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Abstract
Background Adult T-cell Leukemia/Lymphoma (ATLL) is a rapidly progressing type of T-cell non-Hodgkin lymphoma 
that is developed after the infection by human T-cell leukemia virus type 1 (HTLV-1). It could be categorized into 
four major subtypes, acute, lymphoma, chronic, and smoldering. These different subtypes have some shared clinical 
manifestations, and there are no trustworthy biomarkers for diagnosis of them.

Methods We applied weighted-gene co-expression network analysis to find the potential gene and miRNA 
biomarkers for various ATLL subtypes. Afterward, we found reliable miRNA-gene interactions by identifying the 
experimentally validated-target genes of miRNAs.

Results The outcomes disclosed the interactions of miR-29b-2-5p and miR-342-3p with LSAMP in ATLL_acute, miR-
575 with UBN2, miR-342-3p with ZNF280B, and miR-342-5p with FOXRED2 in ATLL_chronic, miR-940 and miR-423-3p 
with C6orf141, miR-940 and miR-1225-3p with CDCP1, and miR-324-3p with COL14A1 in ATLL_smoldering. These 
miRNA-gene interactions determine the molecular factors involved in the pathogenesis of each ATLL subtype and the 
unique ones could be considered biomarkers.

Conclusion The above-mentioned miRNAs-genes interactions are suggested as diagnostic biomarkers for different 
ATLL subtypes.
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Background
Adult T-cell leukemia/lymphoma (ATLL) is virus-caused 
cancer that is developed after infection by Human T-cell 
leukemia virus type-1 (HTLV-1) [1]. ATLL is diagnosed 
by the aggressive T-cell and malignant lymphoprolifera-
tions which are increased in the infected individuals after 
likely a long latency period [2]. The prevalence of ATLL 
is approximately 5% among HTLV-1 infected cases. 
Based on Shimoyama classification, ATLL is categorized 
into four major subtypes: acute, lymphoma, chronic, 
and smoldering. The first two are aggressive with a poor 
prognosis and the last two include an indolent clinical 
period with disparate clinicopathologic characteristics. 
The acute type is more common and usually is associ-
ated with high amounts of serum lactose dehydrogenase 
and leukemia. The lymphoma cells are present in the 
blood and affect the bones, skin, lymph nodes, spleen, 
and liver. In addition, lymphomatous ATLL is infrequent 
and grows quickly. Also, it can impress the brain and spi-
nal cord with an increase in the lymph nodes. Chronic 
ATLL develops leisurely similar to the smoldering type 
and elevates T cells and lymphocytes in the blood. It can 
influence the lungs, skin, spleen, liver, and lymph nodes. 
Smoldering ATLL can also affect the lungs and skin 
which leads to unusual T-cell counts [3–5].

MicroRNAs (miRNAs) are a category of non-coding 
RNAs with a length of almost 19–25 nucleotides that reg-
ulate the expression of different genes. They have effects 
on various biological functions such as proliferation, cell 
cycle, apoptosis, differentiation, and immune response. 
The conceivable roles of miRNAs in the progression of 
ATLL and tumorigenesis have been specified [6–8].

Different ATLL subtypes have a poor prognosis 
because of the intrinsic chemoresistance and the severe 
immunosuppression in addition to their heterogeneous 
advent. The combination of chemotherapy drugs and 

miRNAs can be a suitable remedy for ATLL [9]. Several 
papers have introduced the genes and miRNAs impli-
cated in the progression of ATLL without considering 
different subtypes [10–12]. Therefore, the exploration 
of miRNA-gene interactions in various ATLL subtypes 
to propose potential therapeutic targets using computa-
tional algorithms could be advantageous.

Weighted gene co-expression network analysis 
(WGCNA) is a potent algorithm that could cluster the 
genes through the calculation of correlations between 
them. The identified clusters named modules contain the 
co-expressed gene groups which likely participate in the 
same biological pathways. Moreover, assessing the pres-
ervation of the identified modules in the external data 
could lead to identifying the specific modules involved in 
disease [10].

We recently used machine learning to classify differ-
ent ATLL subtypes based on the mRNA and miRNA 
datasets [9]. However, we could only find one common 
miRNA and a few genes for each subtype. In this study, 
we employed the weighted gene co-expression method 
for finding specific coding and non-coding RNA inter-
actions for three subtypes of ATLL. It sheds light on the 
pathogenesis mechanisms from asymptomatic carriers 
(ACs) toward the progression of each ATLL subtype.

