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Abstract 

Background Detection of appropriate receptor proteins and drug agents are equally important in the case of drug 
discovery and development for any disease. In this study, an attempt was made to explore colorectal cancer (CRC) 
causing molecular signatures as receptors and drug agents as inhibitors by using integrated statistics and bioinfor-
matics approaches.

Methods To identify the important genes that are involved in the initiation and progression of CRC, four microarray 
datasets (GSE9348, GSE110224, GSE23878, and GSE35279) and an RNA_Seq profiles (GSE50760) were downloaded 
from the Gene Expression Omnibus database. The datasets were analyzed by a statistical r-package of LIMMA to iden-
tify common differentially expressed genes (cDEGs). The key genes (KGs) of cDEGs were detected by using the five 
topological measures in the protein–protein interaction network analysis. Then we performed in-silico validation for 
CRC-causing KGs by using different web-tools and independent databases. We also disclosed the transcriptional and 
post-transcriptional regulatory factors of KGs by interaction network analysis of KGs with transcription factors (TFs) 
and micro-RNAs. Finally, we suggested our proposed KGs-guided computationally more effective candidate drug 
molecules compared to other published drugs by cross-validation with the state-of-the-art alternatives of top-ranked 
independent receptor proteins.

Results We identified 50 common differentially expressed genes (cDEGs) from five gene expression profile datasets, 
where 31 cDEGs were downregulated, and the rest 19 were up-regulated. Then we identified 11 cDEGs (CXCL8, CEMIP, 
MMP7, CA4, ADH1C, GUCA2A, GUCA2B, ZG16, CLCA4, MS4A12 and CLDN1) as the KGs. Different pertinent bioinformatic 
analyses (box plot, survival probability curves, DNA methylation, correlation with immune infiltration levels, diseases-
KGs interaction, GO and KEGG pathways) based on independent databases directly or indirectly showed that these 
KGs are significantly associated with CRC progression. We also detected four TFs proteins (FOXC1, YY1, GATA2 and 
NFKB) and eight microRNAs (hsa-mir-16-5p, hsa-mir-195-5p, hsa-mir-203a-3p, hsa-mir-34a-5p, hsa-mir-107, hsa-mir-
27a-3p, hsa-mir-429, and hsa-mir-335-5p) as the key transcriptional and post-transcriptional regulators of KGs. Finally, 
our proposed 15 molecular signatures including 11 KGs and 4 key TFs-proteins guided 9 small molecules (Cyclosporin 
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A, Manzamine A, Cardidigin, Staurosporine, Benzo[A]Pyrene, Sitosterol, Nocardiopsis Sp, Troglitazone, and Riccardin D) 
were recommended as the top-ranked candidate therapeutic agents for the treatment against CRC.

Conclusion The findings of this study recommended that our proposed target proteins and agents might be consid-
ered as the potential diagnostic, prognostic and therapeutic signatures for CRC.

Keywords Colorectal cancer (CRC), Gene expression profiles, Receptor proteins, Drug agents, Integrated 
bioinformatics analyses

Introduction
Colorectal cancer (CRC) is an uncontrolled cell growth 
in the colon, rectum or appendix. It is the second most 
commonly diagnosed cancer in females and the third in 
males. The world health organization (WHO) reported in 
2018 that over 1.8 million new cases and nearly 862,000 
deaths due to CRC worldwide [1, 2]. With more than 2.2 
million new cases and 1.1 million fatalities, the global 
incidence of CRC is projected to be increased 60% by 
2030 [3]. The early stages of CRC symptoms are unchar-
acteristic and frequently ignored or misdiagnosed. 
Importantly, CRC is diagnosed at the middle or late 
stages of the disease. It is characteristically identified at 
the middle or late stages of the disease. The fecal-based 
examination, enteroscopy and blood-based examination 
are commonly considered the early detection methods 
for CRC [4]. However, several instrument-dependent 
detection methods are time-consuming, laborious and 
expensive. The leading treatment options for CRC are 
surgery, adjuvant chemotherapy (for colon cancer), neo-
adjuvant radiotherapy (for rectal cancer), and molecular 
drugs [5, 6]. However, these types of treatments have 
several drawbacks. According to the previous studies, 
less than 15% of metastatic CRC is suitable for surgery, 
the spreading rate of CRC exceeds more than 80% within 
3 years after surgery, and the spreading rate exceeds more 
than 95% within 5 years after surgery [7]. Although there 
are some advancement in the case of CRC treatments, 
the 5-year survival time of patients with this disease has 
not yet increased significantly [6]. Therefore, the identifi-
cation of new molecular biomarkers is essential for CRC 
diagnosis, prognosis and new therapies.

However, new drug discovery is a tremendously chal-
lenging, time-consuming and expensive task. The main 
challenges are to explore drug target proteins (recep-
tors) responsible for the diseases and drug agents 
(small molecules) that can reduce the diseases by the 
interaction with the target proteins. Genomic biomark-
ers induced proteins are considered as the key recep-
tors. Transcriptomics analysis is a widely used popular 
approach to explore genomic biomarkers [8–13]. The 
repurposing of existing drugs for certain diseases 
could reduce the time and cost compared to de novo 
drug development. By this time, several authors have 

suggested different sets of key genes (KGs) to explore 
molecular mechanisms and pathogenetic processes of 
CRC progression [14–45] in which some studies have 
employed multiple datasets to identify CRC-causing 
KGs [15–17, 22, 25, 26, 31, 32, 37, 40–43, 46–49]. Few 
studies also explored their suggested KGs-guided can-
didate drug molecules for the treatment against CRC 
[14, 37, 40–42, 50–59]. However, their published data 
did not display any common KGs as well as common 
drug molecules (see Additional file  1: Table  S1) in all 
studies. None of those studies investigated the resist-
ance performance of their suggested KGs-guided drug 
molecules against the CRC-causing independent KGs 
suggested by others. We found CRC-causing 170 differ-
ent KGs and associated 64 different drug molecules in 
those articles. The articles those suggested therapeutics 
agents applied enrichment approach on Cmap, geneX-
pharma or DGIdb databases to select the KGs-guided 
candidate agents for the treatment against CRC [14, 37, 
40–42, 50–59]. They did not provide pairwise drug-tar-
get binding affinity scores, since enrichment techniques 
cannot calculate pairwise binding scores. So, it may 
be difficult to select most potential drug-target pairs 
from the existing studies for experimental validation 
by the wet-lab researchers. On the other hand, though 
the total number of KGs 170 is much smaller than the 
whole genome size, it may be yet much laborious, time 
consuming and costly for the experimental valida-
tion of more than 170 × 64 = 10,880 drug-target pairs 
by the wet-lab researchers. Therefore, in this study, 
our main objectives were to explore (1) more prob-
able CRC-causing KGs from multiple gene expression 
profile datasets through the verification with different 
benchmark datasets and independent databases and 
(2) proposed KGs-guided candidate drug molecules for 
the treatment of CRC through the verification of their 
resistance power against the CRC-causing top-ranked 
independent KGs suggested by others, by molecular 
docking analysis.

Materials and methods
The overview of this study including materials and meth-
ods is summarized in Fig. 1.
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Fig. 1  The pipeline of this study
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Data sources and descriptions
We collected gene expression profiles generated from 
CRC patients for exploring drug targets and small mol-
ecules (drug agents) for exploring candidate drugs by 
molecular docking simulation as described below.

