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Abstract 

Background Cuproptosis, a novel form of programmed cell death, plays an essential role in various cancers. 
However, studies of the function of cuproptosis lncRNAs (CRLs) in colorectal cancer (CRC) remain limited. Thus, this 
study aims to identify the cuprotosis-related lncRNAs (CRLs) in CRC and to construct the potential prognostic CRLs 
signature model in CRC.

Methods First, we downloaded RNA-Seq data and clinical information of CRC patients from TCGA database and 
obtained the prognostic CRLs based on typical expression analysis of cuproptosis-related genes (CRGs) and univariate 
Cox regression. Then, we constructed a prognostic model using the Least Absolute Shrinkage and Selection Operator 
algorithm combined with multiple Cox regression methods (Lasso-Cox). Next, we generated Kaplan–Meier survival 
and receiver operating characteristic curves to estimate the performance of the prognostic model. In addition, we 
also analysed the relationships between risk signatures and immune infiltration, mutation, and drug sensitivity. Finally, 
we performed quantitative reverse transcription polymerase chain reaction (qRT -PCR) to verify the prognostic model.

Result Lasso-Cox analysis revealed that four CRLs, SNHG16, LENG8-AS1, LINC0225, and RPARP-AS1, were related to 
CRC prognosis. Receiver operating characteristic (ROC) and Kaplan–Meier analysis curves indicated that this model 
performs well in prognostic predictions of CRC patients. The DCA results also showed that the model included four 
gene signatures was better than the traditional model. In addition, GO and KEGG analyses revealed that DE-CRLs 
are enriched in critical signalling pathway, such as chemical carcinogenesis-DNA adducts and basal cell carcinoma. 
Immune infiltration analysis revealed significant differences in immune infiltration cells between the high-risk and 
low-risk groups. Furthermore, significant differences in somatic mutations were noted between the high-risk and low-
risk groups. Finally, we also validated the expression of four CRLs in FHCs cell lines and CRC cell lines using qRT-PCR.

Conclusion The signature composed of SNHG16, LENG8-AS1, LINC0225, and RPARP-AS1, which has better 
performance in predicting colorectal cancer prognosis and are promising biomarkers for prognosis prediction of CRC.
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Introduction
Colorectal cancer (CRC) is the third most common 
cancer, behind breast cancer and lung cancer. A total 
of 1.93 million colorectal cancer cases were diagnosed 
with 0.93 million deaths worldwide in 2020, ranking 
second among cancer deaths [1]. Although therapeutic 
measures of CRC are available, patient prognosis remains 
unsatisfactory due to tumour recurrence and metastasis 
[2, 3]. The number of CRC cases is expected to increase 
by 66% from 1.93 million in 2020 to 3.20 million in 2040 
[4]. Thus, it is crucial to seek potential risk signatures to 
improve the prognosis of CRC.

Long non-coding RNAs (IncRNAs) are non-coding 
RNAs greater than 200 nucleotides in length that 
are unique genes with regulatory functions but are 
not transcribed [5]. The latest evidence suggests that 
many IncRNAs are associated with the occurrence 
and progression of cancer and are perceived as new 
therapeutic targets [6, 7]. The lncRNA SNHG16 directly 
regulates the miR-195/SREBP2 axis to enhance the 
progression of pancreatic cancer [8]. The p53RRA-
G3BP1 interaction suppresses lung cancer progression 
via cell cycle arrest and ferroptosis [9]. Circ-0007142 is 
overexpressed in CRC and inhibits CRC cell proliferation 
by promoting apoptosis and ferroptosis [10]. The lncRNA 
SNHG16 is involved in the proliferation, migration, and 
epithelial-mesenchymal transition of CRC through the 
miR-124-3p/MCP-1 axis [11]. LINC00312 represses 
CRC cell proliferation and invasion by regulating miR-
21 [12]. Research shows that 15-lncRNA can be used as 
a prognostic indicator for CRC to predict the survival of 
CRC patients [13].

In 2022, Tsvetkov and his colleagues proposed a new 
concept, "cuproptosis," which is copper dependent, 
regulated, and a novel form of cell death distinct from 
other known forms of programmed cell death [14]. 
Mechanisms of cuproptosis: Copper is directly bound 
to the lipoylated components of the tricarboxylic acid 
(TCA) cycle, leading to lipoylated protein aggregation 
and subsequent iron-sulfur cluster protein loss that 
could cause proteotoxic stress and ultimately cell death 
[15]. Studies have revealed the role of ferroptosis-related 
lncRNAs in several cancers, including breast cancer [16–
18], lung cancer [19–21] and colorectal cancer [22–25]. 
However, studies of the function of cuproptosis lncRNAs 
(CRLs) in colorectal cancer (CRC) remain limited. We 
hypothesize that cuproptosis-related lncRNAs may also 
affect CRC cells based on previous studies [14–25].

