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Abstract 

Background Xp22.31 deletion and duplication have been described in various studies, but different laboratories 
interpret pathogenicity differently.

Objectives Our study aimed to refine the genotype–phenotype associations between Xp22.31 copy number vari-
ants in fetuses, with the aim of providing data support to genetic counseling.

Methods We retrospectively analyzed karyotyping and single nucleotide polymorphism array results from 87 fetuses 
and their family members. Phenotypic data were obtained through follow-up visits.

Results The percentage of fetuses carrying the Xp22.31 deletions (9 females, 12 males) was 24.1% (n = 21), while 
duplications (38 females, 28 males) accounted for 75.9% (n = 66). Here, we noted that the typical region (from 6.4 to 
8.1 Mb, hg19) was detected in the highest ratio, either in the fetuses with deletions (76.2%, 16 of 21) or duplications 
(69.7%, 46 of 66). In female deletion carriers, termination of pregnancy was chosen for two fetuses, and the remaining 
seven were born without distinct phenotypic abnormalities. In male deletion carriers, termination of pregnancy was 
chosen for four fetuses, and the remaining eight of them displayed ichthyosis without neurodevelopmental anoma-
lies. In two of these cases, the chromosomal imbalance was inherited from the maternal grandfathers, who also only 
had ichthyosis phenotypes. Among the 66 duplication carriers, two cases were lost at follow-up, and pregnancy 
was terminated for eight cases. There were no other clinical findings in the rest of the 56 fetuses, including two with 
Xp22.31 tetrasomy, for either male or female carriers.

Conclusion Our observations provide support for genetic counseling in male and female carriers of Xp22.31 copy 
number variants. Most of them are asymptomatic in male deletion carriers, except for skin findings. Our study is con-
sistent with the view that the Xp22.31 duplication may be a benign variant in both sexes.

Keywords Xp22.31 deletion, Xp22.31 duplication, X-linked ichthyosis, Genetic counseling

Introduction
Xp22.31 deletion is relatively common in the gen-
eral population, with a carrier frequency of approxi-
mately 1 in 1500 males and 1 in 750 females [1, 2]. It 
was thought to be a pathogenic variant that contains 
the STS gene, the deletion of which causes X-linked 
ichthyosis (XLI). In 90% of XLI cases, it is caused by a 
deletion that completely encompasses the STS gene [3]. 
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Clinical phenotypes include widespread dry, scaly skin 
and scaling. This condition affects males but is rarely 
reported in females [3]. Female deletion carriers have 
been reported to have a clinical phenotype of benign 
corneal opacities [4]. Recent studies have shown that 
the overall health and reproduction of heterozygous 
female carriers for Xp22.31 deletion exhibit appar-
ently no or negligible differences compared to those of 
female non-carriers [2, 5]. Thus, the interpretation of 
female carriers is not controversial in prenatal diagno-
sis. For male carriers, all patients only had minor skin 
findings in some reports [6, 7]. In addition to ichthyo-
sis, benign corneal opacities affected approximately 
10–50% of males with XLI [8], and approximately 
20% of males with XLI had cryptorchidism [2]. Fur-
thermore, autism [9], intellectual disability [10–13], 
epilepsy [14], developmental delay [15], and kidney 
abnormalities [16] were described in male carriers 
of typical XLI-associated deletions (approximately 
1.6 Mb). The Xp22.31 deletion is commonly classified 
as pathogenic according to the American College of 
Medical Genetics and Genomics recommendations for 
interpreting and reporting constitutional copy number 
variations (CNVs) [17], given its association with XLI. 
Despite the ascertained association, the skin pheno-
type can be improved with appropriate treatment and 
can be considered benign compared to other inherited 
dermatologic conditions or to the phenotypes associ-
ated with other pathogenic CNVs possibly detected 
in prenatal diagnosis, a setting in which the main 
attention is drawn on neurodevelopmental outcomes 
and structural anomalies. The possible association of 
Xp22.31 imbalances with neurodevelopmental pheno-
types, reported by some authors [10–13] and excluded 
by others [6, 7], requires further studies. This makes 
the determination of pregnancy outcome difficult in 
case of male fetuses.