Collection of gene expression profiles for exploring 
drug‑target proteins (receptors)
Four human CRC microarray datasets (GSE9348, 
GSE110224, GSE23878, and GSE35279) and one RNA-
Seq dataset (GSE50760) were downloaded from National 
Center for Biotechnology Information (NCBI) Gene 
Expression Omnibus (GEO) database (https:// www. 
ncbi. nlm. nih. gov/ geo/). The platform of GSE9348, 
GSE110224, and GSE23878, were GPL570 [HG-U133_
Plus_2] (Affymetrix Human Genome U133 Plus 2.0 
Array), GSE35279 was performed by GPL6480 (Agi-
lent-014850 Whole Human Genome Microarray 4 × 44 K 
G4112F) and GSE50760 was performed by GPL11154 
Illumina HiSeq 2000 (Homo sapiens). The summary of 
this dataset is given in Table 1.

Collection of meta‑drug agents for exploring candidate drugs
We collected meta-drug agents from the online database 
DSigDB [60] with respect to the proposed receptors and 
FDA approved repurposed drugs for the treatment of 
CRC patients.

Collection of independent meta‑receptors 
for cross‑validation with the proposed drugs
To select the top-ranked receptor proteins (meta-recep-
tors) associated with CRC, we reviewed 33 recently 
published articles and selected the top-ranked 8 target 
proteins as the meta-receptors (see Additional file  1: 
Table S1).

Integrated statistics and bioinformatics approaches
To reach the goal of this study, we applied both statisti-
cal and bioinformatics approaches, as discussed below in 
detail.

Identification of DEGs by using LIMMA
To identify differentially expressed (DEGs) between 
tumor and normal conditions, we considered the linear 
models for microarray (LIMMA) data analysis suggested 
by Smith [61], which can be written as

where zg =
(

zg1, zg2, . . . , zgn
)/ is the vector of expressions 

(responses) for gth gene with n =  n1 +  n2 samples (g = 1, 
2, …, m), Y is an n × 2 design matrix, θg = θg1, θg2

/ is 
2 × 1 vector (2 < n) of effects for two different groups of n 
samples, and the error vector ug ∼ N (0,Wgσ

2
g  ). Here Wg 

is a positive definite weight matrix. We want to test the 
null hypothesis  (H0): θg1 = θg2 => γg = (θg1 − θg2) = 0 
(that is, gth gene is equally expressed gene (EEG) in both 
case and control groups) against the alternative hypoth-
esis  (H1): θg1  = θg2 => γg  = 0 (that is, the gth gene 
is a DEG between case and control groups). To test  H0 
against  H1, the moderated t-statistic was formulated by 
hybridizing the classical and Bayesian approaches in 
which the posterior variance is substituted into the clas-
sical t-statistic in place of the classical sample variance. 
The moderated t-statistic was defined as

which follows t-distribution with dg + d0 degrees of free-
dom under  H0.

Adjusted P values based on the moderated t-statistics 
and the average of log fold-change (aLog2FC) values of 
the treatment group with respect to the control group 
were used to select DEGs as follows

where

Here zTgi  and zCgj  are the expressions for the gth gene 
with the ith treatment and jth control samples, respec-
tively. We implemented this algorithm using LIMMA 
r-package to calculate the P values [62] and aLogFC 
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Table 1 Details of gene expression profiles that we analyzed

GEO 
accession

Platform Year Country Normal (n) Tumor (n)

GSE9348 GPL570 2010 Singapore 12 70

GSE35279 GPL6480 2013 Japan 5 74

GSE23878 GPL570 2010 Saudi Arabia 24 35

GSE110224 GPL570 2018 Greece 17 17

GSE50760 GPL11154 2014 South Korea 18 18

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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values to select the DEGs significantly from four gene 
expression datasets as introduced previously. We sepa-
rated upregulated and downregulated DEGs for each of 
four datasets. Then we selected common upregulated 
and downregulated DEGs for all of four datasets. Then 
we combine common upregulated DEGs and common 
downregulated DEGs to construct the common DEGs 
(cDEGs) set.

Construction of PPI network to identify CRC‑causing key 
genes (KGs)
Protein–protein interaction (PPI) network was con-
structed to identify common key-genes (KGs). The online 
STRING-v11 [63] database was used to construct the PPI 
network of cDEGs. The String database provides criti-
cal assessment and integration of protein interactions, 
including direct (physical) and indirect (functional) asso-
ciations. To construct a PPI network, the distance ‘D’ 
between pair of proteins (u,v) is calculated as

where Nu is the neighbor set of u and Nv is the neighbor 
set of v. Cytoscape plugin cytoHubba was used to rank 
the nodes of the PPI network, which could be utilized to 
identify KGs in the network [64, 65]. In the present study, 
five topological methods, including Degree [66], Bottle-
Neck [67], Betweenness [68], and Stress [69] was utilized 
to identify KGs.

In‑silico validation of CRC‑causing KGs
An attempt was made to validate the CRC-causing KGs 
by using different web-tools and independent databases 
as introduced below.

Expression analysis for  KGs by  GEPIA web‑tool 
with  TCGA RNA‑seq data To validate the expression 
levels of key genes, a gene expression profiling interactive 
analysis (GEPIA) tool (http:// gepia. cancer- pku. cn/) was 
used to explore the related data in TCGA databases, and 
to analyse the expression levels of key genes in CRC tis-
sues compared with normal tissues [70].

Association of  KGs with  the  immune infiltration levels 
in different cancers including CRC  Tumor Immune Esti-
mation Resource (TIMER) is an integrative resource for 
investigating the molecular characterization of tumor-
immune interactions across various cancer types (https:// 
cistr ome. shiny apps. io/ timer/) [71]. TIMER utilizes a 
deconvolution statistical method to deduce the abun-
dance of six tumor-infiltrating immune cells, including B 
cells,  CD4+ T cells,  CD8+ T cells, macrophages, neutro-
phils and DCs from The Cancer Genome Atlas (TCGA).

(4)D(u, v) =
2|Nu ∩ Nv|

|Nu|+|Nv|

DNA methylation of  KGs MethSurv is used to explore 
methylation biomarkers associated with the survival of 
various human cancers [72]. MethSurv is freely available 
at https:// biit. cs. ut. ee/ meths urv. Through the MethSurv 
website, we will analyze the DNA methylation analysis of 
the selected CRC-related genes in the TCGA database.

Association of  KGs with  different disease The Disease-
KGs enrichment analysis was performed using the Enri-
chr web tool [73] with DisGeNET database [74] to explore 
other disease risk factors for CRC patients.

Prognostic power analysis of  KGs To investigate the 
prognostic power of KGs, we performed cluster analysis, 
survival analysis and developed two prediction models 
using random forest (RF) and AdaBoost classifiers. The 
survival curve and ROC curve were used to assess the 
prognosis performance. The online SurvExpress compu-
tational tool [75] was used to produce a survival curve. 
The r-packages ‘gplots’ and ‘ROCR’ were used to produce 
heatmap and ROC curve, respectively. Exploring drugs by 
molecular docking simulation.