In this study, we obtained RNA-sequencing profile 
data from TCGA and constructed a prognostic model 
containing four CRLs, and we verified the predictive 
accuracy of the model using internal and external 
cohorts. We found that risk signatures were not only 

an independent prognostic factor but also predicted 
the clinical status of CRC patients. We also conducted 
enrichment analysis to analyse carcinogenic pathways 
between different signatures. Moreover, we further 
analysed the mechanisms of CRLs in CRC using a 
series of methods, such as immune infiltration analysis, 
mutation analysis, and drug sensitivity analysis. Finally, 
we verified the expression of SNGH16, LINC02257, 
PRARP-AS1, and LENG8-AS1 in FHCs cell lines and 
CRC cell lines.

Materials and methods
Data collection and processing
RNA-sequencing profile data of colorectal cancer 
tumour samples, including 473 tumour samples and 41 
normal samples, were downloaded from The Cancer 
Genome Atlas datasets (TCGA, https:// tcga- data. nci. 
nih. gov/ tcga/) and served as a training dataset. Data with 
incomplete follow-up times were excluded. Finally, a 
total of 446 samples were included in the present study. 
In addition, the RNA-sequencing profile data of external 
validation datasets, including GSE152430 (49 samples), 
GSE192667 (89 samples), and GSE190826 (117 samples), 
were obtained from Gene Expression Omnibus (GEO, 
https:// www. ncbi. nlm. nih. gov/ geo) datasets.

The probe-identified gene matrix files were transformed 
into gene symbols based on the annotation patterns 
obtained by the relevant platforms. We examined each 
clinical index and excluded patients with missing clinical 
information or lacking complete follow-up information. 
Then, batch effects of three datasets of GEO were 
removed by the “sva” R package and were merged. Finally, 
we extracted the lncRNA expression data of TCGA and 
GEO, respectively, extracting the intersection of lncRNA 
expression data between the TCGA and GEO.

Identification of cuproptosis‑related LncRNAs
First, we obtained ten cuproptosis-related genes 
(FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB, 
MTF1, GLS, and CDKN2A) based on the studies by 
Tsvetkov (https:// doi. org/ 10. 1126/ scien ce. abf05 29) 
[14]. Then, gene expression data from CRC cancer 
patients in TCGA cohort were subdivided into mRNA 
and lncRNA according to the gene type. Finally, we 
used Spearman’s correlational analysis to identify 
the effects of cuproptosis-related lncRNAs on the 
expression levels of the cuproptosis-related genes. Cut-
off criteria of the Spearman’s correlation coefficient > 0.4 
and P value < 0.001 were employed to identify genes 
significantly related to CRC prognosis. In this study, 
the IncRNAs related to cuproptosis were regarded as 

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
https://www.ncbi.nlm.nih.gov/geo
https://doi.org/10.1126/science.abf0529
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cuproptosis-related lncRNAs (CRLs). The correlation 
analyses were performed by the R package “limma”.

Construction of the CRLs risk signatures
First, TCGA datasets were randomly split into training 
(50%) and internal validation (50%) cohorts. Then, the 
relationship between CRLs and CRC patient prognosis 
was analysed by univariate Cox regression (P < 0.05). 
Moreover, the results of univariate Cox regression 
were analysed based on the least absolute shrinkage 
and selection operator (LASSO) to prevent the 
overfitting of data. Next, multivariate Cox regression 
was established to analyse the results of the LASSO 
model. The following risk score formula was employed: 

βi × EXP(IncRNA)i , where βi is the regression 
coefficient and EXP(Inc RNA) is the expression of each 
lncRNA. Training datasets were sorted into high-risk 
and low-risk groups based on the median risk score. 
Moreover, we calculated the risk score of each CRC 
patient in the internal testing set (TCGA) and external 
validation set (GEO cohort) based on the same risk 
score system used for the training set and divided the 
internal testing set and external validation set into 
high-risk and low-risk groups based on the median risk 
score. Besides, we verified the distribution of risk CRLs 
in the high-risk and low-risk groups using the principal 
component analysis method (PCA).

Correlation between the risk score and clinical 
characteristics
Wilcoxon and Kruskal–Wallis tests were used to 
explore the correlation between risk score and clinical 
characteristics, including age, sex, AJCC stage, and T, N 
and M stage.

Survival analysis of the risk scores
To assess the predictive value of CRLs in the prognosis 
of CRC, we analysed the survival difference between the 
high-risk and low-risk groups using the Kaplan–Meier 
method and log-rank test. Furthermore, the area under 
the receiver operating characteristic (ROC) curve 
was utilized to evaluate the predictive performance of 
CRLs.

External validation of the risk score
We verified the predictive value of CRLs in the GEO 
cohort to elucidate its predictive ability. Then, we 
calculated the risk score of each CRC patient in the 
GEO cohort based on the same risk score of TCGA 
training set and analysed the survival difference 
between the high-risk and low-risk groups using the 
Kaplan–Meier method and log-rank test. In addition, 
the area under the receiver operating characteristic 

curve was calculated to illustrate the predictive effect of 
the risk signature.