The frequency of Xp22.31 duplication has been 
reported to be as high as 0.41% in general population 
controls [18]. However, the  pathogenicity of Xp22.31 
duplication is debatable [19], some studies consider 
this duplication a variant of uncertain significance 
(VUS) [20, 21]. Recent studies interpret Xp22.31 dupli-
cation as benign [22, 23], whereas others suspect it is 
likely pathogenic. Some correlations include neurode-
velopmental changes, intellectual disability, cognitive 
deficits, and seizures [24–28]. As a result, its interpre-
tation varies between different diagnostic laboratories, 
which can lead to misdiagnosis. Our study aimed to 
provide more support for Xp22.31 genetic counseling 
by analyzing genotype–phenotype correlations in 87 
cases.

Materials and methods
Subjects
This was a retrospective study at a tertiary referral 
center (Prenatal Diagnosis Center of Obstetrics and 
Gynecology, Southwest Hospital in Chongqing). Single 
nucleotide polymorphism (SNP) array testing and kar-
yotyping were offered for fetal samples and post-birth 
information and childcare data were obtained via tel-
ephone follow-up assessment. By analyzing these data, 
87 cases of Xp22.31 CNVs (21 deletions and 66 dupli-
cations) were selected from 13,568 cases of invasive 
prenatal diagnosis (amniocentesis and cordocentesis) 
between January 2016 and December 2021. Informed 
consent for invasive prenatal diagnosis was obtained 
from the parents before detection. This research was 
approved by the Ethics Committee of Southwest Hos-
pital, Third Military Medical University (Army Medical 
University).

The ages of pregnant women at the time of prenatal 
diagnosis were between 20 and 38  years old. Amnio-
centesis was performed at a gestational age (GA) of 
18–25  weeks. The pregnant women who chose cor-
docentesis had a GA between 28 and 32  weeks. Their 
indications included advanced maternal age, adverse 
pregnancy history, abnormalities of ultrasound, or non-
invasive prenatal testing.

Karyotyping
This procedure was described in our previous study [29].

SNP array analysis
This procedure was described in our previous study [29]. 
The databases for analysis are as follows: DGV (http:// 
dgv. tcag. ca/ dgv/ app/ home), OMIM (http:// www. ncbi. 
nlm. nih. gov/ omim), gnomAD (http:// gnomad- sg. org/), 
DECIPHER (https:// www. decip herge nomics. org/), dbVar 
(http:// www. ncbi. nlm. nih. gov/ dbvar), ClinVar (http:// 
www. ncbi. nlm. nih. gov/ clinv ar), ClinGen (https:// www. 
ncbi. nlm. nih. gov/ proje cts/ dbvar/ cling en/), and Pubmed. 
Benign or likely benign CNVs were not reported.

Criteria for prenatal and postnatal follow‑up assessment
Prenatal assessment
The results of ultrasound or MRI examination in the 
second and third trimesters of pregnancy were col-
lected. Additionally, data on the frequency of pregnan-
cies and births, pregnancy complications, and a history 
of adverse pregnancies were gathered.

Postnatal assessment
Data including mode of delivery, birth weight, length, 
combinations of neonatal diseases, and developmental 

http://dgv.tcag.ca/dgv/app/home
http://dgv.tcag.ca/dgv/app/home
http://www.ncbi.nlm.nih.gov/omim
http://www.ncbi.nlm.nih.gov/omim
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https://www.deciphergenomics.org/
http://www.ncbi.nlm.nih.gov/dbvar
http://www.ncbi.nlm.nih.gov/clinvar
http://www.ncbi.nlm.nih.gov/clinvar
https://www.ncbi.nlm.nih.gov/projects/dbvar/clingen/
https://www.ncbi.nlm.nih.gov/projects/dbvar/clingen/
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details diagnosed by child healthcare professionals 
were collected. After obtaining the parents’ informed 
consent, the child healthcare data were collected to 
assess developmental details. General child healthcare 
was carried out by professional doctors in community 
hospitals, according to the World Health Organization’s 
physical and mental development table for infants aged 
0–3 years.

