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Abstract 

Background Solute Carrier Family 31 Member 1 (SLC31A1) has recently been identified as a cuproptosis‑regulatory 
gene. Recent studies have indicated that SLC31A1 may play a role in colorectal and lung cancer tumorigenesis. 
However, the role of SLC31A1 and its cuproptosis‑regulatory functions in multiple tumor types remains to be further 
elucidated.

Methods Online websites and datasets such as HPA, TIMER2, GEPIA, OncoVar, and cProSite were used to extract 
data on SLC31A1 in multiple cancers. DAVID and BioGRID were used to conduct functional analysis and construct the 
protein–protein interaction (PPI) network, respectively. The protein expression data of SLC31A1 was obtained from the 
cProSite database.

Results The Cancer Genome Atlas (TCGA) datasets showed increased SLC31A1 expression in tumor tissues compared 
with non‑tumor tissues in most tumor types. In patients with tumor types including adrenocortical carcinoma, low‑
grade glioma, or mesothelioma, higher SLC31A1 expression was associated with shorter overall survival and disease‑
free survival. S105Y was the most prevalent point mutation in SLC31A1 in TCGA pan‑cancer datasets. Moreover, 
SLC31A1 expression was positively correlated with the infiltration of immune cells such as macrophages and neu‑
trophils in tumor tissues in several tumor types. Functional enrichment analysis showed that SLC31A1 co‑expressed 
genes were involved in protein binding, integral components of the membrane, metabolic pathways, protein pro‑
cessing, and endoplasmic reticulum. Copper Chaperone For Superoxide Dismutase, Phosphatidylinositol‑4,5‑Bispho‑
sphate 3‑Kinase Catalytic Subunit Alpha and Solute Carrier Family 31 Member 2 were copper homeostasis‑regulated 
genes shown in the PPI network, and their expression was positively correlated with SLC31A1. Analysis showed there 
was a correlation between SLC31A1 protein and mRNA in various tumors.

Conclusions These findings demonstrated that SLC31A1 is associated with multiple tumor types and disease progno‑
sis. SLC31A1 may be a potential key biomarker and therapeutic target in cancers.
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Introduction
Cancer is the leading cause of mortality worldwide, 
imposing substantial healthcare and socio-economic 
burden [1]. The treatment strategies for cancer mainly 
include surgery, chemotherapy, radiotherapy, targeted 
therapy, and immunotherapy [2–5]. Despite drug resist-
ance, side effects, and other unelucidated issues, the 
prognosis and survival rate remain  unsatisfactory [6]. 
Recently large-scale and multi-omic pan-cancer stud-
ies and databases, such as the Cancer Genome Atlas 
(TCGA), have made it possible to investigate both  the 
common features and heterogeneities across various 
human tumors [7–12].

Solute Carrier Family 31 Member 1 (SLC31A1), also 
known as copper (Cu) transporter 1 (CTR1), is consid-
ered a key component in cellular Cu uptake in mam-
malian cells and tissues [13]. Moreover, SLC31A1 was 
recently identified as a cuproptosis-regulatory gene, 
and a high SLC31A1 expression level can cause Cu-
induced cell death [14]. In addition, SLC31A1 trans-
ports platinum drugs across the plasma membrane, and 
in patients with non-small cell lung cancer, SLC31A1 is 
a potential pharmacogenetic biomarker for clinical out-
comes [15, 16]. To date, however, there is no compre-
hensive pan-cancer  study of the function and clinical 
significance of SLC31A1.

In our current study, we systematically described the 
mRNA and protein expression levels, prognostic value, 
genetic alterations, molecular function of SLC31A1 
in several tumor types as well as the association with 
immune infiltration. Our findings reveal that SLC31A1 
could be a potential biomarker and novel therapeutic tar-
get  of multiple tumors.

Materials and methods
Expression analysis
Expression data of SLC31A1 mRNA was obtained from 
the Human Protein Atlas (HPA) database (version: 21.1) 
(https:// www. prote inatl as. org) [17]. In multiple tumor 
types, the “Gene DE” module of Tumor Immune Estima-
tion Resource version 2 (TIMER2) (http:// timer. cistr ome. 
org/) was used to investigate SLC31A1 expression levels 
in tumors and non-tumor tissues [18–20]. The protein 
expression level of SLC31A1 was obtained from HPA.