Prognosis of risk score and clinical characteristics
Stratification analysis of clinical characteristics, 
including age, sex, stage, and T, N, M stage, was 
employed to further explore the predictive value of 
risk score in clinical conditions. The log-rank test and 
univariate Cox analysis were performed to determine 
the survival status of the high-risk and low-risk groups.

Construction of the nomogram
A nomogram combining the clinical characteristics and 
risk score was created to help clinicians to predict the 
survival of CRC patients. Clinical characteristics and 
risk scores were included in the construction of the 
nomogram model based on multivariate Cox regression 
analysis. The calibration curve was used to evaluate 
the prediction accuracy between the actual and 
predicted survival. We also compared the predictive 
performance of the nomogram model with other 
clinical characteristics using the area under the ROC 
curve. In addition, we generated a decision clinical 
analysis (DCA) curve to assess the net benefit of risk 
scores in clinical conditions.

Enrichment analysis
To reveal the potential function of CRL-related 
risk signatures, Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) were 
used to identify the potential functional pathways using 
the "clusterProfiler" and "enrichplot" packages in R. The 
P value < 0.05 was considered statistically significant.

Assessment of the correlation between tumour‑infiltrating 
immune cells and risk score
We used the deconvolution algorithm [26] to calculate 
the abundance of tumour-infiltrating immune cells 
(TIICs) in each CRC patient in TCGA cohort to 
explore the correlation between the risk score and TIIC 
characteristics. In addition, we analysed the difference 
in the immune cell abundances in high-risk and low-
risk groups using the Wilcoxon test, and results are 
presented as box plots.

Gene mutations in the high‑risk and low‑risk groups
To compare the difference between mutant genes in the 
high-risk and low-risk groups, we applied "maftools" 
(R packages) to analyse and visualize the mutation 
profiles (MAF) data. In addition, we calculated the 
tumour mutation burden (TMB) of each CRC patient 
in TGCA datasets and compared the difference in TMB 
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between the high-risk and low-risk groups based on 
T test. Moreover, we divided the CRC patients into 
high-mutation and low-mutation groups based on the 
median TMB and further generated survival curves to 
assess the performance of the risk score in the survival 
prediction of TMB.

Drug sensitivity analysis
To identify whether the risk signature was related to CRC 
resistance, the "pRRophetic" [27] (R package) was used 
to predict the IC50 of the chemotherapeutic drug. The 
difference between groups was assessed by the Wilcoxon 
signed-rank test.

Cell culture
Human intestinal epithelial cells (FHCs) and human 
colorectal cancer cell lines (SW480, SW620, HCT8, 
HT29, LoVo) were purchased from Procell Life 
Science&Technology Co. LTD. All cells were cultured in 
F-12  K, Leibovitz’s L-15 medium, RPMI 1620 medium 
(Hyclone, United States) containing 10% fetal bovine 
serum (Gibco BRL, United States) and 5% Pen-Strep 
solution (Bilolgical, Industries, China) at 37  °C, 95% 
humidity, and a 5%  CO2 cell incubator.

RNA extraction and real‑time quantitative PCR (RT‑qPCR) 
analysis
Total RNA was extracted using Trizol reagent (Takara, 
Japan) and reverse transcribed to cDNA using the 
PrimeScript RT Master Mix (Takara, Japan). The 
RT-qPCR analyses were performed in triplicate using the 
NovoStart SYBR qPCR SuperMix Plus Kit (Novoprotein, 
China) and detected using an Applied Biosystems 7500 

Real-Time PCR System (Thermo Fisher Scientific, 
USA). β-actin was chosen as an internal reference. 
The comparative Ct approach was used to calculate 
the fold-changes in relative gene expression (fold 
change =  2−△△Ct). The primers used in real-time PCR 
were listed in Additional file  1: Table  S1 and purchased 
from Sangon Biotech (Shanghai, China).

Detection of expression of SNHG16, LINC02257, 
RPARP‑AS1, LENG8‑AS1 in colorectal cancer cell 
by RT‑qPCR
Of 6 Colorectal cancer cell tissues were reversed 
transcribed to cDNA that were β-actin calibrated were 
purchased Shanghai Outdo Biotech (Shanghai, China). 
RT-qPCR was used to examine the expression of 
SNHG16, LINC02257, RPARP-AS1, LENG8-AS1 using 
an Applied Biosystems 7500 Real-Time PCR System 
(Thermo Fisher Scientific, USA).

Statistical analysis
Spearman correlation analysis was used to explore the 
correlation between cuproptosis-related genes (CRGs) 
and CRLs. The chi-square test was applied to analyse 
differences in the proportions of clinical characteristics 
in the training set and testing set. Student’s t test was 
used to compare the TMB in the high-risk and low-risk 
groups, and the Wilcoxon test was applied to identify 
the IC50 in the high-risk and low-risk groups. All 
statistical analyses were performed using R software 
and its appropriate packages, and the P value < 0.05 was 
considered statistically significant.