Fetuses treated with terminated pregnancies: The cases 
and causes of termination of pregnancy (TOP), and the 
presence or absence of fetal anomalies were recorded.

Results
Genetic testing results
Cytogenetic results
Karyotype: All the 87 fetuses showed a normal karyotype.

SNP array results
Females with Xp22.31 deletions: Except for three cases 
with a deletion region smaller than 1 Mb, the segments of 
the remaining six cases were located in the typical 1.6 Mb 
deletion region (from 6.4 to 8.1 Mb, hg19), including STS, 
PUDP, PNPLA4, and VCX genes. A control analysis of 
parental SNP arrays was recommended and only one set 
of fetal parents performed this test, proving that the dele-
tion was inherited maternally (Table 1).

Males with Xp22.31 deletions: In male deletion carri-
ers, the sizes of the loss regions were larger than 1 Mb in 
all fetuses (approximately 1.2 Mb in two cases and 1.6 Mb 
in 10 cases). Seven fetuses were identified as carrying the 
maternal genetic deletions (Table  2). In three of these, 
extended pedigree analysis showed that the maternal 
grandfathers carried the deletion in two cases, and, in 
the remaining case, the elder brother of the fetus was a 
carrier.

Fetuses with Xp22.31 duplications: The typical 1.6 Mb 
duplicated segment occurred in 69.7% (46/66) of the 
fetuses. (sizes of the remaining 20 cases, one > 1.6 Mb and 
19 < 1 Mb) (Additional files 1 and 2). Only 27.2% (18/66) 
of cases underwent parental SNP array testing, confirm-
ing that the duplications were inherited from their par-
ents (Table  3). Most interestingly, two cases of Xp22.31 
tetrasomy were identified in female fetuses. In one case, 
the parents were both heterozygous for a duplication, the 
fetus inherited two duplicated alleles, and thus four cop-
ies of the region. In the other case, the father had no copy 
number imbalances, while the mother and the fetus both 
carried a triplication of Xp22.31 and a normal allele.

Clinical follow‑up outcomes
Xp22.31 deletions in females
TOP was chosen for two fetuses, one case was attrib-
uted to a severe ultrasonic finding. Seven females were 

born at full-term delivery, and two of them displayed 
ultrasonographic soft markers in pregnancy (ventricu-
lar septal defect, echogenic intracardiac focus) and were 
asymptomatic after birth. Of the seven female children, 
the youngest being 3-month old and the oldest 4-year 
and 5-month old at the time of the study, none received 
a diagnosis of developmental delay and intellectual dis-
ability from the children’s healthcare examinations, as 
reported by the families (Table 1).

Xp22.31 deletions in males
For four fetuses, the families opted for TOP. A total of 
eight fetuses were born. The youngest one was 2.5 years 
old and the oldest one was 4.5  years old at the time of 
the study. Except for ichthyosis, no other clinical conse-
quences were found involving intelligence or neurode-
velopment. Among the eight children with ichthyosis, 
one boy had severe symptoms and was treated in the 
dermatology department. For three of the male children, 
the main manifestation was mild ichthyosis without flak-
ing, with remission in summer and a need for moistur-
izing care in winter. The skin disorders of the others were 
characterized by dry and polygonal scales on the abdo-
men, arms, and legs (Table 2). Similarly, other male fam-
ily members who were confirmed to also carry Xp22.31 
deletions did not have a phenotype of neurodevelopmen-
tal abnormalities, and only presented ichthyosis (Table 2). 
Abnormal external genital development was found in one 
male, but the maternal grandfather who carried the same 
deletion did not have this abnormality (Table 2).

Xp22.31 duplications in the fetuses
Among the 66 duplication carriers, two cases were 
lost at follow-up, and in eight fetuses, TOP was cho-
sen. A total of 56 fetuses were born without any clinical 
defects, either male or female carriers. The youngest was 
3 months old, and the oldest approximately 5.5 years old 
at the time of the study. In 15 of these cases with Xp22.31 
duplication, ultrasonographic soft markers were detected 
during pregnancy. All of them were asymptomatic after 
birth (Table 3).

