In summary, for comprehensive loci-
specific HERV transcriptomics, our analyses indicate that 
a sequencing depth of or above 100 mio reads per sample 
is most likely to yield best results (Fig.  2C), while read 
length and seqmode are secondary.



Page 9 of 15Hamann et al. BMC Medical Genomics           (2023) 16:68 

Study-dependent confounding factors necessitate batch 
effect reduction for analysis of HERV transcriptome 
signatures
We next went on to investigate, if and to which extent 
HERV transcriptome profiles of the same cell type 
are comparable when derived from different RNAseq 

datasets, that reflect technical differences in sequencing 
parameters and variable study set-ups. This aspect is of 
particular concern for HERV transcriptome analyses of 
specific conditions or rare sample types that most often 
rely on pooling RNAseq datasets from diverse studies. 
Read counts were normalized with DESeq2 to correct 

Fig. 1 HERV expression in primary CD4 + T cells. (A) Raw HERV transcript counts are plotted for each HERV element. A HERV element is considered to be 
expressed with at least one read being mapped to the HERV loci. Black line indicates % of expressed HERVs per dataset. Datasets are identified by SRA 
database numbers and ordered by increasing sequencing depth. (B) Qualitative comparison of expressed HERV elements between datasets with least 
and highest sequencing depth. Absolute number of expressed HERV elements are presented in the Venn diagram. Bar chart below depicts distribution 
of mapped reads per HERV element for each Venn section. (C) Ranked HERV expression comparison between datasets from B. The Spearman correlation 
coefficient and p-value is indicated. (D) Pairwise comparison matrix presenting the overlap of expressed HERV elements between datasets. Order of 
datasets equivalent to panel A
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for different sequencing depths. Subsequently, we under-
took principle component analysis (PCA) for HERV 
transcripts and cellular gene transcripts derived from all 
CD4 + and CD8 + T cell RNAseq datasets. For both tran-
script types, we saw an obvious clustering of samples 
according to study origin and not according to cell type 
origin (Fig. 3A). This result was also observed, when plot-
ting HERV transcriptomes using hierarchical clustering 
and expression heatmaps: datasets derived from the same 
study clustered closer than datasets derived from the 
same cell type (Fig. 3B).

The phenomenon of batch effect has been well 
described to confound biological analyses, although sci-
entific publications often remain elusive in this regard 
[46]. We here show that for HERV transcriptomics batch 
effects are equally relevant when pooling datasets from 
multiple studies. To outweigh dataset disparities rooted 
in inter-study differences, such as for example differences 
in sample preparation and sequencing conditions, we 
corrected CD4 and CD8 counts with the limma package 
function ‘removeBatchEffect()’. These batch-corrected 
(bc) datasets, were then used for PCA and hierarchical 
cluster analysis. Figure  4  A demonstrates that for both 
cellular and HERV transcripts, clustering of bc-samples 

was now observed in a CD4 + and CD8 + cell-specific 
manner. Furthermore, hierarchical cluster analysis and 
expression heatmaps using bc-datasets showed close 
association according to cell type and not study origin as 
observed before batch correction (Fig.  4B). Thus, batch 
effects do affect HERV transcriptomics and HERV tran-
scriptomics studies relying on pooled datasets should be 
aware of this by including appropriate correction steps.

Noteworthy, we observed that sample clustering in the 
HERV PCA reflects similar patterns compared to the 
gene PCA (Figs. 3A and 4 A). This indicates that HERV 
expression data based on an annotation of 3220 near-full 
length elements is sufficiently powerful to replicate data-
set differences derived from genic transcriptome analysis 
based on > 55,000 transcripts. In accordance with pre-
vious publications [4, 14, 25, 47], this finding strongly 
supports the hypothesis that cellular identity is not only 
reflected by a cell-specific transcriptome but also a cell 
type-specific HERV transcript signature.