Materials and Methods
Gene expression datasets and preprocessing
The microarray gene expression datasets GSE33615 
[13], GSE55851 [14], GSE29312 [15], and GSE29332 [15] 
were downloaded from the database Gene Expression 
Omnibus (GEO). The two first datasets include the gene 
expression levels in the Peripheral Blood Mononuclear 
Cells (PBMCs) or the whole blood of patients with one 
of the ATLL subtypes including acute, chronic, and smol-
dering. The last two datasets contain the gene expression 
levels in the PBMCs of AC carrier samples. Totally, 29, 
23, and 10 subjects including ATLL with acute, chronic, 
and smoldering subtypes, respectively, as well as 37 
AC subjects were used for further analysis. In addition, 
GSE31629 [13] and GSE46345 [16] datasets containing 
the miRNAs expression levels of 40 ATLL and 12 ACs 
subjects were employed to analyze the non-coding RNA 
data. The dataset details are explained in Table  1. The 
possible batch effect among datasets was removed using 
the function of removeBatchEffect in the Limma package 
version 3.54 in the R 4.2.2 environment [10, 17–21]. The 
data was also quantile normalized.

Weighted gene co-expression network
The weighted gene co-expression network was con-
structed employing the R package “WGCNA” ver-
sion 1.71 [22]. WGCNA was used to find clusters of 
co-expressed genes that likely are involved in similar 

Table 1 Details of the datasets involved in the analysis
Dataset Number of 

Samples
Link to dataset

Gene datasets
GSE33615 Acute: 26

Chronic: 20
Smouldering: 4

https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE33615

GSE55851 Acute: 3
Chronic: 3
Smouldering: 6

https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE55851

GSE29312 ACs: 20 https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE29312

GSE29332 ACs: 17 https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE29332

miRNA datasets
GSE31629 ATLL: 40 https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE31629

GSE46345 ACs: 12 https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=46345

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33615
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33615
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55851
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55851
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29312
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29312
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29332
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29332
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31629
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31629
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=46345
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=46345
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biological pathways. To identify these clusters, known 
as modules, an adjacency matrix was initially calcu-
lated using Pearson correlation between pairs of genes/
miRNAs, with the optimized soft power. The “pickSoft-
Threshold” function was used to identify scale-free topol-
ogy fitting indices against different soft thresholding 
powers β. Afterward, the Topological Overlap Matrix 
(TOM) was determined by transforming the adjacency 
matrix. Highly co-expressed genes were then grouped 
using hierarchical clustering. Next, the dynamic tree 
cut algorithm was applied to cut dendrogram branches 
and to identify gene modules. The close modules were 
merged utilizing the mergeCloseModules function.

Identification of specific modules for each subtype
In this step, the module’s preservation for each indi-
vidual ATLL subtype in the ACs expression dataset 
was determined. To this end, the “modulePreservation” 
function in the WGCNA package (version 1.71) was 
utilized. The module preservation statistics introduced 
a measure indicating the preservation or somewhat 
non-preservation of a module between a reference 
network and a test network [23]. In this study, the co-
expression networks of ATLL subtypes were considered 
as the reference and ACs as the test network. The same 
analysis was performed for the miRNA dataset. The 
parameters of Zsummary (Zdensity+Zconnectivity

2
) and median-

Rank (medianRankdensity+medianRankconnectivity
2

) were measured 
to determine the preservation of modules. Zsummary and 
medianRank combine various preservation statistics into 
individual measures of preservation. These two measures 
are both important for deciding the preservation of a net-
work module. In this study, Zsummary determines whether 
modules identified in the ATLL datasets remain highly 
connected in the ACs dataset (density) and whether the 
connections between the genes in each module are the 
same between the ATLL and ACS datasets (connectiv-
ity) [24]. The medianRank is beneficial to compare the 
preservation among several modules so that a mod-
ule with a higher medianRank shows weaker preserva-
tion statistics than a module with a lower median rank. 
It is highly independent of module size [23]. Modules 
with Zsummary<2 and medianRank≥8 were regarded as 
non-preserved gene co-expression modules in the ACs 
group and so are specific for each ATLL subtype [25–27]. 
Moreover, Zsummary<2 was considered to determine spe-
cific miRNA co-expression modules for ATLL.