Discussion
The Xp22.31 segment of humans is a highly unsta-
ble region with frequent rearrangements [18]. Xp22.31 
imbalances (including deletions and duplications) are 
among the most frequently detected CNVs in pre-
natal diagnosis. The typical deletion at Xp22.31 is 
approximately 1.6 Mb in size and encompasses the STS, 
HDHD1/ PUDP, PNPLA4, and VCX protein-encoding 
genes (Fig. 1). It is classified as pathogenic according to 
the American College of Medical Genetics and Genom-
ics recommendations [17] and leads to ichthyosis, which 



Page 4 of 9Hu et al. BMC Medical Genomics           (2023) 16:69 

Ta
bl

e 
1 

Su
m

m
ar

y 
fe

m
al

e 
fe

tu
se

s 
w

ith
 X

p2
2.

31
 d

el
et

io
ns

TO
P 

Te
rm

in
at

io
n 

of
 p

re
gn

an
cy

N
um

be
r

U
ltr

as
ou

nd
 fi

nd
in

gs
lo

ca
tio

n 
of

 th
e 

CN
V

Si
ze

Pr
ot

ei
n‑

co
di

ng
 g

en
es

In
he

ri
ta

nc
e

Ka
ry

ot
ye

O
ut

co
m

es
bi

rt
h 

w
ith

 
de

fe
ct

s

A
ge

 a
t 

st
ud

y 
(M

)

D
ev

el
op

m
en

ta
l 

di
so

rd
er

s

1
Co

m
pl

ex
 c

on
ge

ni
ta

l 
he

ar
t d

is
ea

se
ar

r[G
RC

h3
7]

 
Xp

22
.3

1(
78

19
52

7_
84

32
71

5)
 ×

 1
61

3 
Kb

PN
PL

A
4

N
A

46
, X

X
TO

P
–

–
–

2
/

ar
r[G

RC
h3

7]
Xp

22
.3

1(
64

44
60

7_
81

35
05

3)
 ×

 1
1.

69
 M

b
PN

PL
A

4,
 P

U
D

P, 
ST

S,
 V

C
X,

 
VC

X3
A

N
A

46
, X

X
Bo

rn
/

53
/

3
/

ar
r[G

RC
h3

7]
 

Xp
22

.3
1(

68
02

24
8_

76
86

40
0)

 ×
 1

88
4 

Kb
PU

D
P, 

ST
S

N
A

46
,X

X
Bo

rn
/

47
/

4
/

ar
r[G

RC
h3

7]
 

Xp
22

.3
1(

66
43

42
1_

71
57

12
8)

 ×
 1

51
4 

Kb
PU

D
P, 

ST
S

N
A

46
, X

X
Bo

rn
/

44
/

5
Ve

nt
ric

ul
ar

 s
ep

ta
l d

ef
ec

t
ar

r[G
RC

h3
7]

Xp
22

.3
1(

64
88

78
4_

81
35

05
3)

 ×
 1

1.
65

 M
b

PN
PL

A
4,

 P
U

D
P, 

ST
S,

 V
C

X
In

he
rit

ed
 fr

om
 m

ot
he

r
46

, X
X

Bo
rn

/
34

/

6
Cy

st
ic

 h
yg

ro
m

a 
of

 th
e 

ne
ck

ar
r[G

RC
h3

7]
Xp

22
.3

1(
64

56
94

0_
81

35
05

3)
 ×

 1
1.

68
 M

b
PN

PL
A

4,
 P

U
D

P, 
ST

S,
 V

C
X

N
A

46
, X

X
TO

P
–

–
–

7
Ec

ho
ge

ni
c 

in
tr

ac
ar

di
ac

 
fo

cu
s

ar
r[G

RC
h3

7]
Xp

22
.3

1(
64

56
94

0_
81

35
05

3)
 ×

 1
1.