Prognostic analysis
Kaplan–Meier (K–M) survival analysis of SLC31A1 for 
overall survival (OS) and disease-free survival (DFS) was 
conducted using the Gene Expression Profiling Interac-
tive Analysis version 2 (GEPIA2) (http:// gepia2. cancer- 
pku. cn/) database [21].

Genetic mutations analysis
We analyzed the characteristics of SLC31A1 genetic 
alterations in cBioPortal (v4.1.9) (https:// www. cbiop ortal. 
org/) [22, 23]. In the "Cancer Types Summary" module, 
we calculated the frequency of SLC31A1 gene alterations 
based on  TCGA Pan-Cancer Atlas Studies datasets. The 
"Mutations" module was used to generate a mutation site 
plot of SLC31A1. Then to confirm the driver mutations 
in SLC31A1, the platform OncoVar (https:// oncov ar. org/) 
was used [24]. And the database the Catalogue of Somatic 
Mutations in Cancer (COSMIC) (https:// cancer. sanger. 
ac. uk) was used to annotate SLC31A1 somatic mutations 
[25]. Driver mutations were defined as somatic missense 
mutations with AI-Driver score ≥ 0.95 and occurred in 
at least two patients. The International Cancer Genome 
Consortium (ICGC) (https:// dcc. icgc. org/) database 
was used to confirm the mutation site of SLC31A1 and 
explore the cancer distribution of SLC31A1 [26].

Immune infiltration evaluation
The "Immune" module of TIMER2 was used to analyze 
the correlation between SLC31A1 expression and 21 
immune infiltrations, including B cells, cancer associ-
ate fibroblast, common lymphoid progenitor, common 
myeloid progenitor, DC, endothelial cells, eosinophil, 
granulocyte-monocyte progenitor, hematopoietic stem 
cells, macrophage, mast cells, monocyte, myeloid-derived 
suppressor cells, neutrophil, NK cells, CD4 + T cells, 
CD8 + T cells, T cell follicular helper, T cell gamma delta, 
NK T cells, and Tregs, Several immune deconvolution 
algorithms were applied, including TIMER, xCell, MCP-
counter, CIBERSORT, EPIC, quanTIseq, and CIBER-
SORT-ABS. Consistent significant findings (P < 0.05) by 
all available algorithms were required to support an accu-
rate correlation with immune infiltrations.

Gene enrichment analysis and protein interaction 
network construction
A list of the top 100 genes correlated with SLC31A1 that 
had similar expression patterns ranked by Pearson cor-
relation coefficient  was obtained from TCGA datasets 
using the GEPIA2 "Similar Gene Detection" module. 
In the meantime, Gene Ontology pathway enrichment 
analysis and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analysis were retrieved from the Database for 
Annotation, Visualization, and Integrated Discovery 
(http:// david. abcc. ncifc rf. gov/) [27–30]. With multiple 
test correlations, FDR < 0.05 were set as the significance 
threshold. In addition, pairwise gene correlation analysis 
was performed using the GEPIA2 “Correlation Analysis” 
module for all tumor tissues in TCGA. SLC31A1-inter-
active protein networks were constructed with the 

https://www.proteinatlas.org
http://timer.cistrome.org/
http://timer.cistrome.org/
http://gepia2.cancer-pku.cn/
http://gepia2.cancer-pku.cn/
https://www.cbioportal.org/
https://www.cbioportal.org/
https://oncovar.org/
https://cancer.sanger.ac.uk
https://cancer.sanger.ac.uk
https://dcc.icgc.org/
http://david.abcc.ncifcrf.gov/
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"Network" module of BioGRID (version. 4.4.216) (https:// 
thebi ogrid. org/) [31].

Relative protein abundance analysis of SLC31A1
The expression data of the relative protein abundance of 
SLC31A1 was downloaded from Cancer Proteogenomic 
Data Analysis Site (cProSite) database (https:// cpros 
ite. ccr. cancer. gov/). And the correlation of SLC31A1 
between relative abundance and mRNA was calculated 
using the cProSite website.