Deteremining differentially expressed genes and miRNAs
To determine the differentially expressed genes (DEGs) 
and differentially expressed miRNAs (DEMs) between 
ATLL and ACs groups, the Bioconductor package Limma 
(version 3.54) was employed. The statistically mean-
ingful DEGs and DEMs were identified by applying 

Benjamini-Hochberg adjusted p-value [28] cutoff of less 
than 0.05.

Identification of target genes for miRNAs
The unique DEGs in the preserved modules in each 
ATLL subtype were determined (U_DEGs). Moreover, 
the unparalleled DEMs in the preserved modules in 
ATLL were also found (U_DEMs). Next, the miRTar-
Base database containing the experimentally validated 
miRNA-target gene interactions was searched to deter-
mine the target genes of the U_DEMs [8]. Afterward, the 
common genes between these target genes and U_DEGs 
were determined (C_DEGs). Finally, the interactions of 
miRNA-genes was depicted in Cytoscape 3.6.1.

Stepwise method to perform analysis
The steps of the performed analyses in this study are 
shown in a flowchart (Fig.  1). Briefly, we first prepared 
data for further analysis by merging different datasets and 
pre-precessing. Then, we constructed the weighted gene/
miRNAs co-expression networks. Afterward, we deter-
mined the specific gene modules for each ATLL subtype/
miRNA module for ATLL through performing module 
preservation analysis and finding unique genes in each 
gene module (U_modules). In the next step, we identi-
fied DEGs and DEMs between ATLL and ACs and then 
found unique DEGs for each subtype. We further identi-
fied shared genes between unique DEGs and genes in U_
modules (U_genes) as well as common miRNAs between 
DEMs and miRNAs in U_modules (U_miRNAs). Follow-
ing the determination of the target genes of U_miRNAs, 
we explored the shared genes between the target genes 
of U_miRNAs and U_genes (C_genes). Finally, we con-
structed miRNA-gene interactions between miRNAs and 
C-genes for each subtype.

Results
Construction of WGCNs
A total of 14,837 common genes were used to construct 
three weighted co-expression networks for three ATLL 
subtypes. At first, the soft-thresholding power (β) of 7, 
17, and 2 were determined as the optimum quantities to 
obtain a scale-free topology for acute, chronic, and smol-
dering, respectively. After calculating adjacency matrix 
power β, TOM dissimilarity, hierarchical clustering, cut-
ting the clusters, and finally merging the close clusters, 
nine modules were identified for ATLL_acute, seven 
modules for ATLL_chronic, and nine modules for ATLL_
smoldering (Grey module contains the genes that are not 
assigned to any of the modules). Figure  2a-c indicates 
the dendrogram and the identified modules specified by 
a unique color for each subtype. Moreover, a weighted 
gene co-expression network was constructed for miRNA 
ATLL samples. No dataset comprising the miRNA 
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Fig. 2 Dendrogram of clustered genes constructed by WGCNA based on (1-TOM) for (a) ATLL acute subtype (ATLL_acute), (b) ATLL chronic subtype 
(ATLL_chronic), and (c) ATLL smoldering subtype (ATLL_smoldering) with the specified module colors. Each color denotes a module (group of genes) 
determined by the dynamic tree cut algorithm before and after merging modules

 

Fig. 1 Flowchart of the step-wise analyses in this study
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expression for each ATLL subtype is available, so we pre-
sumed the miRNA expression for ATLL regardless of its 
subtype. The β of 10 was determined as the optimum 
value to reach a scale-free topology. Figure  3 demon-
strates the dendrogram and the four obtained modules.

Identification of non-preserved modules
To identify specific modules for each of the three ATLL 
subtypes, their preservations in the ACs dataset were 
investigated. The modules with medianRank ≥ 8 and 
Zsummary < 2 were considered as specific non-preserved 
gene modules and Zsummary < 2 for miRNA modules. 
Figure  4a-c demonstrates the plots of Zsummary scores 
and Fig.  4d-f indicates the plots of medianRank scores 
versus module size for ATLL_acute, ATLL_chronic, 
and ATLL_smoldering, respectively (Supplementary 
data file 1). Therefore, blue4 and coral4 modules in 
ATLL_acute, darkorange and navajowhite2 modules in 
ATLL_chronic, and darkseagreen2 module in ATLL_
smoldering were found as specific and subtype-related 
modules. Figure 5a,b also represents the plots of Zsummary 
and medianRank scores for ATLL_miRNA and shows 
the preservation of turquoise and yellow modules in 
ATLL (Supplementary data file 1). Next, we determined 
the unique genes in each specific module among all 
ATLL subtypes. Since they are not present in any other 