68
 M

b
PN

PL
A

4,
 P

U
D

P, 
ST

S,
 V

C
X

N
A

46
, X

X
Bo

rn
/

8
/

8
/

ar
r[G

RC
h3

7]
Xp

22
.3

1(
64

56
94

0_
81

35
05

3)
 ×

 1
1.

68
 M

b
PN

PL
A

4,
 P

U
D

P, 
ST

S,
 V

C
X

N
A

46
, X

X
Bo

rn
/

6
/

9
/

ar
r[G

RC
h3

7]
Xp

22
.3

1(
64

56
94

0_
81

35
05

3)
 ×

 1
1.

68
 M

b
PN

PL
A

4,
 P

U
D

P, 
ST

S,
 V

C
X

N
A

46
, X

X
Bo

rn
/

3
/



Page 5 of 9Hu et al. BMC Medical Genomics           (2023) 16:69  

Ta
bl

e 
2 

Su
m

m
ar

y 
m

al
e 

fe
tu

se
s 

w
ith

 X
p2

2.
31

 d
el

et
io

ns

N
A 

N
ot

 a
va

ila
bl

e,
 T

O
P 

Te
rm

in
at

io
n 

of
 p

re
gn

an
cy

N
um

be
r

U
ltr

as
ou

nd
 

fin
di

ng
s

lo
ca

tio
n 

of
 th

e 
CN

V
Si

ze
 (M

b)
Pr

ot
ei

n‑
co

di
ng

 g
en

es
In

he
ri

ta
nc

e
Ka

ry
ot

yp
e

O
ut

co
m

es
bi

rt
h 

w
ith

 
de

fe
ct

s
A

ge
 a

t 
st

ud
y 

(M
)

D
ev

el
op

m
en

ta
l 

di
so

rd
er

s
Sk

in
 fi

nd
in

gs

1
G

as
tr

os
ch

is
is

ar
r[G

RC
h3

7]
 

Xp
22

.3
1(

65
16

73
5_

81
31

44
2)

 ×
 0

1.
61

PN
PL

A
4,

 P
U

D
P, 

ST
S,

 V
C

X
In

he
rit

ed
 fr

om
 

th
e 

m
ot

he
r

46
, X

Y
TO

P
–

–
–

–

2
Cy

st
ic

 h
yg

ro
m

a 
of

 th
e 

ne
ck

ar
r[G

RC
h3

7]
 

Xp
22

.3
1(

65
16

73
5_

81
31

44
2)

 ×
 0

1.
61

PN
PL

A
4,

 P
U

D
P, 

ST
S,

 V
C

X
In

he
rit

ed
 fr

om
 

th
e 

m
ot

he
r

46
, X

Y
TO

P
–

–
–

–

3
/

ar
r[G

RC
h3

7]
 

Xp
22

.3
1(

64
56

94
0_

81
31

44
2)

 ×
 0

1.
67

PN
PL

A
4,

 P
U

D
P, 

ST
S,

 V
C

X
In

he
rit

ed
 fr

om
 

th
e 

m
ot

he
r

46
, X

Y
TO

P
–

–
–

–

4
/

ar
r[G

RC
h3

7]
 

Xp
22

.3
1(

64
56

94
0_

81
23

40
7)

 ×
 0

1.
67

PN
PL

A
4,

 P
U

D
P, 

ST
S,

 V
C

X
N

A
46

, X
Y

Bo
rn

/
54

/
dr

y,
 a

nd
 p

ol
yg

o-
na

l s
ca

le
s 

on
 th

e 
ab

do
m

en
, a

rm
s, 

an
d 

le
gs

5
/

ar
r[G

RC
h3

7]
 

Xp
22

.3
1(

64
56

94
0_

81
23

40
7)

 ×
 0

1.
67

PN
PL

A
4,

 P
U

D
P, 

ST
S,

 V
C

X
N

A
46

, X
Y

Bo
rn

/
50

/
dr

y,
 a

nd
 p

ol
yg

o-
na

l s
ca

le
s 

on
 th

e 
ab

do
m

en
, a

rm
s, 

an
d 

le
gs

6
/

ar
r[G

RC
h3

7]
 