Fig. 1 Sankey diagram showing the detailed connection between cuproptosis-related genes and cuproptosis-related lncRNAs (A). The correlation 
between 9 cuproptosis-related genes and 4 prognostic cuproptosis-related lncRNAs, *p < 0.05, **p < 0.01 and ***p < 0.001 (B)
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Results
Identification of cuproptosis‑related LncRNAs in CRC 
The study design was shown in Additional file 2: Fig. S1. 
A total of 424 cuproptosis-related lnRNAs (CRLs) were 
identified based on the set cut-off criteria ( 

∣

∣R
2
∣

∣ > 0.4 
and P < 0.001). A Sankey diagram was generated to show 
the connection between CRGs and CRLs (Fig.  1A). A 
heatmap was plotted to show the correlation between 10 
CRGs and 4 CRLs (SNHG16, LENG8-AS1, LINC02257 
and RPARP-AS1) (Fig. 1B).

Construction of the CRL Risk signatures model
TCGA datasets were randomly split into training (223 
samples) and internal validation (223 samples) set, 
and clinical information of the training and internal 
validation set were shown in Additional file 3: Table S2. 
First, we identified 18 CRLs associated with the 
prognosis of CRC via univariate Cox analysis (Fig. 2A) 
(P < 0.05). Then, we constructed predictive models 
using 18 CRLs and plotted their AUC (Additional file 2: 
Fig. S2). Second, 4 CRLs associated with the prognosis 
of CRC were selected by Lasso regression analysis 
with tenfold cross-validation (Fig. 2B, C). Besides, we 

Fig. 2 Univariate Cox analysis for the expression of cuproptosis-related lncRNAs (A). LASSO coefficient profiles of the cuproptosis-related 
lncRNAs (B). Partial likelihood deviance of different numbers of variables calculated via the LASSO regression model. LASSO coefficients of four 
cuproptosis-related lncRNAs in CRC (C). Multivariate Cox analysis for the expression of cuproptosis-related lncRNAs (D)
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have compared the model containing 18 CRLs to the 
model combined 4 CRLs. We found that the 18-CRLs 
model’s performance was lower, as seen by AUCs of 
1-, 3, and 5-year survival rates were 0.609, 0.598, and 
0.534, respectively (Additional file  2: Fig. S3). Finally, 
four CRLs were identified as independent prognostic 
factors (Fig.  2D). The risk score of each CRC patient 
was calculated based on the Cox regression coefficient 
and the expression of 4 CRLs. Risk score = (0.75711 ×  
EXPSNHG16) + (0.45962 ×  EXPLENG8-AS1) + (0.51846 ×  E
XPLINC02257) + (0.58430 ×  EXPRPARP-AS1).

In addition, PCA indicated that the 4 risk-associated 
CRLs were able to differentiate CRC patients from 
TCGA cohort into different risk levels (Fig. 3).

Correlation between the risk score and clinical 
characteristics
We explored the relationship between the risk score and 
clinical characteristics using the Wilcoxon and Kruskal–
Wallis tests. Figure  4 shows significant correlations 
between the risk score and clinical characteristics (age, 
gender, AJCC stage, T stage, N stage and M stage).

Fig. 3 3D-PCA plots of all genes (A), cuproptosis genes (B), cuproptosis lncRNAs (C) and risk lncRNAs (D)
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Fig. 4 Correlation analysis between risk score and age (A), gender (B), M stage (C), N stage (D), AJCC stage (E), and T stage (F). Expression profiles of 
CRLs in each patient with CRC (G)
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Survival analysis of risk score
The testing set, total datasets, and GEO cohort were 
sorted into high-risk and low-risk groups based on the 
median risk score in the training set (0.991). Kaplan–
Meier analysis and the log-rank test showed that the 
prognosis of patients in the high-risk group was worse 
than that of patients in the low-risk group (Fig.  5A). 
The risk plots revealed that the mortality rate of CRC 
patients in the high-risk group was more significant than 
that in the low-risk group and increased with the risk 
score (Fig.  5B). Furthermore, the ROC curve showed 
that the AUCs of 1-, 3- and 5-year survival in TCGA 
training cohort were 0.724, 0.771, and 0.734, respectively 
(Fig. 5C). The survival curves showed that CRC patients 
in the low-risk TCGA testing set had a higher probability 
of survival (Fig.  5D). In addition, the mortality rate of 
CRC patients in the TCGA testing set increased with 
the risk score (Fig.  5E). The AUCs of the ROC were 
0.557, 0.622, and 0.632 for 1-, 3- and 5-year survival in 
the testing cohort, respectively (Fig.  5F). The prognosis 

of CRC patients in the high-risk group was worse than 
that in the low-risk group in all datasets (Fig.  5G). The 
risk plots show that CRC patients’ mortality rate in total 
datasets increased with risk score (Fig.  5H). The AUCs 
of the ROC curves for 1-, 3, and 5-year survival rates 
based on total datasets were 0.640, 0.703, and 0.679, 
respectively (Fig. 5I).