modules, we referred to them as unique modules (U_
modules, Supplementary data file 2). The miRNAs in the 
preserved modules in ATLL (turquoise and yellow) were 
also considered U_modules. In the further step, we deter-
mined DEGs between each ATLL subtype and ACs sam-
ples as well as DEMs between ATLL and ACs samples 
considering adj. p. value < 0.05. Then, the unique DEGs 
for each subtype were identified (Supplementary data file 
3). Afterward, the common ones between genes/miRNAs 
in each U_module and DEGs/DEMs called U_genes/U_
miRNAs were found (Supplementary data file 4).

Constructing miRNA-gene interactions
To find the experimentally validated target genes of U_
miRNAs, the miRTarBase database was explored (Sup-
plementary data file 5). Next, the shared genes between 
the target genes and U_genes (C_genes) for each subtype 
were explored. As a result, the interactions of miR-29b-
2-5p and miR-342-3p with LSAMP in ATLL_acute, miR-
342-5p with FOXRED2, miR-342-3p with ZNF280B, and 
miR-575 with UBN2 in ATLL_chronic, miR-1225-3p and 
miR-940 with CDCP1, miR-423-3p and miR-940 with 
C6orf141, miR-324-3p with COL14A1 in ATLL_smolder-
ing were found (Fig. 6). The identified miRNA-gene inter-
actions may be involved in the pathogenesis mechanism 
and development of each subtype. Moreover, the unique 

Fig. 3 Dendrogram of clustered genes constructed by WGCNA based on (1-TOM) for miRNA dataset of ATLL with the specified module colors. Each color 
denotes a module (group of genes) determined by the dynamic tree cut algorithm before and after merging modules
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ones in these interactions could be considered potential 
biomarkers.

Discussion
The identification of the potential role of genes and miR-
NAs in the development of each ATLL subtype is crucial 
for understanding the pathogenesis mechanism and iden-
tifying therapeutic targets. In this study, we utilized the 
weighted gene co-expression analysis procedure to iden-
tify the particular co-expressed genes in three subtypes 
of ATLL. In the following, we discuss the determined 

genes and miRNAs that probably have the main roles in 
the progression of each ATLL subtype cancer.

In the acute subtype, LSAMP gene and its interaction 
with miR-29b-2-5p and miR-342-3p were identified. 
LSAMP encodes a neuronal surface glycoprotein pres-
ent in the subcortical and cortical regions of the limbic 
system. LSAMP can be involved in tumor suppression 
and neuropsychiatric disorders [29, 30]. Furthermore, 
miR-29b-2-5p and miR-342-3p barricade cell prolifera-
tion and promote apoptosis. Their functions have been 
determined in several cancers, such as pancreatic ductal 

Fig. 5 Preservation (a) Zsummary and (b) medianRank versus module size after constructing a weighted miRNA co-expression network. The modules below 
the dashed line ( Zsummary<2 and medianRank ≥ 8) are the specific modules for ATLL.

 

Fig. 4 Preservation Zsummary (a-c) and medianRank (d-e) versus module size for ATLL acute subtype (ATLL_acute), ATLL chronic subtype (ATLL_chronic), 
and ATLL smoldering subtype (ATLL_smoldering), respectively. The modules below the dashed line ( Zsummary<2 and medianRank ≥ 8) are the specific 
modules for each ATLL subtype
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adenocarcinoma, cervical cancer, and non-small cell lung 
cancer [31–33]. The lower expression of LAMP may be 
related to the higher expressions of miR-29b-2-5p and 
miR-342-3p that ultimately result in tumor suppression 
[30].

