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Abstract 

Background With advances in massive parallel sequencing (MPS) technology, whole-genome sequencing (WGS) 
has gradually evolved into the first-tier diagnostic test for genetic disorders. However, deployment practice and pipe-
line testing for clinical WGS are lacking.

Methods In this study, we introduced a whole WGS pipeline for genetic disorders, which included the entire process 
from obtaining a sample to clinical reporting. All samples that underwent WGS were constructed using polymerase 
chain reaction (PCR)-free library preparation protocols and sequenced on the MGISEQ-2000 platform. Bioinformat-
ics pipelines were developed for the simultaneous detection of various types of variants, including single nucleotide 
variants (SNVs), insertions and deletions (indels), copy number variants (CNVs) and balanced rearrangements, mito-
chondrial (MT) variants, and other complex variants such as repeat expansion, pseudogenes and absence of heterozy-
gosity (AOH). A semiautomatic pipeline was developed for the interpretation of potential SNVs and CNVs. Forty-five 
samples (including 14 positive commercially available samples, 23 laboratory-held positive cell lines and 8 clinical 
cases) with known variants were used to validate the whole pipeline.

Results In this study, a whole WGS pipeline for genetic disorders was developed and optimized. Forty-five samples 
with known variants (6 with SNVs and Indels, 3 with MT variants, 5 with aneuploidies, 1 with triploidy, 23 with CNVs, 5 
with balanced rearrangements, 2 with repeat expansions, 1 with AOHs, and 1 with exon 7–8 deletion of SMN1 gene) 
validated the effectiveness of our pipeline.

Conclusions This study has been piloted in test development, optimization, and validation of the WGS pipeline for 
genetic disorders. A set of best practices were recommended using our pipeline, along with a dataset of positive 
samples for benchmarking.
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Introduction
With advances in MPS technology, WGS has gradu-
ally been established as the first-tier diagnostic test for 
genetic disorders [1–3]. WGS possesses the potential 
to detect nearly all forms of genetic variation simulta-
neously [4]. As a primary clinical test, WGS provides 
greater diagnostic yield than conventional genetic test-
ing [1, 6]. Although compared to other testing method, 
WGS remains very expensive and has limitations in 
accuracy for variants in regions of high homology, low 
complexity, and other technically challenging regions 
[5], WGS as a primary clinical test has demonstrated 
diagnostic superiority compared with conventional test-
ing in pediatric patients [5, 6] and critically ill infants [7, 
8]. Recently, an increasing number of laboratories have 
set up their own pipelines for clinical WGS.

WGS follows basic steps, including template prepa-
ration, library construction, MPS, and bioinformatics 
analysis. With the booming of clinical WGS over the 
past few years, researchers have recognized that finding 
consistent results among different laboratories is often 
difficult due to variations in sequencing platforms and 
a wide range of analysis pipelines. Factors influencing 
template preparation, library construction, sequencing, 
and bioinformatics analysis may influence the results of 
clinical WGS [9], resulting in different results among 
laboratories. For example, the analytical performance 
for CNV detection varied immensely using different 
calling tools [10]. To solve this problem, benchmark-
ing resources, best practices and recommendations are 
needed for labs when introducing WGS into clinical 
practice [3, 11, 12]. However, deployment practice and 
testing of pipelines for clinical WGS are lacking.

In this study, we developed an optimized WGS pipe-
line for genetic disorders. Through the deployment of 
our WGS pipeline, we first present recommended strat-
egies, tools, and resources for the detection of different 
types of variants. We did not explore all of the factors 
that may influence WGS results, but rather focused on 
the test development, detection and validation of some 
variant types that have not been well established. Subse-
quently, using 45 samples with various classes of known 
variants, we tested the performance of our WGS pipe-
line for the detection of various variants. This study 
piloted the test development, optimization, and valida-
tion of the WGS pipeline for genetic disorders and pro-
vides a reference for clinical WGS.