External validation of the cuproptosis‑related LncRNA 
signatures model
In addition, we further verified the prognostic value 
of CRLs based on the GEO cohort. The survival curves 
showed that CRC patients in the high-risk GEO cohort 
had worse survival outcomes (Fig.  6A). The risk plots 
revealed that the mortality rate increased with the risk 
score in the GEO cohort (Fig. 6B). Correspondingly, the 
1-, 3-, and 5-year AUCs for predicting prognosis were 
0.737, 0.682, and 0.638, respectively (Fig. 6C).

Fig. 5 Kaplan–Meier survival plot for overall survival in TCGA training set (A), TCGA testing set (D) and total cohorts (G). Risk score plots for overall 
survival in TCGA training set (B), TCGA testing set (E) and total cohorts (H). Area under the receiver operating characteristic curve for the risk score of 
CRLM-based prognostic features at 1, 3 and 5 years in the TCGA training set (C), TCGA testing set (F) and total cohorts (I)
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Prognosis analysis between risk score and clinical 
characteristics
We performed stratification analysis to explore further 
the predictive value of risk scores in clinical conditions. 
The results showed that the differences in the clinical 

characteristic subgroups between the high-risk and 
low-risk groups were statistically significant (P < 0.05), 
and the prognosis of the low-risk group was better 
than that of the high-risk group (Fig. 7). These findings 

Fig. 6 Kaplan–Meier survival plot and risk plot for overall survival in GEO cohorts (A, B). Area under the ROC curve for the risk score of CRLM-based 
prognostic features at 1, 3 and 5 years in GEO cohorts (C)

Fig. 7 Kaplan–Meier survival plots of the 4 cuproptosis-related genes in TCGA datasets with different clinical characteristics (age, gender, stage I-II, 
stage III-IV, T1-T2, T3-T4, N0, N1-N2, M0, and M1)
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indicate that CRLs play a vital role in the prognostic 
prediction of clinical conditions.

Independent prognostic analysis
To determine whether risk scores were independent risk 
factors for the survival of CRC patients, we constructed 
univariate and multiple Cox models to assess the 
relationship between risk scores and the survival of CRC 
patients. As shown in Fig.  8A, B there are significant 
relationships between risk score and the survival of CRC 
patients (P < 0.001, P = 0.003).

Construction of the prognostic nomogram
We constructed a nomogram model integrating clinical 
characteristics and the risk score to predict the survival 
rate of CRC patients at 1, 3, and 5  years (Fig.  9A). The 
calibration plot revealed that the nomogram model 
exhibited excellent performance (Fig.  9B). Besides, we 
used the function “sbrier” to calculate the brier score, 
the score of 1-, 3- and 5-years are 0.245, 0.267 and 0.269, 
respectively. The ROC curves of 1-, 3- and 5-year survival 
rates based on TCGA training set were 0.813, 0.816 and 
0.831, respectively (Fig.  9C). The ROC curves of 1-, 3- 
and 5-year survival rates based on TCGA testing set were 
0.768, 0.810 and 0.770, respectively (Fig.  9D). The ROC 
curves of 1-, 3- and 5-year survival rates based on GEO 
cohorts set were 0.609, 0.748 and 0.726, respectively 
(Fig. 9E). In addition, decision clinical analysis (DCA) was 
applied to evaluate the net benefit in clinical conditions 
of the nomogram. The DCA curve showed that the net 
benefits of the nomogram model were better than those 
of other clinical characteristics, and the model containing 
the risk score and clinical characteristics was also better 
than the traditional model combined with clinical 
characteristics (Fig. 9F, G). Besides, we plotted the ROC 
curves to assess the performance of the nomogram 

model and clinical indicators. The results showed that the 
AUC values of the nomogram model were better than the 
model just with clinical indicators (Additional file 2: Fig. 
S4).

Functional enrichment analysis
To reveal the biological function of CRLs, GO and 
KEGG analyses were performed on differentially 
expressed CRLs (DE-CRLs) between the high-risk and 
low-risk groups. GO functional analysis showed that 
the DE-CRLs were mainly involved in biological process 
(BP), molecular function (MF), and cell component (CC). 
Biological Process: extracellular structure organization, 
extracellular matrix organization and regulation of 
biomineral tissue development. Molecular Function: 
fibronectin binding. Cell Component: inflammasome 
complex. KEGG analysis revealed that the DE-CRLs 
were primarily enriched in the PPAR signalling pathway 
and signalling pathway regulating pluripotency of stem 
cells. Terms related to canceration included chemical 
carcinogenesis—DNA adducts and basal cell carcinoma. 
In addition, metabolism of xenobiotics by cytochrome 
P450 and steroid hormone biosynthesis were also 
implicated. The top 10 enriched terms are shown in 
(Fig. 10A, B).