Xp
22

.3
1(

64
56

94
0_

81
23

40
7)

 ×
 0

1.
67

PN
PL

A
4,

 P
U

D
P, 

ST
S,

 V
C

X
N

A
46

, X
Y

Bo
rn

/
50

/
dr

y,
 a

nd
 p

ol
yg

o-
na

l s
ca

le
s

7
/

ar
r[G

RC
h3

7]
 

Xp
22

.3
1(

64
56

94
0_

81
23

40
7)

 ×
 0

1.
67

PN
PL

A
4,

 P
U

D
P, 

ST
S,

 V
C

X
In

he
rit

ed
 fr

om
 

th
e 

m
ot

he
r

46
, X

Y
TO

P
–

–
–

–

8
A

bn
or

m
al

 
ex

te
rn

al
 g

en
ita

l 
de

ve
lo

pm
en

t

ar
r[G

RC
h3

7]
Xp

22
.3

1(
64

86
49

0_
12

34
07

) ×
 0

1.
64

PN
PL

A
4,

 P
U

D
P, 

ST
S,

 V
C

X
In

he
rit

ed
 fr

om
 

th
e 

m
ot

he
r 

an
d

m
at

er
na

l 
gr

an
df

at
he

r

46
, X

Y
Bo

rn
H

yp
os

pa
di

as
44

/
m

ild
 ic

ht
hy

os
is

9
/

ar
r[G

RC
h3

7]
 

Xp
22

.3
1(

64
86

49
0_

81
23

40
7)

 ×
 0

1.
64

PN
PL

A
4,

 P
U

D
P, 

ST
S,

 V
C

X
In

he
rit

ed
 fr

om
 

th
e 

m
ot

he
r,

th
e 

el
de

r-
br

ot
he

r
al

so
 c

ar
rie

d

46
, X

Y
Bo

rn
/

43
/

dr
y,

 a
nd

 p
ol

yg
o-

na
l s

ca
le

s 
on

 th
e 

ab
do

m
en

, a
rm

s, 
an

d 
le

gs

10
/

ar
r[G

RC
h3

7]
 

Xp
22

.3
1(

66
31

81
0_

78
37

47
0)

 ×
 0

1.
21

PU
D

P, 
ST

S,
 V

C
X

In
he

rit
ed

 fr
om

 
th

e 
m

ot
he

r 
an

d
m

at
er

na
l 

gr
an

df
at

he
r

46
, X

Y
Bo

rn
/

33
/

m
ild

 ic
ht

hy
os

is

11
D

ou
bl

e 
ao

rt
ic

 
ar

ch
ar

r[G
RC

h3
7]

 
Xp

22
.3

1(
66

81
67

6_
78

74
50

3)
 ×

 0
1.

19
PN

PL
A

4,
 P

U
D

P, 
ST

S,
 V

C
X

N
A

46
, X

Y
Bo

rn
/

32
/

m
ild

 ic
ht

hy
os

is

12
/

ar
r[G

RC
h3

7]
 

Xp
22

.3
1(

64
56

94
0_

81
23

40
7)

 ×
 0

1.
67

PN
PL

A
4,

 P
U

D
P, 

ST
S,

 V
C

X
N

A
46

, X
Y

Bo
rn

/
29

/
ic

ht
hy

os
is

 s
ym

p-
to

m
s 

ar
e 

m
or

e 
se

rio
us



Page 6 of 9Hu et al. BMC Medical Genomics           (2023) 16:69 

mainly affects males. Therefore, genetic counseling differs 
for males and females. However, this difference between 
sexes does not exist in the corresponding Xp22.31 dupli-
cation, the pathogenicity of which is still debatable.