In the chronic subtype of ATLL, FOXRED2 and 
ZNF280B were found to have interconnections with 
miR-342-5p and miR-342-3p, respectively, and UBN2 
was also identified to have an interaction with miR-575. 
FOXRED2 is an unstable protein that is probably impli-
cated in the ubiquitin-dependent ERAD pathway and is 
essential for the modulation of the proteasome [34]. The 
inhibitors of proteasome induce apoptosis, which can 
have an antitumor effect [35]. The function of FOXRED2 
in cancer is not yet fully understood, and further stud-
ies are required to investigate its role in chronic ATLL. 
ZNF280B is known as an oncogene that encodes a tran-
scription factor protein inducing the overexpression of 
MDM2. MDM2 boosts tumor constitution and cancer 
cell growth by targeting some tumor repressor proteins 
like p53 [36, 37]. MiR-342-5p is a downstream molecule 
of Notch signaling implicated in the regulation of Endo-
thelial cells (ECs) during angiogenesis. Its higher expres-
sion weakens angiogenesis and promulgated EndMT. 
MiR-342-5p likely acts as a tumor suppressor and may 
also suppress migration and cell proliferation [38, 39]. 
Similarly, miR-342-3p represses cell growth and prolif-
eration and also inhibits migration and invasion [32, 40]. 
The overexpression of these two miRNAs by targeting 
ZNF280B and FOXRED2 could suppress tumorigenesis 
and cell proliferation in chronic ATLL.

On the other hand, UBN2 is a nuclear protein with the 
capability of interacting with several transcription fac-
tors. It acts as an oncogene that can be involved in the 
proliferation and tumorigenicity of cancer cells [41]. 
UBN2 can contribute to the transcription of the KRAS 
gene as a sector of histone chaperone. The cell cycle can 
be regulated by KRAS signaling through phosphoryla-
tion and interdicting p21 and p27 to mitigate cyclinD1 
[42]. UBN2 is targeted by miR-575 as an oncomir that 
can boost cell proliferation and migration in some cancer 
cells and possibly chronic ATLL [43–45].

In the smoldering subtype of ATLL, CDCP1, C6orf141, 
and COL14A1 were found. CDCP1 is a known protein 
implicated in malignancies of multiple cancers. It asso-
ciates with important tumorigenic signaling cascades, 
comprising the PI3K/AKT, SRC/PKCδ, RAS/ERK, 
WNT axes, and oxidative pentose phosphate pathway 
[46]. Therefore, CDCP1 is a considerable therapeutic 
and diagnostic target [47]. C6orf141 has been found as 
a tumor repressor protein in oral cancer. Its promoter 
CpG islands are methylated in some cancer which com-
municates with high-density lipoprotein alterations [48]. 
COL14A1 is another gene whose role has not been fully 
understood in cancers. It is methylated in renal cell car-
cinoma that may act as a tumor suppressor. It associates 
with a poorer prognosis independent of tumor grade, 
size, and stage [46]. Also, it has been identified that 
COL14A1 has an important role in keeping the stem cell-
like and self-renewal features of Liver cancer stem cells 
through the activation of ERK signaling [47]. MiR-940 
interdicts proliferation and migration of cancer cells and 
miR-1225-3p implicates malignancy. These two miRNAs 

Fig. 6 The unique miRNA-gene interactions for (a) ATLL_acute, (b) ATLL_chronic, (c) ATLL_smoldering.
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interact with CDCP1 [48, 49]. Moreover, miR-423-3p is 
an oncomir that boosts cancer cell proliferation through 
the promotion of the G1/S transition phase of the cell 
cycle [50, 51]. It is in association with miR-940 target 
C6orf141 in smoldering ATLL. On the other hand, miR-
324-3p which targets COL14A1, suppresses the invasion 
and growth of some cancer cells by elevating the apop-
tosis [52]. Also, it was proposed that the miR-324-3p/
Smad4/Wnt signaling axis could be a therapeutic target 
to barricade cancer progression [53]. However, more 
studies must be performed for finding its convenient role 
in tumorigenesis.

On the whole, the miRNA-gene interaction networks 
that may contribute to the pathogenesis of each ATLL 
subtype were proposed. However, these networks rep-
resent only a small fraction of the complex network 
involved in ATLL development, and additional data are 
required to unveil the complete network. Therefore, 
future studies with larger cohorts are necessary to deter-
mine the comprehensive interaction of genes and miR-
NAs in each ATLL subtype.

Conclusion
In summary, we found the genes and miRNAs that could 
be significantly involved in the pathogenesis of three 
ATLL subtypes. The step-wise analysis revealed unique 
genes/miRNA in the identified interactions, includ-
ing LSAMP and miR-29b-2-5p in acute, FOXRED2, 
UBN2, miR-342-5p, and miR-575 in chronic, and CDCP, 
C6orf141, COL14A1, miR-1225-3p, miR-940, miR-
423-3p, miR-324-3p in smoldering subtypes. These genes 
and miRNAs could serve as potential biomarkers. How-
ever, their efficacies should be confirmed through experi-
mental studies.
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