Analysis of inter-donor variability in context of HERV 
transcriptome signatures
Since analysis of primary samples often relies on pooling 
datasets from different biological donors, we next asked 

Fig. 2 Sequencing parameter impact on HERV transcriptome mapping in primary CD4 + and CD8 + T cells. Raw mapped HERV and gene transcript counts 
are plotted and grouped by sequencing parameter read length (A), seqmode (B) and sequencing depth (C). (D) Correlation plot between sequencing 
depth (input read number) and the number of expressed HERV elements. A HERV element is considered to be expressed with at least one read being 
mapped to the HERV loci. (E) Correlation of dataset quality (i.e. the fraction of high quality mapped reads) versus the raw count of mapped HERV reads
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to which extent donor variability might impact on detec-
tion of cell type-specific HERV transcriptome signatures, 
especially given the close ontological relation between 
CD4 + and CD8 + T cells. We obtained 10 donor-matched 

RNAseq datasets for CD4 + and CD8 + T cells from four 
of the seven studies included in our analysis. These were 
submitted to locus-specific HERV transcript detection 
including batch correction. For all donor pairs, PCA 

Fig. 4 Normalized read counts of CD4 + and CD8 + T cell derived HERV and gene transcripts after batch correcting for inter-study differences. (A) Principal 
component analysis based on HERV and gene transcripts. (B) Hierarchical cluster analysis and heatmap of HERV transcripts. Counts are log10 transformed, 
zero counts are depicted in grey and count matrix was sorted for deep sequenced dataset SRR644513 (CD4 + T cells, UWashington.HREMP) to increase 
clarity

 

Fig. 3 Normalized read counts of CD4 + and CD8 + T cell derived HERV and gene transcripts without batch correction. (A) Principal component analysis 
based on HERV and gene transcripts. (B) Hierarchical cluster analysis and heatmap of HERV transcripts. Counts are log10 transformed, zero counts are 
depicted in grey and count matrix was sorted for deep sequenced dataset SRR644513 (CD4 + T cells, UWashington.HREMP) to increase clarity
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shows clustering of samples according to cell type origin 
independent of which study the dataset was extracted 
from (Fig.  5A). The same observation was made, when 
plotting HERV signatures for donor pairs in hierarchical 
cluster analysis, where study- and donor features were 
secondary to cell type in determining signature clus-
ters (Fig. 5B). In summary, inter-donor variability in our 
datasets is smaller compared to differences in cell-type 
specific HERV transcriptome profiles. Robust HERV 
transcriptome profiles are distinguishable for these onto-
logically closely related T cell types.

Discussion
The main goal of our study was to clarify, how different 
RNAseq datasets could be combinational explored to 
derive locus-specific HERV transcriptome signatures. 
With increasing evidence that HERV-derived transcripts 
can impact in different ways on cell physiology, there is 
rapidly expanding interest in exploring the role of HERV 
elements both in health and multiple disease conditions, 
such as cancer, neurological and immunological patholo-
gies [14, 48–56]. HERV transcriptomics will likely evolve 
as one aspect of disease diagnostics and could poten-
tially serve as biomarker or offer targets for therapeutic 
approaches. The fast-rising number of publicly available 
RNAseq datasets supports this development and facili-
tates HERV research.

We therefore set out to clarify different aspects that 
need to be taken into consideration when embarking on 
HERV transcriptomic analysis. We first focused on how 
technical dataset parameters impact on locus-specific 

detection of HERV transcripts and found sample 
sequencing depth to be a critical factor. Our data suggests 
that > = 100 mio sequencing reads per sample support 
comprehensive HERV transcriptome analysis. Never-
theless, we also show that datasets with low sequencing 
depths can be used for detection of most abundant 
HERVs.

In our study we counted HERV reads, which were 
mapped uniquely and with high confidence using ERV-
map [25]. Thus, a HERV element with one aligned read 
was regarded expressed. Other established pipelines 
such as Telescope apply statistical models, i.e. utilizing 
a Bayesian expectation-maximization algorithm [24] to 
aid read assignment to highly similar HERV sequences. 
These methods benefit from making analytical use of 
more sequencing reads, compared to our conserva-
tive approach. We have employed Telescope on a subset 
of datasets included in this study and found the results 
comparable to ERVmap. In future, a more comprehensive 
comparison between single-locus HERV transcriptome 
pipelines would be helpful to delineate assay-specific 
strengths and drawbacks and in general improve the 
quality of future undertakings that aim at detecting 
HERV expression signatures.