In our findings, all female deletion carriers had a nor-
mal phenotype after birth. Although corneal opacities 
are reported to affect approximately 10–50% of males 
with XLI and approximately 25% of female carriers [2], 
this phenotype was absent both in the males and females 
in our study. This may be because the detection of cor-
neal opacities is quite rare before puberty [30]. As the 
HDHD1A, PNPLA4, and STS genes have been shown to 
escape X-inactivation [31], females with Xp22.31 deletion 
contain the same number of active STS alleles as healthy 
males, in whom skin scales are rare [30, 32]. This seems 
to explain the asymptomatic nature of females with 
Xp22.31 deletion in our study. Large cohort studies have 
demonstrated that the phenotypic differences between 
female Xp22.31 deletion carriers and non-carriers are 
negligible [2, 5]. Thus, the interpretation of female carri-
ers is not controversial in prenatal diagnosis.

The content of adjacent genes is closely related to 
the phenotypes. The extensive deletions encompassing 
more nearby genes are associated with severe condi-
tions, the phenotypes of which include ocular albinism, 
epilepsy, abnormal electroencephalography, intellectual 

disability, hyposmia, attention deficit hyperactivity dis-
order, autism, and language development disorder [9, 
33, 34]. The typical deletion (approximately 1.6  Mb) 
encompasses STS and a small number of adjacent genes 
(PUDP, PNPLA4, and VCX), STS is labeled as a haplo-
insufficient gene (ClinGen haploinsufficiency score 3, 
sufficient evidence supporting haploinsufficiency. last 
accessed: January 20th, 2023), which is responsible for 
XLI. It has been described to be highly expressed in the 
adult brain and may have implications for neurodevel-
opment and ongoing brain function via a number of 
direct and indirect mechanisms [35]. Adult STS-defi-
cient male mice exhibit substantially altered striatal 
neurochemistry [36]. Previous studies have suggested 
that STS deficiency plays a direct role in the pathogene-
sis of attention deficit hyperactivity disorder [30]. Nota-
bly, in public databases, patients with deletions only 
containing the STS gene also showed the phenotype 
of intellectual disability (Decipher:283,235, 350,438). 
The CNVs in one case was classified as pathogenic 
(350,438), while in another was not recorded (283,235). 
Chatterjee et al. suggested that individuals lacking STS 
are at increased risk of developmental and mood dis-
orders [35]. No haploinsufficiency sensitivity score was 
available on ClinGen for PUDP, VCX and PNPLA4 
(last accessed: January 20th, 2023). The VCX proteins 

Table 3 Summary fetuses with Xp22.31 duplications

F Female, M Male, TOP Termination of pregnancy, LF Loss at follow-up, ainherited from the mother or father; bthe fetus with ultrasonographic soft markers

 ~ 1.9 Mb  ~ 1.6 Mb 300 ~ 800 Kb Total

F M F M F M

TOP / / 2 3  (1a) 3 / 8

LF / / 1 / / 1 2

Born 1 / 26 14 5 10 56

11a 2ab 4b 3a 1ab 3b 2b 3b

Total 1 / 29 17 8 11 66

Fig. 1 Genomic location of Xp22.31. The blue bars from top to bottom in orderrepresent the largest (arr[GRCh37] Xp22.31(6198422_8131442) × 3 
1.93 Mb) and smallest duplicated segments of the female fetus in Xp22.31. (arr[GRCh37] Xp22.31(6901968_7379309) × 3 477 Kb); the 
largest segment (arr[GRCh37]Xp22.31(6456940_8135053) × 2 1.678 Mb) and the smallest segment of the male fetus (arr[GRCh37] 
Xp22.31(8253271_8590357) × 2 337 Kb)
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affect proper neuritogenesis [37]. Studies have shown 
that the absence of the VCX gene could contribute to 
an intellectual disability phenotype [37]. Labonne et al. 
proposed that HDHD1/PUDP and PNPLA4 play a role 
in X-linked intellectual disability [13], because of their 
high transcript levels in the human brain [13].