Materials and methods
Workflow of WGS
The entire workflow for WGS is presented in Fig. 1. All 
samples that underwent WGS were constructed using 

PCR-free library preparation protocols and sequenced 
on the MGISEQ-2000 platform. In general, DNA of ref-
erence samples (Coriell, Camden, NJ) and clinical sam-
ples with known variants (Additional file  1: Table  S1) 
were first extracted using the MagPure Tissue & Blood 
DNA KF Kit (Magen, China). Subsequently, one micro-
gram of DNA was used to generate paired end reads of 
150 bp/100 bp according to the PCR-free library prepa-
ration protocols and sequencing protocols [13]. The 
bioinformatics analysis pipeline included 4 sections 
for the detection of potential variants (Fig. 1). Recom-
mended strategies, tools, and resources were provided 
during test development and deployment of the entire 
process. Fourteen commercially available positive sam-
ples, 23 laboratory-held positive cell lines and 8 clinical 
cases with various classes of known variants were used 
to evaluate and optimize the performance of variant 
calling.

Library construction and sequencing
Some parameters (such as DNA input, read length and 
library preparation) may affect the performance of WGS 
and ultimately influence variation detection sensitiv-
ity. Our previous reports showed that PCR-free WGS 
with 1 µg DNA input exhibited a better depth of cover-
age and genotype quality distribution than PCR-based 
WGS with differing DNA inputs [13]. With respect to the 
depth of coverage (DP), a mean depth of 30–50X is the 
most widely used mean DP for WGS [6, 14]. Our previ-
ous reports also showed that the current standard of the 
demonstrated mean depth of 40X may be sufficient for 
SNV/indel detection and identification of most CNVs. 
Based on these investigations and considerations of 
cost-effectiveness, we used a mean DP of ~ 40X for WGS 
(PCR-free) to investigate the recommended strategies, 
tools, and resources for the detection of different types of 
variants in this study.

In general, WGS of all samples was performed with 
a modified protocol using the MGISEQ-2000 platform 
[13]. First, the quality of the genomic DNA for all the 
samples was assessed using Qubit (Thermo Fisher Sci-
entific) and gel electrophoresis. Next, 1 µg DNA for each 
sample was used to build a DNA fragment library using 
segmentase (MGI Tech Co., Ltd., BGI). After end repair 
and A-tailing, DNA fragments were ligated to the adapter 
sequence. Following purification, samples were—sub-
jected to the following circularization process. After 
making DNA NanoBalls (DNBs), the DNBs were loaded 
into a sequencing chip for pair-end (150  bp/100  bp) 
sequencing (MGISEQ-2000RS High-throughput sequenc-
ing kit, PE150/PE100, V3.0, MGI Tech Co., Ltd.) on 
the MGISEQ-2000 platform. For a case, the average 
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sequencing time required was ~ 36 h for PE100 and ~ 45 h 
for PE150. FASTQ data were subsequently generated for 
further bioinformatics analysis.

Bioinformatics pipeline
The implementation of a standardized bioinformat-
ics pipeline is essential for robust detection of various 
types of variants, which requires careful attention to test 
development, combination, optimization and validation 
of various tools. Here, we developed an optimized bio-
informatics pipeline for WGS. During the deployment 
of our pipeline, we identify recommended tools and 
resources for the detection of different types of variants. 
The entire bioinformatics pipeline can be mainly divided 

into 4 sections: preprocessing, calling, interpretation and 
reporting, and others (Fig. 1).

Section 1: preprocessing
Fastp: raw reads filtering
For the first step in the bioinformatics pipeline, plenty of 
tools that are available to remove adapter sequences and 
filter raw reads. Here, we used fastp (version 0.20.0) [15] 
for raw read filtering (Fig. 1). Fastp takes raw reads and 
the adapter sequences as input, and outputs clean reads 
according to user defined parameters. In addition to the 
removal of adapter sequences, reads that met at least one 
of the following conditions were filtered out: (1) propor-
tion of N bases ≥ 10%; (2) proportion of bases with low 

Fig. 1 Study design
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quality values (quality value < 5) ≥ 50%; and (3) the aver-
age quality value < 10.