Exploring GO and KEGG pathway terms that are associ‑
ated with  DEGs including  KGs The GO (Gene Ontol-
ogy) functions [76] and KEGG (Kyoto Encyclopedia of 
Genes and Genomes) pathway enrichment analysis [77] 
were performed to explore CRC-causing ontology terms 
(Biological Process (BP), Cellular Component (CC), and 
Molecular Function (MF)) and pathways that are associ-
ated with cDEGs including KGs. To explore the signifi-
cantly enriched GO terms and KEGG pathways by cDEGs 
including KGs, let Si is the annotated gene-set corre-
sponding to the ith type of biological functions or path-
ways given in the database, and Mi is the number of genes 
in Si (i = 1, 2,…,r); N is the total number of annotated 
genes those construct the entire combine set 
S =

r
∪
i=1

Si = Si ∪ Sci  such that N ≤
r
∑

i=1

Mi; where Sci  is the 

complement set of Si. Again, let n is the total number of 
cDEGs of interest and ki is the number of cDEGs belong-
ing to the annotated gene-set Si. This problem is summa-
rized by the following contingency table (Table 2):

To find the significantly enriched GO terms and KEGG 
pathways by our proposed cDEGs, the P value was calcu-
lated by the Fisher exact test statistic based on the hyper-
geometric distribution. We used Enrichr online tool to 
perform Fisher exact test [78].

Regulatory network analysis of KGs
To identify key transcription factors (TFs) as the tran-
scriptional regulators of KGs, the TFs-KGs interaction 

http://gepia.cancer-pku.cn/
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
https://biit.cs.ut.ee/methsurv
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network was constructed using the publicly available 
database JASPAR [79]. The interaction network was gen-
erated using NetworkAnalyst [80]. To identify key micro-
RNAs (miRNAs) as the post-transcriptional regulators 
of KGs, the KGs-miRNAs interaction network was con-
structed by using the publicly available online tool Tar-
Base v8.0 (Release 7.0) [81]. The top degree miRNAs 
were selected from the networks (miRNAs-KGs) and 
considered as key miRNAs.

Molecular docking simulation for exploring candidate drug 
agents
To explore efficient FDA approved repurposed drugs for 
the treatment of CRC patients, we employed molecular 
docking simulation between the target receptor proteins 
and drug agents. We considered our proposed KGs based 
hub-proteins and associated TFs proteins as the drug 
target receptor proteins and meta-drug agents collected 
from online databases and published articles for dock-
ing analysis. The molecular docking simulation requires 
3-Dimensional (3D) structures of both receptor proteins 
and candidate drugs. We downloaded the 3D structure 
of all targeted receptor proteins from Protein Data Bank 
(PDB) [82] and SWISS-MODEL [66]. The 3D structures 
of drug agents were downloaded from the PubChem 
database [83]. The 3D structure of the target proteins was 
visualized using Discovery Studio Visualizer 2019 [84], 
and the water molecules, co-crystal ligands which were 
bound to the protein were removed. Further, the protein 
was prepared using Swiss-PdbViewer [85] and Auto-
Dock Vina [86] in PyRx open-source software by adding 
charges and minimizing the energy of the protein and 
subsequently converting it to pdbqt format [86, 87]. The 
exhaustiveness parameter was set to 8. The Discovery 
Studio Visualizer 2019 was used to analyze the docked 
complexes for surface complexes, types and distances of 
non-covalent bonds. Let Aij denotes the binding affinity 
between ith target protein (i = 1, 2, …, m) and jth drug 
agent (j = 1, 2, …, n). Then target proteins are ordered 
according to the descending order of row sums 

∑n
j=1 Aij , 

j = 1, 2, …, m, and drug agents are ordered according to 
the descending order of column sums 

∑m
i=1 Aij , j = 1,2, 

…, n, to select the top ranking few drug agents as the 

candidate drugs. Then we validated the proposed repur-
posed drugs by molecular docking simulation with the 
top ordered independent receptor proteins associated 
with CRC published by others.

Results
Identification of cDEGs
We identified 50 cDEGs, including 19 up-regulated 
(Fig. 2A) and 31 down-regulated (Fig. 2B) genes in CRC 
tissue, using adj.P.Val < 0.01 and logFC > 1 as the thresh-
old for down-regulated cDEGs, and adj.P.Val < 0.01 and 
logFC < -1 for up-regulated cDEGs. The down and up 
regulated cDEGs were displayed on the right and left 
sides respectively in the volcano plot (Fig. 3 and Addi-
tional file 2).

Identification of key genes (KGs) from cDEGs
The PPI network of cDEGs was constructed using 
the STRING database, which includes 49 nodes and 
175 edges, with an average node degree of 6.73 and P 
value < 1.0e−16. In the PPI network, Red color indi-
cates up-regulated and black color indicates down-
regulated cDEGs, big size and octagon shape indicate 
common key genes (KGs) (Fig. 4). We used four topo-
logical measures (Degree, BottleNeck, Betweenness, 
and Stress) to select top-ranked 11 KGs (Table 3) that 
are CXCL8, MMP7, CA4, ADH1C, GUCA2A, GUCA2B, 
CEMIP, ZG16, CLCA4, MS4A12 and CLDN1, where 4 
KGs (CXCL8, CEMIP, CLDN1, and MMP7) were up-
regulated and the rest 7 KGs were downregulated.

In‑silico validation of CRC‑causing KGs by using different 
web‑tools and independent databases
Expression analysis for KGs by GEPIA web‑tool with TCGA 
RNA‑seq data
In the GEPIA database, differences in transcriptional 
expression of the hub gene between CRC tissues and 
normal tissues were again verified. Combining with 
the box plot results, eleven potential KGs further were 
screened out. Based on the GEPIA database to test the 
relative expression of KGs mRNA, it was determined 
that our proposed KGs (CXCL8, CEMIP, MMP7, CA4, 

Table 2 Contingency table

Annotated gene‑sets (given in the GO terms or KEGG 
pathway databases)

cDEGs (proposed) CEEGs (proposed) Marginal total

ith GO term/KEGG pathway (Si) ki Mi − ki Mi

Complement of Si ( S
c
i
) n − ki N − Mi − n + ki N − Mi

Marginal total n N − n N (Grand total)
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ADH1C, GUCA2A, GUCA2B, ZG16, CLCA4, MS4A12 
and CLDN1) may be closely related to the occurrence 
and development of CRC (Fig. 5).

Correlation between KGs and immune infiltration levels 
in different cancers including CRC 
We investigated the relationship of different tumors inin-
filtrates immune cell types (B cell, CD8 T cell, CD4 T cell, 
neutrophil, macrophage and dendritic cell (DC)) with 
the expressions of KGs (Additional file 3). We observed 
(Additional file 4) that our proposed KGs are significantly 
associated with different tumor infiltrates immune cells 
under different databases of COAD (colon adenocarci-
noma) and READ (Rectum adenocarcinoma). Compel-
ling evidence has demonstrated that tumor-infiltrating 
lymphocytes are significantly associated with survival in 
cancer. Therefore, we investigated whether KGs expres-
sion was related to immune infiltration levels in lung 
cancer by TIMER. Tumor purity is an important fac-
tor affecting the analysis of immune infiltration. Inter-
estingly, our results indicated that KGs expression was 
correlated with poor prognosis and high immune infil-
tration in CRC. KGs were highly expressed in mono-
cytes (non-classical and classical) and B cells (naïve). In 
contrast, KGs expression was not significantly correlated 
with tumor purity or infiltrating levels of  CD8+ T cells, 
 CD4+ T cells or neutrophils in CRC. CA4 expression lev-
els were positively correlated with infiltrating levels of B 
cells (r = 0.22, P = 2.47E−04),  CD8+ T cells (r = − 0.16, 
P = 7.49E−03),  CD4+ T cells (r = 0.19, P = 1.99E−03), 