Previous studies have reported the loss of this region 
with or without neurodevelopmental abnormalities [7, 
12]. Moreover, in our observations, the deletion of the 
HDHD1A, PNPLA4, VCX, and STS genes was not asso-
ciated with mental development traits. Cryptorchidism 
was not found in male fetuses, however, abnormal exter-
nal genital development was described in one of them, 
but the maternal grandfather who carried the same dele-
tion did not exhibit this abnormality. Some pregnant 
women in our study chose TOP because of the risk of 
mental defects in male fetuses after birth, but not skin 
disorders. Reduced penetrance and expression variabil-
ity may contribute to phenotype variability, and even the 
correlation between the deletion and neurodevelopmen-
tal abnormalities requires further confirmation.

Although Xp22.31duplication has been described 
in various studies, the classification of pathogenicity 
remains inconsistent. It has been interpreted in some 
cases as a VUS [20, 21] or benign [22, 23], and in others 
as a cause of developmental disorders, including autism, 
intellectual disability, cognitive deficits, and seizures [24–
28], these phenotypic traits were identified in both males 
and females with no significant gender differences. With 
the exception of STS (ClinGen triplosensitivity score 0, 
no evidence supporting triplosensitivity), PUDP, VCX, 
and PNPLA4 did not have an entry on ClinGen. (last 
accessed: January 20th, 2023). Many duplication carriers 
with neurodevelopmental phenotypes appeared in the 
DECIPHER database. The individuals carrying smaller 
duplicated segments, which are around 100 kb and con-
tain the STS gene only, have a phenotype of intellectual 
disability (359,225, 256,781). However, the pathogenicity 
of this CNV is still unclear.

In our study, the follow-up of 56 fetuses with Xp22.31 
duplications after birth showed no developmental dis-
orders, epilepsy, and other symptoms. In two male 
fetuses, the imbalances were inherited from the moth-
ers. Polo-Antúnez et  al. described a severe neurologi-
cal phenotype in a girl with Xp22.31 tetrasomy [38]. 
In contrast, we identified no abnormal findings in two 
females and a mother, all of whom had Xp22.31 tetra-
somy. Whether the absence of disease phenotypic fea-
tures in our cases is related to other modifying factors 
in the genomic background, such as reduced pene-
trance and efficiency of genes escaping X-inactivation is 
unclear. However, our observations are consistent with 
the view that Xp22.31 duplication (from 6.4 to 8.1 Mb, 

hg19), including the STS, PUDP, PNPLA4, and VCX 
genes, is likely to be a benign CNV.

Ultrasonographic soft markers during pregnancy, 
such as ventricular echoic spot and single umbili-
cal artery were detected in our study, and seemed to 
have no correlation with Xp22.31deletion and dupli-
cation. First-trimester fetal cystic hygroma was the 
indication for invasive prenatal testing in some of the 
cases later detected with Xp22.31 imbalances. Cystic 
hygroma presents a high risk of aneuploidies [39]. 
Euploid fetuses with cystic hygroma also present an 
increased risk for submicroscopic CNVs [40] and spe-
cific monogenic disorders such as Rasopathies [41]. At 
present, the association of cystic hygroma with Xp22.31 
is unknown. Genome/exome sequencing was recom-
mended for fetuses with complex congenital heart dis-
ease or gastroschisis.

In conclusion, our study provided more benign evi-
dence for the approximately 1.6  Mb typical Xp22.31 
duplications and Xp22.31 deletions in female. Although 
Xp22.31 deletion is generally assessed as pathogenic in 
many genetic laboratories, genetic counseling for male 
and female fetuses should be differentiated. The dele-
tion in females is likely a benign variant. Genetic coun-
seling for male fetuses is challenging. The skin disorders 
can be improved with appropriate treatment. In the 
current state of knowledge, the Xp22.31 deletion can 
also be considered in males as a susceptibility factor for 
neurodevelopmental disorders. The possible associa-
tion of Xp22.31 imbalances with neurodevelopmental 
phenotypes, reported by some authors and excluded 
by others, requires further studies. However, a profes-
sional explanation of the risk of neurodevelopmental 
abnormalities is key to avoid causing anxiety in preg-
nant women. We advocate multi-disciplinary care after 
birth, including neurology, pediatrics, and dermatology.
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