Statistical analysis
The statistical analysis was automatically computed based 
on the above online databases. Student’s t-test imple-
mented by GraphPad Prism (Version 9.1.1) was used to 
compare protein expression between tumor tissues and 
adjacent normal tissues.

Results
SLC31A1 expression in various tissues and tumors
Based on datasets from the HPA, GTEx, and FAN-
TOM5 (function annotation of the mammalian genome), 
SLC31A1 was found to be widely expressed in many tis-
sues, including the liver, gallbladder, the gastrointesti-
nal tract (such as the small intestine and duodenum) 
(Fig. 1a; Additional file 1: Figures S1a, b, and c). The pro-
tein expression profile in Fig.  1b showed that SLC31A1 
had a higher expression in the hippocampus, lung, 
endometrium, and kidney, and a lower expression in the 
esophagus, prostate, and skin. Additionally, single-cell 
RNA-seq analysis revealed high expression of SLC31A1 
in prostatic glandular cells, serous glandular cells, and 
hepatocytes (Additional file 1: Fig. S1d). It was also noted 
that SLC31A1 was also highly expressed in macrophages.

We further examined the expression pattern of 
SLC31A1 in tumor tissues. In comparison to correspond-
ing normal tissues, the expression of SLC31A1 mRNA 
was increased in most tumor tissues (Fig. 1c). Tumor tis-
sues of breast invasive carcinoma (BRCA), esophageal 
carcinoma (ESCA), pheochromocytoma, paraganglioma 
(PCPG), glioblastoma multiforme (GBM), stomach ade-
nocarcinoma (STAD), and uterine corpus endometri-
oid carcinoma (UCEC) had higher SLC31A1 expression 
levels when compared to corresponding normal tissues 
(all P < 0.01). In contrast, decreased SLC31A1 mRNA 

expression levels were observed in cholangiocarcinoma 
(CHOL), kidney chromophobe (KIRC), kidney renal 
clear cell carcinoma (KIRP), liver hepatocellular car-
cinoma (LIHC), lung adenocarcinoma (LUAD), lung 
squamous cell carcinoma (LUSC), prostate adenocarci-
noma (PRAD), thyroid carcinoma (THCA) tumor tissues 
(P < 0.001). No significant change in SLC31A1 expres-
sion was found in some tumor types such as pancreatic 
adenocarcinoma (PAAD) and uterine carcinosarcoma 
(UCS).

We then evaluated the possible impact of altered 
mRNA expression on the SLC31A1 protein. Figure 1d–f 
with relative protein abundance data from cProSite 
showed a moderate positive correlation between expres-
sion levels of SLC31A1 protein and mRNA in liver can-
cer, lung squamous cell carcinoma, and ovarian cancer. 
In addition, the relative abundance of SLC31A1 protein 
in liver cancer and stomach cancer showed a significant 
difference between tumor tissues and adjacent normal 
tissues (P < 0.0001) (Fig.  1g, h), in line with the mRNA 
expression difference. These results further confirmed 
that abnormal SLC31A1 expression might be involved in 
multiple cancers.

Association of SLC31A1 expression with cancer prognosis
Based on TCGA datasets, GEPIA2 was used to inves-
tigate the correlation between SLC31A1 expression 
and prognosis in different tumor types. Worse OS was 
found to be associated with higher SLC31A1 expression 
in  adrenocortical carcinoma (ACC) (P = 0.0012), BRCA 
(P = 0.0027),  mesothelioma (MESO) (P = 1.8 ×  10–5), 
Skin cutaneous melanoma (SKCM) (P = 0.027), LGG 
(P = 0.00012), Testicular germ cell tumors (TGCT) 
(P = 0.05), and  Thymoma (THYM) (P = 0.038), and 
associated with lower SLC31A1 expression in KIRC 
(P = 3.5 ×  10–5) in 5 years (Fig. 2). Additionally, DFS anal-
ysis showed that patients with ACC (P = 7 ×  10–4), LGG 
(P = 0.032), and MESO (P = 0.044) had worse outcomes 
if their SLC31A1 levels were higher, while patients with 
KIRC (P = 6.7 ×  10–6) and STAD (P = 0.02) in 5 years had 
lower levels (Fig. 3). According to the results, abnormal 
SLC31A1 expression was associated with poor prognosis 
in several tumor types.