Estimation of tumour‑infiltrating immune cells 
and association with risk score
We applied the CIBERSORT algorithm to estimate the 
abundance of TIICs to explore the correlation between 
the risk score and TIIC characteristics. The results 
revealed that the abundance of TIICs in the low-risk 
groups, including naïve B cells,  CD8+ T cells, follicular 
helper T cells, M1 macrophages and resting mast cells, 
was significantly increased compared with that in the 
high-risk groups. However, the abundance of  CD4+ T 

Fig. 8 Forest plots of the univariate (A) and multivariate (B) Cox regression analyses of risk score and clinical features regarding prognostic value
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Fig. 9 Nomogram incorporating the risk score and clinical characteristics to predict the 1-, 3- and 5-year overall survival rates of patients with 
CRC (A). The calibration curve for evaluating the nomogram Model (B). The area under the ROC curve incorporating the risk score and clinical 
characteristics to predict the 1-, 3- and 5-year overall survival rates of patients with CRC on TCGA training set (C), TCGA testing set (D) and GEO 
cohorts (E). Decision curve analysis of the nomogram (F), risk score and clinical characteristics (G)
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memory resting cells and mast cells activated in the high-
risk groups was greater than that in the low-risk groups 
(Fig. 11).

Gene mutations in the high‑risk and low‑risk groups
We downloaded mutation profiles (MAF) of CRC 
patients from TCGA datasets and visualized 15 genes 
with the highest mutation levels. Then, we generated 
waterfall plots based on the mutation frequency of the 
high-risk and low-risk groups. The results revealed that 
the mutation frequency of 15 genes in the high-risk group 
was greater than that in the low-risk group (Fig. 12A, B), 
and the main gene information is presented in the bar 
plot (Fig. 12C, D). The top 5 mutated genes in the high-
risk group were APC (71%), TP53 (57%), TTN (54%), 
KRAS (44%) and PIK3CA (31%), and the top 5 mutated 
genes in the low-risk group were APC (70%), TP53 (47%), 
TTN (42%), KRAS (42%) and PIK3CA (30%). TP53, 
MUC16 and SYNE1 expression was increased in the 
high-risk group compared with the low-risk group. In 
addition, we further analysed the TMB of the high-risk 
and low-risk groups. The levels of gene mutation in the 
high-risk group were observably increased compared 
with those in the low-risk group (Fig. 13A). To evaluate 
the predictive value of the risk score for the prediction of 
tumour burden survival, we divided CRC patients into 
high-mutation and low-mutation groups based on the 
median TMB and then plotted survival curves of the risk 
score in the mutation subgroups. As shown in Fig. 13B, 
C, CRC patients in the low-mutation group had better 
survival outcomes, and the survival outcomes of 4 groups, 
including the high-risk + high-mutation group, high-
risk + low-mutation group, low-risk + high-mutation 

group and low-risk + low-mutation group, were also 
significantly different.

Drug sensitivity analysis
In addition, we further analysed the relationship between 
the risk score and drug sensitivity. Then, we used box 
plots to compare chemotherapeutic effects or the 
estimated half inhibitory concentration (IC50) in the 
high-risk and low-risk groups. The results indicated that 
11 drugs (axitinib, bortezomib, cetuximab, crizotinib, 
erlotinib, foretinib, gefitinib, lapatinib, linifanib, 
phenformin and vinblastine) may be beneficial for the 
treatment of patients in the high-risk group, whereas 
imatinib may be harmful for patients in the high-risk 
group (Fig. 14).

The expression of SNHG16, LINC02257, RPARP‑AS1, 
LENG8‑AS1 in CRC 
To further explore the expressions of SNHG16, 
LINC02257, RPARP-AS1, LENG8-AS1. Human intestinal 
epithelial cells (FHCs) and human colorectal cancer cell 
lines (SW480, SW620, HCT8, HT29, LoVo) were used 
to validate the expression levels of the four lncRNAs. 
Quantitative real-time PCR (qRT-PCR) analysis results 
performed that SNHG16, LINC02257, RPARP-AS1, 
LENG8-AS1 were differentially expressed in CRC cell 
lines compared to that in intestinal epithelial normal 
cell lines (Fig.  15). Moreover, these results showed that 
SNHG16, LINC02257, RPARP-AS1, LENG8-AS1 may 
play an important role in CRC.

Fig. 10 The top 10 biological processes, cellular components, molecular functions (A) and KEGG (B) pathways are illustrated
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Discussion
Previous studies have focused on the function of 
lncRNAs in ferroptosis. The recent discovery of 
cuproptosis-related genes has attracted considerable 
attention [28–30]. Copper-induced cell death is caused 
by direct binding to the lipoylated components of the 

tricarboxylic acid (TCA) cycle. These effects result in 
the aggregation of lipoylated proteins, loss of proteins 
containing Fe-S clusters, and induction of HSP70, 
leading to proteotoxic stress and ultimately cell death 
[14]. Feng et  al. [31] constructed the cuproptosis-
related lncRNA (CRLs) nomogram model by Cox 

Fig. 11 Heatmap of the relationship between cuproptosis-related genes and the immune characteristics of CRC between the low- and high-risk 
groups (A). Boxplots of the abundance of the 22 immune cells between the high-risk and low-risk groups, *p < 0.05, **p < 0.01 (B)
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Fig. 12 MAF-summary plots and oncoplots of the somatic mutation between the high-risk (A, C) and low-risk (B, D) groups in the TCGA dataset

Fig. 13 Violin plot for the TMB scores between the high-risk and low-risk groups (A). Kaplan–Meier survival curve of the risk score 
in the high-mutation and low-mutation groups (B). Kaplan–Meier survival curve of the risk score in the high-mutation + high-risk, 
high-mutation + low-risk, low-mutation + high-risk, and low-mutation + low-risk groups (C)
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regression analysis with the Lasso algorithm to predict 
the prognosis of gastric cancer patients. Wang et  al. 
[32] found the involvement of cuproptosis-related 
genes regulation in Hepatocellular carcinoma (HCC). 
Li et al. [33] develop the cuproptosis-related prognostic 
signature to predict the prognosis of breast cancer 
(BC) through the Cox and Lasso regression analyses. 