Our analysis revealed a number of expressed HERV 
elements in low sequencing depth datasets that are not 
detected in corresponding high sequencing depth data-
sets. Most of these elements are called by single mapped 
reads and thus could potentially represent false positives 
due to the applied low threshold level of one mapped 
read. This phenomenon is replicated in another analysis 

Fig. 5 Donor-matched CD4 + and CD8 + T cell datasets and HERV expression. (A) Hierarchical cluster analysis and heatmap of HERV transcripts. Counts 
are log10 transformed, zero counts are depicted in grey and count matrix was sorted for deep sequenced dataset SRR644513 (CD4 + T cells, UWashington.
HREMP) to increase clarity. (B) Principal component analysis based on HERV transcripts
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pipeline. It can be adjusted by changing the threshold 
of read counts upon which a HERV element is classified 
as expressed. However, even after adjustments, a small 
number of HERV elements supported by a considerable 
amount of mapped reads, remain to be called expressed 
only in low depth datasets. It might be questionable to 
flag these as false positives. Rather, we suggest these to be 
dataset-inherent differences in HERV expression. These 
could for example be explained by different procedures 
of T cell isolation and cultivation as well as RNA sample 
and sequencing library preparation.

In addition, we found batch effect reduction to be an 
important step when qualitative analysis is based on 
datasets from multiple sources. Certainly, batch correc-
tion has the potential to mask biological heterogene-
ity, skewing differential expression analysis [46, 57, 58]. 
However, for both cellular as well as HERV-derived tran-
scripts, batch effect reduction was necessary to remove 
confounding parameters originating from technical data-
set differences. We used the broadly utilized ‘remove-
BatchEffect()’ function within the limma R package [44], 
which resolved prominent sample clustering according 
to study towards a clear distinction of cell types. This is 
a prerequisite to downstream differential gene/HERV 
expression analysis and thus should be included in future 
studies. Methods to detect and reduce batch effects are 
under constant improvement, as the field of multi-omics 
studies moves forward [59–61]. HERV transcriptome 
studies will very likely benefit from these developments.

In our analysis we focused mainly on > 3200 autono-
mous HERV sequences, i.e. near full-length HERV 
sequences predicted to be capable of transcriptional and 
translational activity [7, 25]. While regulation of this sub-
set of HERVs could arguably be most influential on cel-
lular physiology, it should be noted, that it disregards 
shorter retroviral mosaic forms and soloLTRs [7]. There 
are examples that especially soloLTRs can impact on cel-
lular gene regulation [62]. While we have also employed 
a broader annotation of around 14,000 HERV sequences 
on a restricted subset of samples in presented study, it 
remains to be thoroughly validated how HERV transcrip-
tomic analyses can perform that map to larger annota-
tions including more deteriorated HERV sequences.

Our findings are in line with previous studies, showing 
that indeed cell- and tissue-specific HERV signatures are 
observable in RNAseq datasets [4, 14, 25, 47, 48]. Here 
we confirm that differences in HERV transcriptomes 
between ontologically closely related CD4 and CD8 T 
cells exist, which can be retrieved from RNAseq datasets 
with varying technical parameters.

Conclusion
Locus-specific HERV transcriptomics is a field of 
research in its beginnings and for which analysis stan-
dards yet need to be trialed and established. This study 
provides to our knowledge the first comprehensive over-
view of aspects to consider when generating and selecting 
RNAseq datasets for HERV expression analyses. It pro-
vides practical advice concerning technical parameters 
of suitable datasets and means to combine datasets from 
studies of different origin. At a time of growing interest 
in all fields of translational medicine for HERV transcrip-
tomics, our study pinpoints how RNAseq datasets can be 
explored for cell-type specific HERV transcriptome sig-
natures. We show that while HERV transcriptomic pro-
files are influenced by study-specific technical aspects 
both in quality and in quantity, there is considerable 
overlap of at least 64% in the number of expressed 
HERVs. Sequencing depth of RNAseq datasets appears 
to be one critical parameter in view of broad detection 
of locus-specific HERV transcription. As for CD4 + and 
CD8 + T cell-specific HERV expression signatures, inter-
study differences appear to outweigh biological diversity, 
making batch effect reduction a necessity when working 
with multi-sourced datasets. Donor-specific differences 
can also be compensated for using batch effect corrected 
input files. In summary, our study provides a first essen-
tial guidance of how to select, generate and analyze suit-
able RNAseq datasets for HERV transcriptomics.
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