Furthermore, we used GEPIA2 to examine the asso-
ciation between SLC31A1 expression and pathological 

Fig. 1 The expression of SLC31A1 in normal tissues and different tumors. a Consensus SLC31A1 tissue expression based on the consensus dataset 
in HPA. The X‑axis shows tissue or organ types. The Y‑axis shows the SLC31A1 mRNA expression level. nTPM, normalized transcripts per million. b The 
protein expression stare of SLC31A1 in different tissues. The X‑axis shows tissues or organ types. The Y‑axis shows the SLC31A1 protein expression 
level. c The expression status of SLC31A1 in different tumor types is visualized by TIMER2. The Y‑axis shows the SLC31A1 expression level in  Log2 
(TPM + 1). d–f The correlation between the relative abundance of protein and mRNA of SLC31A1 in liver cancer, lung squamous cell carcinoma, and 
ovarian cancer, respectively. g, h Comparison of SLC31A1 protein expression in tumor tissues and adjacent normal tissues from patients with liver 
cancer and stomach cancer. *P < 0.05; **P < 0.01; ***P < 0.001; ****, P < 0.0001

(See figure on next page.)

https://thebiogrid.org/
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Fig. 2 Effects of SLC31A1 expression on overall survival in different TCGA tumor types. a An overview survival map and overall survival analyses b–i 
are derived from GEPIA2. Kaplan–Meier plots of cancer types with significant p‑values are shown. The 95% confidence intervals of overall survival 
are indicated by red and blue dotted lines for high and low SLC31A1 expression groups, respectively. The color of the squares indicates the value of 
hazzard ratio (HR). Squares with bold outlines in the survival map denote p(HR) < 0.05
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Fig. 3 Effects of SLC31A1 expression on disease‑free survival in different TCGA tumor types. GEPIA2 is used to build a survival map (a) and conduct 
disease‑free survival b–f analyses. Kaplan–Meier plots of cancer types with significant results are displayed. The 95% confidence intervals of 
disease‑free survival are indicated by red and blue lines for the high and low SLC31A1 groups, respectively. The color of the squares indicates the 
value of the hazzard ratio (HR). Squares with bold outlines in the survival map denote p(HR) < 0.05
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stages of tumors and found a significant difference of 
SLC31A1 expression among pathological stages of ACC, 
KIRC, and MESO (all P < 0.05) (Additional file 2: Figure 
S2).

SLC31A1 genetic alterations in tumors
CBioPortal was then utilized to examine SLC31A1 gene 
alterations in TCGA datasets of various tumor types. It 
was found that tumor samples from UCEC had the high-
est SLC31A1 genetic alternation frequency (2.46%). In 
ACC tumor samples, all SLC31A1 mutations were copy 
number amplified (Fig.  4a; Additional file  4: Table  S1), 
which in all tumor samples from TCGA were the most 
common genetic alterations  in SLC31A1. Besides UCEC 
and ACC, genetic alteration of SLC31A1 was observed in 
more than 1% of Bladder Urothelial Carcinoma (BLCA), 
Prostate, Adenocarcinoma, Sarcoma, and Kidney Renal 
Papillary Cell Carcinoma. As shown in Fig. 4b, a total of 
27 SLC31A1 mutations, including 23 missense mutations, 
one fusion mutation, two frame-shift mutations, and 
one translation start-codon mutation, were contained 
in TCGA tumor samples (Additional file  4: Table  S2). 
According to the TCGA tumor samples, S105Y is the 

most prevalent point mutation in SLC31A1 (Fig. 4b). In 
the ICGC database, the mutation S105Y was also  the 
most prevalent mutation  in SLC31A1 (Additional file 3: 
Figure S3).