macrophages (r = − 0.18, P = 2.19E−03), neutrophils 
(r = 0.38, P = 4.6E−11) and DCs (r = 0.23, P = 9.73E−05) 
in COAD (Additional files 3 and 4). CLCA4 expres-
sion levels were also positively correlated with infiltrat-
ing levels of B cells (r = 0.32, P = 1.92E−03),  CD8+ T 
cells (r = − 0.23, P = 2.95E−02),  CD4+ T cells (r = 0.39, 
P = 1.36E−04), macrophages (r = − 0.48, P = 8.42E−07), 
neutrophils (r = 0.5, P = 4.50E−07) and DCs (r = 0.33, 
P = 1.10E−03) in READ (Additional file 3 and 4). These 
findings strongly suggest that KGs plays an important 
role in immune infiltration in CRC, especially infiltration 
of Macrophage, T cell  CD8+, T cell  CD4+, Neutrophil, 
Myeloid dendritic cell, and B cell.

DNA methylation of KGs
DNA methylation at CpG (CG) sites play the vital role 
in cancer progression. Therefore, we investigated DNA 
methylation of KGs (CXCL8, CEMIP, MMP7, CA4, 
ADH1C, GUCA2A, GUCA2B, ZG16, CLCA4, MS4A12 
and CLDN1) at CpG sites by MethSurv web-tool with 
TCGA database. We observed that seven KGs (CEMIP, 
MMP7, CA4, GUCA2B, ZG16, CLCA4, MS4A12) are 
significantly methylated at CpG sites (Table  4). The 
hypermethylation/downregulation gene CEMIP has six 
CpG sites with a P value < 0.05, the hypomethylation/
upregulation gene GUCA2B has four CpG sites with a P 
value of < 0.05, the hypomethylation/upregulation gene 
MS4A12 has two CpG sites with a P value < 0.05, and 
the hypomethylation/upregulation gene MMP7, CLCA4, 

Fig. 2 Common DEGs (cDEGs) among the five GEO datasets for A up-regulated and B downregulated
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ZG16 has one CpG site with a P value of < 0.05, which 
is statistically significant (Table  4). We found that the 
difference in DNA methylation between CG12358698 
of CEMIP, CG23532119 of MS4A12, CG00656728 of 
GUCA2B, CG24963041 of MMP7, CG26310643 of 
CLCA4, CG09229061 of ZG16, CG00200645 of CA4 and 
CG07510230 of ZNRF2 was most pronounced.

Association of KGs with different diseases including CRC 
The disease-KGs interaction analysis showed that KGs 
are significantly associated with different types of colon 
or rectal cancers including Malignant tumor of colon, 
Colonic Neoplasms, Adenomatous Polyps, Adenocar-
cinoma, Adenoma of large intestine, Colorectal Neo-
plasms, Adenocarcinoma of colon, Colon Carcinoma, 
Stage III Colon Cancer AJCC v7, Stage III Colon Cancer, 
Intestinal Neoplasms, Adenoma and Metastatic Neo-
plasm (Fig. 6 and Table S2 in Additional file 1).

Prognostic power analysis
We considered both supervised and unsupervised learn-
ings, including multivariate survival analysis, to investi-
gate the prognostic power of KGs. Figure 7A shows that 
KGs can separate case and control samples accurately by 
the unsupervised hierarchical clustering (HC). The mul-
tivariate survival curves, based on the expressions of 11 
KGs, separated the low and high-risk groups significantly 
(Fig. 7B). In the case of supervised learning, at first, we 
considered the expression profiles of 11 KGs from three 
datasets (GSE9348, GSE23878 and GSE110224) that con-
tained 60 tumors and 50 control samples in total. Then 
we partitioned these datasets in to training (70%) and 
test (30%) sets. Then we trained one popular classifier 
known as random forest (RF). To test the prediction per-
formance of the model, we also considered the expres-
sions of 11 KGs from another two dataset GSE35279 and 
TCGA as the independent test set. Figure 7C showed the 

Fig. 3 The five GEO datasets volcano plots of A GSE110224, B GSE50760, C GSE35279, D GSE23878 and E GSE9348. Ass color point are Not 
Significant (NS) according to  Log2FC and P value threshold, green color is  Log2FC  (Log2FC < − 1 and  Log2FC > 1), blue color is P value ≤ 0.05, and red 
color points are satisfying the  Log2FC and P value threshold
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Fig. 4 Network of PPIs for common cDEGs that have been identified. Red color nodes and upregulated and black color nodes are downregulated. 
The outer circle of the image is common key genes (KGs)

Table 3 Selection of KGs by combining the top ranked genes of five topological measurements with the PPI network

Degree (A) BottleNeck (B) Betweenness (C) Stress (D) Key genes (KGs) ( A ∪ B ∪ C ∪ D)

GUCA2A CLDN1 CXCL8 CLDN1 GUCA2A, GUCA2B, CLDN1, CLCA4, MS4A12, MMP7, CEMIP, CXCL8, ADH1C, ZG16, CA4

GUCA2B CXCL8 CLDN1 GUCA2A

CLDN1 CLCA4 GUCA2A GUCA2B

CLCA4 MMP7 MMP7 CXCL8

MS4A12 ZG16 CA4 CA4
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ROC curves based on the train, test performance, and 
independent test dataset of RF prediction model. The 
AUC values (area under the ROC curve) for RF were 1.00 
with train data, 0.988 with test data, 0.943 with inde-
pendent test data and 0.90 with TCGA dataset. Thus, 
both prediction models based on RF classifiers showed 
good performance for each of the dependent and inde-
pendent test datasets of KGs.

Exploring CRC‑causing GO and KEGG pathway terms that are 
associated with cDEGs including KGs
The GO functional enrichment analysis of showed that 
185 GO-BP terms, 9 GO-CC terms and 38 GO-MF 
terms are enriched by the cDEGs genes, where KGs 
were involved with 57 BPs, 6 CCs and 21 MFs. Among 
the enriched GO functions including KGs, 6 GO-BP 

Fig. 5 The expression level of hub genes in CRC. A ADH1C; B CA4; C CEMIP; D CLCA4; E CLDN1; F CXCL8; G GUCA2A; H GUCA2B; I MMP7; J MS4A12 
and K ZG16. The red and gray boxes represent cancer and normal tissues, respectively. Colon adenocarcinoma (COAD) and rectum adenocarcinoma 
(READ)
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terms (GO:0034,31 ~ cell junction maintenance, 
GO:0098742 ~ cell–cell adhesion via plasma-membrane 
adhesion molecules, GO:0045216 ~ cell–cell junction 
organization, GO:0008285 ~ negative regulation of cell 

population proliferation, GO:0030334 ~ regulation of 
cell migration, and GO:0048565 ~ digestive tract devel-
opment), 5 GO-CC terms (GO:0046658 ~ anchored 
component of plasma membrane, GO:0062023 ~ collagen-
containing extracellular matrix, GO:0005923 ~ bicellular 
tight junction, GO:0043296 ~ apical junction complex, 
and GO:0005911 ~ cell–cell junction) and 6 GO-MF terms 
(GO:0005179 ~ hormone activity, GO:0030250 ~ gua-
nylate cyclase activator activity, GO:0048018 ~ recep-
tor ligand activity, GO:0005254 ~ chloride channel 
activity, GO:0008237 ~ metallopeptidase activity, and 
GO:0045236 ~ CXCR chemokine receptor binding) were 
reported by other researchers as the BPs of CRC (see 
Table 3 and discussion section for more details). The KEGG 
pathway enrichment analysis of cDEGs showed that 8 path-
ways are enriched by the KGs. Among them, KGs involving 
Nitrogen metabolism, Proximal tubule bicarbonate recla-
mation, Cell adhesion molecules, Pathogenic Escherichia 
coli infection, Human T-cell leukemia virus 1 infection, 
Amoebiasis, Leukocyte transendothelial migration, and 
Cytokine-cytokine receptor interaction was also reported 
by other researchers as the pathways of CRC develop-
ment (see Table 5 and discussion section for more details 
as before).