However, studies of the function of CRLs in colorectal 
cancer (CRC) remain limited. This present study 
identified CRLs (SNHG16, LINC02257, RPARP-AS1, 
and LENG8-AS1) in CRC and their prognostic value 
that provides a foundation and new latent therapeutic 
targets for prognosis and clinical treatment.

Many studies have revealed that SNHG16 plays a 
vital role as an oncogene in numerous cancers [34–39] 
through various of pathways. SNHG16 sponged miR-
135a and promoted Janus-activated kinase 2 (JAK2) and 
transcription Factor 3 (STAT3) expression in gastric 
cancer [38]. SNHG16 regulates the target ZEB1 by 
competing with miR-140-5p as an endogenous "sponge" 
that promotes oesophageal squamous cell carcinoma 
[40]. A study found that SNHG16 promotes CRC cell 
proliferation, migration, and EMT through the miR-
124-3p/MCP-1 axis [11]. In addition, SNHG16 is 
regulated by the Wnt pathway and is involved in lipid 
metabolism in clinical tumours. As a ceRNA, SNHG16 
competes with miRNA for the 3’UTR of stearoyl‐CoA 
desaturase, which "sponges" miRNAs off their cognate 
targets [22]. In our study, we found that SNHG16 were 
significantly correlated with adverse survival in CRC. The 

Fig. 14 Box plot showing the mean differences in estimated IC50 values of 12 representative drugs between the two risk groups

Fig. 15 The expression of SNHG16, LINC02257, RPARP-AS1, 
LENG8-AS1 in CRC cell lines
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cuproptosis-related genes may play an essential role in 
CRC development, proliferation, and migration.

Currently, most studies determine that LINC02257 
can serve as a prognostic marker. Gauteng Lin et  al. 
used weighted co-expression network analysis to select 
lncRNAs, including LINC02257 and LINC01820, to 
construct a renal clear cell carcinoma (KIRC) model and 
analysed the potential value of LINC02257 in prognosis 
[41]. Based on differential lncRNA expression between 
CRC patients and normal groups, Xiao Huang et  al. 
constructed a LASSO model to screen six lncRNAs, 
containing LINC02257, and developed a CRC survival 
prediction model [42]. Wang et  al. used the optimal 
cut-off value, which was applied to the Youden index, 
based on the differential expression between different 
tissues to divide the patients into high-risk and low-risk 
groups and constructed a survival prediction model 
using 15 lncRNAs [13]. In addition, Xiao et  al. [43] 
applied multiomics methods to demonstrate LINC02257 
expression, which is associated with multiple poor 
outcomes in various cancers and serves as an independent 
prognostic biomarker for colon adenocarcinoma through 
the PI3K-Akt signalling pathway. All of the above 
studies suggest that LINC02257 is of great value in CRC 
survival prediction. Our study showed that LINC02257 
is associated with adverse outcomes in CRC, which 
provided evidence that LINC02257 can potentially affect 
the prognosis of CRC patients.

Bu et  al. [44] identified RPARP-AS1 as a pyroptosis-
related lncRNA and investigated its prognostic value 
in osteosarcoma. Li et  al. [45] found that RPARP-AS1 
could serve as a biomarker associated with breast cancer 
prognosis. Ren et  al. [46] experimentally demonstrated 
that RPARP-AS1 acts as a competitive endogenous RNA 
(ceRNA) to sponge miR-125a-5p, thus promoting CRC 
proliferation, migration, and invasion.

In contrast to SNHG16 and PRARP-AS1, only the 
prognostic value of LINCO2257 has been demonstrated, 
and experiments are required to confirm how it regulates 
the tumour proliferation and migration. There are no 
reports on the prognostic value of LENG8-AS1 in cancer. 
Further studies are still needed to assess the role of 
LENG8-AS1 as a related prognostic gene or as a novel 
therapeutic target.

This study identified four markers of CRC prognosis 
using univariate and multivariable Cox regression: 
SNGH16, LINC02257, PRARP-AS1, and LENG8-AS1. 
Then, we constructed risk scores based on these four 
prognostic markers that were good predictors of CRC 
prognosis and could be independent risk features for CRC 
prognosis. Next, we divided CRC patients into high-risk 
and low-risk groups according to the risk score, further 
exploring high-risk and low-risk clinical characteristics. 