Furthermore, by using the database of OncoVar and 
COSMIC, S105Y was identified as a potential driver 
mutation with an OncoVar-score of 0.998 using the AI-
driver method (Additional file 4: Tables S3, S4).

Correlation between SLC31A1 expression and immune 
infiltration
The immune infiltration of tumors could influence the 
prognosis and treatment. We used TIMER2 to explore 
the correlation of SLC31A1 in 21 immune infiltrates in 
multiple tumors using algorithms including TIMER, 
xCell, MCP-counter, CIBERSORT, EPIC, and quanTIseq 
(Fig. 5). Notably, SLC31A1 was positively correlated with 
macrophage infiltration in multiple tumors including 
BLCA, COAD, HNSC, KIRC, LUAD, LUSC, PAAD, and 
THYM. SLC31A1 was positively correlated with neutro-
phil infiltration in BLCA, COAD, and STAD. Such find-
ings indicated a potential role of SLC31A1 in the immune 
process during cancer development and progression.

Fig. 4 SLC31A1 genetic alteration in various tumor types in TCGA. The frequency (a) and position of SLC31A1 mutation site b are derived from 
cBioPortal
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Fig. 5 The correlation of SLC31A1 and the infiltration levels of B cells, cancer associate fibroblast, common lymphoid progenitor, common myeloid 
progenitor, DC, endothelial cells, eosinophil, granulocyte‑monocyte progenitor, hematopoietic stem cells, macrophage, mast cells, monocyte, 
myeloid‑derived suppressor cells, neutrophil, NK cells, CD4 + T cells, CD8 + T cells, T cell follicular helper, T cell gamma delta, NK T cells, and Tregs. 
Positive correlation in red and negative correlation in blue.
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Enrichment of SLC31A1‑related genes in metabolic 
pathways
GEPIA2 was used to extract the top 100 genes with 
expression patterns similar to SLC31A1 in all tumor types 
from TCGA to investigate the gene’s functional impact. 
(Additional file 4: Table S5). GO and KEGG enrichment 
analysis indicated that these genes were involved in met-
abolic pathways and protein processing in the endoplas-
mic reticulum (Figs.  6a–d). These findings prompted us 
to wonder whether SLC31A1 plays a role in these bio-
logical processes by interacting with essential proteins 
involved in protein binding, integral components of the 
membrane, metabolic pathways, and protein processing 
in the endoplasmic reticulum (Additional file  4: Tables 
S6-9). Figure 6e showed the PPI network which was con-
ducted in BioGRID (minimum evidence = 1). Based on 
the Wikipathways annotation, three genes in the copper 
homeostasis pathway including copper chaperone for 
superoxide dismutase (CCS), Phosphatidylinositol-4,5-bi-
sphosphate 3-kinase Catalytic subunit alpha (PIK3CA) 
and Solute Carrier Family 31 Member 2 (SLC31A2) were 
found as nodes in the PPI network [32]. Furthermore, 
the expression level of SLC31A2, PIK3CA, and CCS was 
correlated with SCL31A1 (Fig. 6f, g) (Spearman r = 0.31, 
0.34, and −0.22, respectively).

Discussion
The multi-omics data of 33 tumor types from the TCGA 
project allow pan-cancer analyses of biomarkers and 
therapeutic targets using bioinformatic and statistic tools 
[7, 33–36]. Our current study evaluated the clinical sig-
nificance of SCL32A1, a key cuproptosis-regulatory gene, 
in various cancer types and implicated a potentially sub-
stantial role of cuproptosis in cancers.

The recently reported pathophysiological role of 
cuproptosis may provide new insight into anticancer 
treatments. SLC31A1 is the primary regulator of Cu 
uptake, and it expresses in most cells [37, 38]. Cuprop-
tosis is a novel mechanism of cell death whose core is the 
tricarboxylic acid cycle, and it relies on the mitochondrial 
respiration [14]. SLC31A1 has recently been proposed 
as a biomarker for cancer therapy and could play a role 
in chemoresistance in a few types of cancers [39, 40]. 
High-affinity copper uptake protein 1 (CTR1) encoded 
by SLC31A1 is the primary component responsible for 
Cu uptake in cells [41, 42]. A recent study revealed that 
CTR1 could function as a redox sensor to drive neovas-
cularization [43]. A strong correlation between CTR1 
and Programmed death-ligand 1 paved the way for clini-
cal trials to evaluate Cu chelators as immune check-
point inhibitors [44]. The current study comprehensively 
explored whether SLC31A1 plays a role in multiple 
tumors.