Regulatory network analysis of KGs
We constructed KGs versus transcription factors (KGs-
TFs) interaction network to identify top ranking few TFs 
as the key transcriptional regulators of KGs. We selected 
the top 4 key TFs (FOXC1, YY1, GATA2 and NFKB1) 
as the vital transcriptional regulators of KGs with 
degree ≥ 4, where the green color rectangle indicates top 
degree key TFs and, red and black color ellipse indicates 
KGs (Fig.  8A). To identify top ranking few micro-RNA 
(miRNA) as the key post-transcriptional regulators of 
KGs, we constructed a KGs-miRNAs interaction net-
work. We selected the top 8 key miRNAs (hsa-mir-16-5p, 
hsa-mir-195-5p, hsa-mir-203a-3p, hsa-mir-34a-5p, hsa-
mir-107, hsa-mir-27a-3p, hsa-mir-429, and hsa-mir-
335-5p) as the vital regulators of KGs with degree ≥ 4, 
where green color rectangle indicates top degree key 
miRNAs and, red and black color ellipse indicates KGs 
(Fig. 8B).

Exploring candidate drug agents by molecular docking 
simulation
To explore candidate drugs for CRC, we considered 11 
KGs based proteins (CXCL8, MMP7, CA4, ADH1C, 
GUCA2A, GUCA2B, CEMIP, ZG16, CLCA4, MS4A12 
and CLDN1) and its regulatory key 4 TFs proteins 
(FOXC1, YY1, GATA2 and NFKB1) as the m = 15 drug 
target receptors. The 3-Dimension (3D) structure of 
CXCL8, MMP7, ZG16, CA4, YY1 and NFKB1 were 

Table 4 The significant prognostic value of CpG in three key 
genes

Gene‑CpG HR P value

CEMIP-Body-Open_Sea-CG12358698 2.657 0.001

CEMIP-Body-Open_Sea-CG12098156 2.275 0.001

CEMIP-Body-Open_Sea-CG04847610 1.899 0.008

CEMIP-Body-Open_Sea-CG17820039 3.085 0.027

CEMIP-Body-Open_Sea-CG21838329 2.665 0.045

CEMIP-5’UTR-Open_Sea-CG09579081 3.836 0.019

MMP7-TSS1500-Open_Sea-cg24963041 1.822 0.016

MS4A12_5’UTR-Open_Sea-cg09257456 0.196 0.003

MS4A12_TSS200-Open_Sea-cg23532119 4.164 0.009

CLCA4-Body-Island-cg26310643 0.259 0.018

ZG16-TSS1500-Open_Sea-cg09229061 6.022 0.001

CA4-Body-Open_Sea-cg00200645 3.173 0.022

GUCA2B-TSS1500-Open_Sea-cg00656728 11.395 0.001

GUCA2B-TSS200-Open_Sea-cg10179693 3.585 0.009

GUCA2B-TSS200-Open_Sea-cg14848143 3.185 0.023

GUCA2B-1stExon-Open_Sea-cg19728577 7.457 0.001

Fig. 6 KGs-Diseases interaction, where blue color highlighted risk 
factors are CRC related
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downloaded from Protein Data Bank (PDB) with the 
PDB codes 6N2U, 1MMQ, 3APA, 5KU6, 4C5I and 1NFI 
and the rest of them, such as GUCA2A, GUCA2B, 
CLDN1, CLCA4, MS4A12, FOXC1 and GATA2 targets 
were downloaded from SWISS-MODEL using UniProt 
with IDs Q02747, Q16661, O95832, Q14CN2, Q9NXJ0, 
Q12948, and P23769 respectively. Then we considered 
92 meta-drug molecules from the DSigDB database and 
64 meta-drugs from the published articles and the Food 
and Drug Administration (FDA) as drug agents. The 
3D structures of drug agents were downloaded from 

the PubChem database. Then we performed a molecu-
lar docking simulation between our proposed receptors 
and meta-drug agents. The binding affinity score matrix 
between the ordered receptors and ordered drug agents 
were displayed in Fig. 9A. We observed that Cyclosporin 
A produces highly significant binding affinity scores with 
all m = 15 target proteins, and their average binding 
affinity scores across all targets were − 9.46 (kcal/mol). 
The 2th and 3th top ordered drugs (Manzamine A and 
Cardidigin) produced highly significant binding affinity 
scores with 14 target proteins, and their average binding 

Fig. 7 The prognostic powers of KGs were displayed by A a Heatmap of hierarchical clustering, B multivariate survival curves with KGs, and C ROC 
curves of prediction models with KGs
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affinity scores across all m = 15 targets were − 8.22 and 
− 8.19, respectively. The 4th to 10th top ordered drug 
Staurosporine, Benzo[A] Pyrene, Sitosterol, Nocardiop-
sis Sp, Troglitazone, K-252a, and Riccardin D produced 
significant binding affinity scores with 14 target proteins, 
and the average binding affinity score was − 7.76, − 7.71, 
− 7.69, − 7.68, − 7.66, − 7.64, and − 7.62 respectively. 
The other drugs (lead compounds) produced significant 
binding affinity scores with less than 13 target proteins 
out of 15, and their average binding affinity scores were 
negatively smaller than − 7.5. Therefore, we considered 
the top ordered nine drugs (Cyclosporin A, Manzamine 
A, Cardidigin, Staurosporine, Benzo[A]Pyrene, Sitos-
terol, Nocardiopsis Sp, Troglitazone and Riccardin D) as 
the candidate drugs in our study. We also examined their 
complete interaction profile, including hydrogen bonds, 
hydrophobic, halogen/ salt Bridge and electrostatic inter-
actions in Table 6.