We found that the risk score could also predict other 
adverse prognoses of CRC patients. Furthermore, to 
explore how cuproptosis-related lncRNAs regulate the 
development of CRC in high-risk and low-risk groups, 
we performed KEGG and GO enrichment for differential 
CRLs in high-risk and low-risk groups. These findings 
demonstrated that differential genes were involved in 
the "PPAR" signalling pathway. Some studies have shown 
that the “PPAR” signalling pathway is overexpressed in 
cancers, such as gastric cancer [47], cervical cancer [48], 
and oesophageal cancer [49]. Other studies have also 
shown that PPAR has antagonistic effects on lung, breast, 
prostate, and colon cancers [50]. Thus, PPAR may provide 
a new direction for the treatment of CRC. Ferroptosis is 
mainly characterized by the depletion of glutathione 
and decreased activity of glutathione peroxidase 4 
(GPX 4); lipid oxides cannot be reduced, producing 
large amounts of reactive oxygen species, leading to cell 
death [51]. The enrichment analysis showed that the 
differences between the high-risk and low-risk groups 
reflected redox characteristics, such as sulfur compound 
binding, metabolism of xenobiotics by cytochrome 
P450, lysosomal and lipid pathways. Therefore, we infer 
some biological associations between cuproptosis and 
ferroptosis. It is expected to be a novel therapeutic target. 
Finally, we also found that the differentially expressed 
genes in the high-risk and low-risk groups were also 
involved in cancerous pathways, such as chemical 
carcinogenesis-DNA adducts and basal cell carcinoma 
which may provide a new direction for the treatment 
of CRC. Moreover, we found that the expression of 
SNHG16, LINC02257, RPARP-AS1, LENG8-AS1 were 
differentially expressed in CRC cell lines compared to 
that in intestinal epithelial normal cell lines.

In this study, we analysed the proportion of tumour-
infiltrating immune cells, including naïve B cells, 
CD8 + T cells, follicular helper T cells, M1 macrophages, 
and resting mast cells, between the high-risk and low-
risk groups using the CIBERSORT algorithm. We 
found that the abundance of TIICs in the low-risk 
group was significantly greater than that in the high-
risk group. Previous studies have shown that CD4 + and 
CD8 + T-cell responses are part of the cancer-immune 
cycle and that both parts can significantly influence the 
clinical outcome [52]. Furthermore, our study showed 
that the abundance of TIICs, such as T cells, resting 
memory CD4 T cells, and activated mast cells, was 
lower in the low-risk group compared with the high-
risk group. These results are consistent with the results 
of Yang et  al. [53]. Besides, our study showed that the 
abundance of TIICs, such as resting memory CD4 T cells 
and activated mast cells, was lower in the low-risk score 
group compared with the high-risk group. Moreover, 
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the environment of tumour-infiltrating immune cells 
represents the immune status of CRC patients, which 
may explain the differences between high-risk and low-
risk patients.

We also found a correlation between prognostic 
CRLs and TMB in the high-risk and low-risk groups, 
and APC, TP53, and KRAS all showed high expression 
in the high-risk and low-risk groups. P H Cottu 
et  al. also revealed that APC, TP53, and KRAS were 
related to cancer occurrence and progression [54]. 
We found that TP53, MUC16, and SYNE1 expression 
was significantly increased in the high-risk group 
compared with the low-risk group. Numerous studies 
have shown that TP53, a tumour suppressor gene, is 
one of the crucial elements of human defence against 
cancer [55]. Previous studies have also shown that 
MUC16 functions in tumour proliferation, metastasis, 
and inhibition of natural killer cells to regulate the 
innate immune response [56, 57]. Nevertheless, no 
relevant reports have revealed that SYNE1 is related 
to the occurrence of CRC. We also found significant 
prognostic differences between somatic mutations 
in the high-risk and low-risk groups. This finding 
indicated that a possible relationship might exist 
between prognostic CRL genes and mutations in TPS, 
MUC16, and SYNE1. However, this relationship should 
be investigated further.

There are some limitations to this study. First, 
the prognostic value of CRLs in CRC was verified 
exclusively using external data because external RNA-
seq data are challenging to obtain and lack clinical 
features. In the next steps, these findings need to 
be further confirmed by continuously expanding 
the research data. Second, this study only used four 
CRLs that showed good predictive value and did not 
explore the other relationships between cuproptosis 
and related lncRNAs in depth. We need to explore 
the exact relationship between the two factors. Third, 
there are some over-fitting situations in TCGA testing 
set. Finally, despite the essential prognostic value of 
cuproptosis-related lncRNA signature identified in this 
study, future experiments on lncRNAs components are 
required to elucidate their roles in CRC.

Conclusions
In conclusion, this study identified the cuprotosis-
related lncRNAs (CRLs) in CRC, established a 
prognostic risk model that includes 4-CRLs, and 
explored the potential prognostic value of CRLs in 
CRC. The findings of this study may provide new 
insights into CRC prognosis studies and contribute to 
the development of clinical treatments for CRC.
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