In the current study, TCGA datasets showed that 
SLC31A1 was expressed in various tissues. According 
to our findings, dysregulation of the SCL31A1 gene was 
associated with clinical parameters or prognosis in mul-
tiple types of cancer. It was found that a high expres-
sion level of SLC31A1 in ACC, KIRC, LGG, and MESO 
was associated with poor OS and DFS. More and more 
evidence has shown that genomic mutations influence 
tumor progression and chemotherapy response [45–47]. 
For example, there is evidence that genetic polymor-
phisms of SLC31A1 are associated with chemotherapy 
resistance and clinical outcomes in cancer patients [48]. 
In the current study, UCEC (> 2%) had the highest muta-
tion  rate of   SLC31A1, followed by ACC, BLCA, and 
PRAD. Based on these, SLC31A1 has been found to act as 
an oncogene in the progression of numerous cancers and 
may serve as a useful predictor of cancer prognosis.

The molecular mechanism of SLC31A1 in cancers 
remains to be elucidated. Our results indicated that 
SLC31A1 might contribute to changes in the immune 
microenvironment in cancer tissues. The immune micro-
environment has also been found to influence molecular 
phenotypes and prognoses [49–52]. Our results showed 
positive correlations of SLC31A1 expression with neutro-
phil and macrophage infiltration in several tumor types. 
Such correlation with macrophage infiltration was in 
line with the high expression level of SLC31A1 in mac-
rophages in single-cell RNA-Seq data, emphasizing the 
importance of SLC31A1 and the related cuproptosis in 
the cancer-related immune process. And neutrophils 
were reported to be involved in the metastasis of breast 
cancer [53].

Our gene enrichment analysis showed that there was 
a strong correlation between genes that co-express with 
SLC31A1 and metabolic pathways in the endoplasmic 
reticulum. In particular, SLC31A2 and PIK3CA were cop-
per homeostasis-regulated genes with a key role in tumor. 
Recently the function of SLC31A2 has been reported to 
associate with the development of lung adenocarcinoma, 
ovarian carcinoma, hepatocellular carcinoma, and sensi-
tivity to Cisplatin [54–57]. In the aspect of copper regu-
lation, PIK3CA was reported to be relative to glioma, 
breast cancer, and medulloblastoma [58–60]. Our results 
suggested that SLC31A1 may play a key role in cancer by 
influencing metabolic and Cu-related processes.

Our preliminary findings suggest that SLC31A1 could 
be involved in a variety of tumor types. Nevertheless, 
there are limitations in the current study. For some 
rare tumor types, the  sample sizes were relatively small 
and our finding  needed to be validated in independent 
cohorts. Further studies are warranted to determine the 
molecular function of SLC31A1 in tumorigenesis.
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Fig. 6 SLC31A1‑related gene enrichment analysis. a–d Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis of the top 100 genes co‑expressed with SLC31A1 ranked by Pearson correlation coefficient from GEPIA2. e C1ORF112‑protein interactions 
obtained from BioGRID. f–h Correlation analysis between SLC31A1 and CCS and Erb‑B2 Receptor Tyrosine Kinase 3 (ERBB3) is conducted by GEPIA2 
across all tumor samples from TCGA 
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Conclusions
Our pan-cancer analysis demonstrates that the cuprop-
tosis-regulatory gene SLC31A1 is dysregulated in vari-
ous cancers with its expression and genetic alteration 
associated with clinical outcomes in patients with these 
tumors. Additionally, immune infiltration analysis and 
gene enrichment analysis provide new insight into poten-
tial mechanisms related to SLC31A1 in cancers. Our 
study thus warrants further experimental and clinical 
studies to understand the function of SLC31A1 and its 
potential practical applications in cancer therapy and 
prognosis prediction.
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