Performance investigation of proposed drugs 
by cross‑validation with the top‑ranked independent 
receptors
To investigate the resistance performance of our pro-
posed 9 candidate drugs against the state-of-the-art 
alternative receptors for CRC by molecular docking, 
we considered the top-ranked 8 independent recep-
tors (MYC, CDK1, CXCL1, CXCL8, CXCL12, TIMP1, 
AURKA, and TOP2A) published by others in different 
36 articles for CRC (see Additional file  1: Table  S1), 
where the receptor CXCL8 was common with our 
proposed receptor. The 3D structure of MYC, CDK1, 
CXCL12, TIMP1, AURKA, and TOP2A was down-
loaded from the PDB database with the PDB codes 
6G6K, 6GU2, 6SHR, 2J0T, 6VPM, AND 1ZXM, respec-
tively and for another one CXCL1, downloaded from 
SWISS-MODEL using UniProt with ID P09341. The we 

Table 5 Top Enriched gene ontology (GO) terms and KEGG pathways by the proposed cDEGs highlighting cKGs

Term Overlap P value cKGs

Biological process

Cell junction maintenance (GO:0034331) [88] 2/14 6.14E−04 CLDN1

Cell–cell adhesion via plasma-membrane adhesion molecules (GO:0098742) [89] 4/170 0.001067 CLDN1

Calcium-independent cell–cell adhesion via plasma membrane cell-adhesion molecules 
(GO:0016338) [89]

2/20 0.00127 CLDN1

Cell–cell junction organization (GO:0045216) [89] 3/82 0.001342 CLDN1

Negative regulation of cell population proliferation (GO:0008285) [90] 5/379 0.003239 CXCL8

Regulation of cell migration (GO:0030334) [91] 5/408 0.00443 MMP7;CLDN1

Molecular function

Hormone activity (GO:0005179) [92] 5/78 1.96E−06 GUCA2A

Guanylate cyclase activator activity (GO:0030250) [93] 2/5 6.85E−05 GUCA2B;GUCA2A

Receptor ligand activity (GO:0048018) [94] 6/307 1.56E−04 GUCA2A

Chloride channel activity (GO:0005254) [95] 2/64 0.012507 CLCA4

Metallopeptidase activity (GO:0008237) [96] 2/121 0.040942 MMP7

CXCR chemokine receptor binding (GO:0045236) [97] 1/17 0.044125 CXCL8

Cellular component

Anchored component of plasma membrane (GO:0046658) [98] 2/46 0.006619 CA4

Collagen-containing extracellular matrix (GO:0062023) [99] 4/380 0.018081 ZG16

Bicellular tight junction (GO:0005923) [100] 2/78 0.018197 CLDN1

Apical junction complex (GO:0043296) [101] 2/98 0.027852 CLDN1

Cell–cell junction (GO:0005911) [102] 3/271 0.035073 CLDN1

KEGG

Nitrogen metabolism [22] 1/7 9.13E−04 CA4

Proximal tubule bicarbonate reclamation [103] 1/23 0.001682 CA4

Cell adhesion molecules [104] 3/148 0.007098 CLDN1

Pathogenic Escherichia coli infection [105] 3/197 0.015369 CXCL8;CLDN1

Amoebiasis [44] 2/102 0.029984 CXCL8

Leukocyte transendothelial migration [106] 2/114 0.036749 CLDN1

Cytokine-cytokine receptor interaction [107] 3/295 0.043339 CXCL8
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Fig. 8 KGs regulatory network analysis results A KGs-TFs interaction network to identify key transcriptional regulators of KGs, B KGs-miRNAs 
interaction network to identify key post-transcriptional regulators of KGs. Here red and black color ellipse indicates the KGs in both A and B, green 
color bigger size rectangle indicates key TFs in A and key miRNAs in B 



Page 15 of 24Horaira et al. BMC Medical Genomics           (2023) 16:64  

performed molecular docking analysis of 7 independent 
receptors with all of 160 drug agents. Figure 9B showed 
that our proposed 9 candidate drugs are also detected 
as the independent receptor-guided top-ranked 9 
drugs. Therefore, we can strongly recommend that the 
proposed drugs might be more effective candidates 
than the other drugs for the treatment against CRC.

Connectivity map (CMap) analysis to discover the mechanism 
of action of drug agents
In an effort to elucidate its mechanism of action, we 
defined a signature for Troglitazone, Cardidigin and 
Staurosporine. High connectivity scores were found 
for multiple instances of five heat shock protein inhibi-
tors: Angiotensin receptor antagonist, Topoisomerase 

Fig. 9 Molecular docking simulation results for exploring candidate drugs against CRC. A Image of binding affinity scores of proposed ordered 
receptor proteins with the top 50 ordered. B Image of binding affinity scores of the top-ranked independent receptors published by others with the 
top 50 ordered



Page 16 of 24Horaira et al. BMC Medical Genomics           (2023) 16:64 

inhibitor, Glycogen synthase kinase inhibitor, DNA 
dependent protein kinase inhibitor, and MTOR inhibitor. 
Despite the differences in the cells used to generate the 
query signature and reference profiles, the three highest-
scoring compounds in the Con nectivity Map were Tro-
glitazone, Cardidigin (Digitoxin use this name to use in 
Cmap) and Staurosporine (Fig.  10A). More important, 
the Connectivity Map also revealed strong connectivity 
with ten structurally distinct compounds, mocetinostat, 
ryuvidine, cyclopamine, dorsomorphin, JNJ-7706621, 
quinoclamine, SU-11652, bisacodyl, alvocidib, and rot-
tlerin respective inhibitor are show in Fig. 10B. Cyclopa-
mine and alvocidib compounds are not connected with 
Troglitazone.

AK3, OAZ2, NDUFAF4, EGFR, GNE, MAPK14, 
CSNK1G2, HSP90AB1, ZNF449, and GATAD1 genes 
depicts high positive connectivity with each of the drugs 
Troglitazone, Cardidigin and Staurosporine and their 
median connectivity score belongs to 97.96–97.53 (out 

of ± 100) which display in the Fig. 10C with correspond-
ing enriched pathways of the connected gene. Moreover, 
the drug staurosporine was positively connected with 
6 other genes namely OTUD3, TCF7L1, C2, TAAR1, 
PRDM1, and BMP2 with corresponding enriched 
pathways.

Discussion
The molecular mechanism of colorectal cancer (CRC) is 
not yet completely clear to the researchers. So potential 
molecular signatures are required to disclose molecu-
lar mechanisms of CRC and its therapeutic agents. The 
integrated statistics and bioinformatics analyses are 
now widely using to explore potential molecular sig-
natures of malignant tumors [108]. Transcriptomics 
analysis is a popular way of identifying DEGs between 
normal and tumor tissue samples [109]. Therefore, in 
this study, we considered the integrated bioinformat-
ics analyses for exploring common genomic biomarkers 

Table 6 The 3-dimension view of strong binding interactions between targets and drugs is shown in the 4th column

Key interactions amino acids and their binding types with potential targets were shown in the last column

Potential targets Structure of lead 
compounds

Binding 
affinity 
(kCal/mol)

The 3d view and 
interactions of 
complex

Interacting amino acids

Hydrogen bond Hydrophobic 
interactions

Electrostatic

MMP7 Cardidigin − 10.4 LEU181, THR189, 
ASN179, GLU219

HIS218, PHE103, PHE185 –

CA4 Manzamine A − 10.8 HIS4, TYR11, HIS4 HIS4, HIS4 –

ADH1C Cyclosporin A − 11.7 ALA317 LEU116, ILE318, PHE93 –
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from five transcriptomics profiles (GSE9348, GSE35279, 
GSE23878, GSE110224 and GSE50760) for diagnosis, 
prognosis, and therapies of CRC. At first, we identi-
fied 11 KGs (CXCL8, MMP7, CA4, ADH1C, GUCA2A, 
GUCA2B, CEMIP, ZG16, CLCA4, MS4A12, and CLDN1) 
by PPI analysis of 50 common DEGs (cDEGs). Some 
literature reviews also agreed with our results that 
these KGs are associated with CRC [14–45, 54] (see 
Fig.  11A). For example, Li et  al. [110] reported that  the 
gene CXCL8  plays a vital role in CRC progression by 
mediating the differentiation, proliferation, and apopto-
sis within a regulatory network. So, they suggested this 
gene as a drug target for CRC also [110].  Chen and Ke 
[111] detected the gene MMP7 as a potential biomarker 

of CRC by bioinformatics analysis. Another study found 
that it regulates cancer progression and mediate the dif-
ferentiation, proliferation, invasion and metastasis of 
various cancer cell types by different mechanisms [112]. 
A study reported that CA4 is a newly identified tumor 
suppressor gene in CRC by targeting the WTAP–WT1–
TBL1 axis through the inhibition of the Wnt signal-
ing pathway [113]. The gene ADH1C might lead the 
increasing production of proinflammatory mediators by 
decreasing its expressions in the ulcerative colitis colon 
through the activation of the STAT1/NF-κB signaling 
pathway [114].

The abnormally expressed peptide hormones GUCA2A 
and GUCA2B play as paracrine endogenous ligands for 

Fig. 10 The Connectivity Map for three smalls molecules of Troglitazone, Cardidigin and Staurosporine
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Fig. 11 Validation of the proposed KGs (receptors) and candidate drugs in favor of CRC by the literature review. A Validation of the proposed KGs: 
circles with green color indicate downregulated KGs, and pink color indicates up-regulated KGs, and each connected network with a circle indicates 
the reference in which the cKG is associated with CRC, B validation of the proposed candidate drugs: circles with green color indicate FDA approved 
and investigational drugs, purple color indicate investigational drugs and red color indicate unapproved drugs and each connected network with a 
circle indicates the references in which our suggested drugs might be effective against CRC treatment
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the guanylate cyclase-C (GUCY2C) receptor and help 
for the development of tumors in CRC by the association 
comparatively in lower levels with the disrupted intesti-
nal homeostasis [115]. CEMIP is an adaptor protein of 
the O-GlcNAc transferase that can be reprogramming 
the glutamine metabolism through the reciprocal regula-
tion of β-catenin and thereby promotes CRC metastasis. 
So, CRC metastasis can be prevented by the combina-
tional inhibition of CEMIP and glutamine metabolism 
that would be a useful therapeutic strategy [116]. ZG16 
can modulate the immune response in CRC by blocking 
the PD-L1 expression and the strong correlation desig-
nate ZG16 as a biomarker for the stratification of patent 
of immunotherapy [117]. Cancer-associated fibroblasts 
exosomes decreased the sensitivity of CRC towards the 
radiation and over-expressed miR-590-3p that promote 
CLCA4-dependent PI3K/Akt signaling pathway as well 
as cancer cell survival [118]. MS4A12 gene belonging to 
the MS4A family encodes a protein found in the apical 
membrane of colonocytes that plays an important role in 
the differentiation, proliferation, and cell cycle regulation 
and is believed to be a risk classification marker for early-
stage colon cancer [119]. Upregulation of CLDN1 expres-
sion was observed in patients with colorectal cancer, 
which could be a possible biomarker for colorectal cancer 
treatment [120].

Moreover, different pertinent bioinformatic analyses 
based on independent databases significantly supported 
the relationship of KGs with the CRC progression as dis-
cussed below. The expression analysis with box-plots by 
GEPIA web-tool with TCGA RNA-seq data showed that 
KGs significantly separated CRC groups from the control 
groups (Fig. 5). We investigated the relationship of tumor 
infiltrates immune cells with the KGs and observed that 
KGs are significantly associated with different tumor 
infiltrates immune cells under different databases of CRC 
(Additional files 3 and 4). We investigated the DNA meth-
ylation of KGs at CpG sites by MethSurv web-tool with 
TCGA database and bserved that seven KGs (CEMIP, 
MMP7, CA4, GUCA2B, ZG16, CLCA4, MS4A12) are sig-
nificantly methylated at CpG sites (Table 5) that may play 
the vital role in CRC progression. To investigate the prog-
nostic power of KGs, we performed multivariate survival 
analysis and developed a prediction model through RF 
classifiers in Fig.  7C. Our developed prediction models 
showed good performance with both training and test 
datasets generated from the main data collected from 
NCBI with accession numbers GSE9348, GSE23878, and 
GSE110224. The AUC values were 1.000 for the training 
dataset and 0.988 for the test dataset for RF model. To 
investigate their performance unbiasedly, we also consid-
ered independent test datasets from other NCBI sources 
with accession numbers GSE35279, respectively. We 

observed that predictor show good performance with the 
independent test data and TCGA dataset. The values of 
AUC were 0.943 and 0.90 for independent test data and 
TCGA dataset based on RF model. These results indicate 
the good prediction performance for the identified KGs, 
so we suggested the prognostic model for the classifier 
(RF). The GO functional and KEGG pathway enrichment 
analyses of cDEGs significantly revealed some GO terms 
of BPs, MFs and CCs, and KEGG pathways by involv-
ing KGs that are highly linked with CRC patients (see 
Table 2). Our literature review also supported their link 
with CRC. As for examples with the enriched BPs, six 
GO terms cell junction maintenance [88], cell–cell adhe‑
sion [89], calcium‑independent cell–cell adhesion [89], 
and cell–cell junction organization [89] these is associ-
ated with one KG (CLDN1). GO terms negative regula‑
tion of cell population proliferation [90] (associated with 
CXCL8), regulation of cell migration [91] (associated 
with MMP7 and CLDN1) and (associated with CA4) 
were reported as important BPs for CRC progression. 
Among the enriched MFs, two GO terms hormone activ‑
ity [92] and receptor ligand activity [94] were associated 
with GUCA2A. The guanylate cyclase activator activity 
[93] were associated with GUCA2A, GUCA2B. The MFs 
terms chloride channel activity [95] was associated with 
CLCA4. The metallopeptidase activity [96] was associ-
ated with MMP7. Among the enriched CCs, anchored 
component of plasma membrane [98] was associated with 
CA4. collagen‑containing extracellular matrix [99] was 
associated with ZG16. Four CCs term bicellular tight 
junction [100] apical junction complex [101] and cell–cell 
junction [102] were associated with CLCA1. Among the 
enriched KEGG pathways, two KEGG terms Nitrogen 
metabolism [22] and Proximal tubule bicarbonate recla‑
mation [103] were associated with CA4. Three pathways 
Cell adhesion molecules [104], Pathogenic Escherichia coli 
infection [105] and Leukocyte transendothelial migration 
[106] were associated with CLDN1. Two pathways Patho‑
genic Escherichia coli infection [105], Amoebiasis [44], 
and Cytokine‑cytokine receptor interaction [107] were 
associated with CXCL8.

The KGs-TFs interaction network analysis indicated 
that 4 TFs proteins (FOXC1, YY1, GATA2 and NFKB1) 
are the key transcriptional regulatory factors of KGs 
(see Fig. 4A). Among them, FOXC1 (a regulator of CA4, 
ADH1C, GUCA2A, GUCA2B, ZG16, and CLCA4) is 
connected with lymphatic vessel formation, arterial cell 
specification, and cardiovascular development [121]. The 
expression of TF-protein YY1 (a regulator of CXCL8, 
ADH1C, CEMIP, ZG16, and CLCA4) contributes to 
tumor growth differs in different cancers [122]. The TF-
protein GATA2 (a regulator of GUCA2B, MMP7, CXCL8 
and MS4A12) is connected with Hematopoietic and 



Page 20 of 24Horaira et al. BMC Medical Genomics           (2023) 16:64 

immune defects [123]. The TF-protein NFKB1 (a regula-
tor of GUCA2A, CA4, CEMIP and MS4A12) is a suppres-
sor of inflammation, ageing and cancer [124]. We also 
constructed the proteins-disease interaction network to 
detect other diseases connected with the proposed target 
proteins. Total 9 target proteins out of 11 were associated 
with other 547 diseases that can be considered as the 
risk factors of CRC. Especially, two diseases, "Malignant 
tumor of colon" and "Colonic Neoplasms", were mostly 
related to our target proteins.

To explore our proposed KGs-guided new and repur-
posable candidate drugs for the treatment against CRC, 
we considered the proposed KGs based 11 key proteins 
(CXCL8, MMP7, CA4, ADH1C, GUCA2A, GUCA2B, 
CEMIP, ZG16, CLCA4, MS4A12 and CLDN1) and their 
regulatory 4 TFs proteins (FOXC1, YY1, GATA2 and 
NFKB1) as the drug target receptors and performed 
their docking simulation with 167 drug molecules col-
lected from the DSigDB database and published articles 
(Fig. 9A). Then we selected top-ranked 10 drugs (Cyclo-
sporin A, Manzamine A, Cardidigin, Staurosporine, 
Benzo[A]Pyrene, Sitosterol, Nocardiopsis Sp, Trogl-
itazone, K-252a and Riccardin D) as the most probable 
repurposable candidate drugs for CRC patients based 
on their strong binding affinity scores (kCal/mol) with 
all the target proteins (Fig. 9A, B). Then we investigated 
the resistance performance of both the proposed and 
already published candidate drugs against the state-of-
the-art alternatives of already published top-ranked 7 
independent receptors for CRC and observed that our 
proposed candidate drugs are more effective compared 
to the already published drugs against the independent 
receptors also (Fig.  11B). We also tried to validate our 
proposed drugs in favor of CRC by the literature review 
(Fig. 11B).

Among the identified candidate drugs Cyclosporin A, 
a calcineurin inhibitor, traditionally used for its immu-
nosuppressive effects, inhibits the activity of the nonca-
nonical Wnt/Ca++/NFAT signaling pathway [125, 126]. 
It has been reported that Manzamine A exhibits an anti-
proliferative effect on human colorectal carcinoma cells 
and displays broad effects on gene expression to down-
regulate fundamental maintenances of cell survival and 
induce apoptotic cell death and EMT inactivation [127]. 
This study demonstrates the efficacy of Cardidigin (digi-
toxin) against cervical cancer in  vivo and elucidates its 
molecular mechanisms, including DSBs, cell cycle arrest 
and mitochondrial apoptosis. These results will con-
tribute to the development of Cardidigin as a chemo-
therapeutic agent in the treatment of cervical cancer 
[128]. Staurosporine alleviates cisplatin chemoresist-
ance in human cancer (colon) cell models by suppress-
ing the induction of SQSTM1/p62 [129]. Ajayi et al. [130] 

showed that Benzo[A] Pyrene induces oxidative stress, 
pro-inflammatory cytokines, expression of nuclear fac-
tor-kappa B, and deregulation of Wnt/β-catenin signal-
ing in colons of exposed mice. Sitosterol (Beta-sitosterol) 
suppresses tumor growth without toxicity in AGS xeno-
graft mouse models and induces apoptosis in human 
gastric adenocarcinoma cells [131]. Sitosterol prevents 
lipid peroxidation and improves antioxidant status and 
histoarchitecture in rats with 1,2-dimethylhydrazine-
induced colon cancer [132]. The marine actinobacte-
rium Nocardiopsis sp. MBRC-48 is an excellent microbial 
resource for the biosynthesis of gold nanoparticles with 
various biomedical applications such as antimicrobial, 
antioxidant, and anticancer activities [133]. The anti-pro-
liferative and apoptotic activities of PDT in combination 
with the PPARγ ligand troglitazone and provide a strong 
rationale for testing the therapeutic potential of combi-
nation treatment in colon cancer [134]. Liu et al. showed 
that Riccardin D might inhibit cell proliferation and 
induce apoptosis in HT-29 cells, which may be associated 
with the blocking of the NF-κB signaling pathway [135]. 
Among the proposed nine candidate drugs, Cyclosporin 
A, Cardidigin, and Troglitazone are approved by the FDA 
for a different disease, the three other drugs (Stauro-
sporine, Sitosterol and Nocardiopsis Sp.) are still inves-
tigational, and the rest of the three drugs (Manzamine A, 
Benzo[A]Pyrene, and Riccardin D) are not yet approved. 
The approved drugs for different diseases and unap-
proved drugs should be further assessed at the molecular 
level by the wet-lab experiments prior to clinical investi-
gation in the treatment of CRC.

Conclusion
The main purpose of this study was to identify key 
genomic biomarkers from multiple gene expres-
sion profiles for diagnosis, prognosis and therapies of 
CRC by using integrated bioinformatics and statisti-
cal approaches. We identified 11 common key genes 
(KGs) from multiple transcriptomics datasets, where 
4 KGs (CXCL8, CEMIP, MMP7,and CLDN1) were up-
regulated and the rest 7 KGs (CA4, ADH1C, GUCA2A, 
GUCA2B, ZG16, CLCA4,  and MS4A12) were down-
regulated. Different pertinent bioinformatic analyses 
including box plots of KGs-expressions with CRC and 
control groups, multivariate survival probability curves 
based on KGs-expressions, DNA methylation of KGs, 
correlation of KGs with immune infiltration levels in 
CRC, (different diseases)-KGs interaction, CRC-causing 
GO and KEGG pathways based on independent data-
bases significantly supported the relationship of KGs 
with the CRC progression. Their association was also 
supported by several other independent studies directly 
or indirectly that we mentioned in the discussion 
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section. We detected four TFs proteins (FOXC1, YY1, 
GATA2 and NFKB) and eight microRNAs (hsa-mir-
16-5p, hsa-mir-195-5p, hsa-mir-203a-3p, hsa-mir-
34a-5p, hsa-mir-107, hsa-mir-27a-3p, hsa-mir-429, and 
hsa-mir-335-5p) as the key transcriptional and post-
transcriptional regulators that may play a vital role in 
the regulation of KGs. Then we considered the pro-
posed 11 key proteins and their regulatory 4 TFs-pro-
teins as the drug target receptors to explore effective 
drug agents for CRC by molecular docking simulation 
with the 156 meta-drug agents. We detected nine small 
molecules (Cyclosporin A, Manzamine A, Cardidigin, 
Staurosporine, Benzo[A]Pyrene, Sitosterol, Nocardiop-
sis Sp, Troglitazone, and Riccardin D) as the top-ranked 
candidate drugs for the treatment against CRC. Then 
we investigated the resistance performance of the pro-
posed drugs against the state-of-the-art already pub-
lished top-ranked 11 independent receptors for CRC 
and observed that our proposed repurposable candi-
date drugs are more effective compared to the already 
published drugs against the independent receptors 
also. Therefore, the proposed candidate drugs might be 
played a vital role in the treatment of CRC.
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