BWA: FastQ to BAM
Alignment is one of the most critical steps in a bioin-
formatics pipeline and, refers to the mapping of the 
sequencing results to a reference genome. The Genome 
Analysis Toolkit (GATK) Best Practices workflow [12] 
recommends the Burrows-Wheeler Aligner (BWA) [16] 
as a robust read mapping algorithm that can be used 
to align the sequence of tested samples to a reference 
sequence. The BWA, is the most widely used tool for 
alignment of MPS data. Here, we also used BWA (ver-
sion 0.7.17-r1188) for alignment. Using BWA, clean reads 
obtained in the previous step were aligned to the human 
reference sequence to generate mapping results in the 
BAM format. Subsequently, the BAM file could be used 
as input for calling tools (such as GATK and CNVnator).

Bamdst: quality control
DP is a crucial factor in routine quality control (QC) of 
MPS results. To verify that sufficient sequencing data 
has been collected, most centers using MPS technology 
would determine thresholds for average DP that must 
be achieved for a certain fraction of target bases [17]. 
Here, we used bamdst (version 1.0.5) (https:// github. 
com/ shiqu an/ bamdst), a lightweight tool, for routine 
QC (Fig.  1). Bamdst takes a sorted BAM file and tar-
get region file as input. The output of bamdst includes 
coverage information and plots of the target and flank 
regions.

Section 2: calling
The potential of WGS to detect all types of variants relies 
heavily on calling tools. In this study, we describe a suite 
of tools, that can detect various types of variants simul-
taneously, including SNVs, indels, structural variants 
(CNVs and balanced rearrangements), MT variants, and 
other complex variants (repeat expansions, pseudogenes 
and AOHs).

GATK: BAM to VCF
Researchers at the Broad Institute developed a best-
practice workflow (BWA for alignment and GATK for 
variant calling) for the detection of variations [12] that, is 
one of the most commonly used and well-accepted work-
flows for the detection of SNVs and indels. Here, we also 
used GATK (version 4.0.11.0) for the detection of SNVs 
and Indels. With the aid of sambamba (version 0.6.8) 
and MarkDuplicates from GATK (version 4.0.11.0), the 
BAM file obtained in the previous step is used as input to 

generate calling results in the VCF format. The VCF file 
can be used as input for further filtering and annotation.

Mutect2: BAM to VCF
We implemented Mutect2 from GATK (version 4.0.11.0) 
[18] for the detection of MT variants. Mutect2 requires a 
BAM file for input. The output of Mutect2 includes the 
detected MT variants in the format VCF format.

Aneuploidy and triploidy detection program
We developed an in-house program for the detection 
of aneuploidies and triploidies. This program takes the 
ratio of all the heterozygous SNPs as input. The output 
includes plots of the SNP ratio and the status (triploidy, 
diploid or aneuploidy) of each chromosome.

SV detection units: CNVnator/mops, exomedepth 
and LUMPY
We implemented an SV detection suite in our pipeline for 
the detection of SVs, including CNVnator/mops (version 
0.3.2) [19], the “ExomeDepth” module of R (version 3.6.2) 
[20] and LUMPY (version 0.2.13) [21]. We also used 
LUMPY for the detection of other types of SVs, including 
balanced translocations and inversions. CNVnator, Exo-
meDepth and LUMPY take BAM files as input, and out-
put CNV results in different formats. According to the 
output of different tools, we developed our own scripts to 
gather all the results for filtering and annotation.

BatCNV
BatCNV is a self-developed tool for the detection of 
CNVs in thalassemia [22]. BatCNV takes a BAM file as 
input. The output of BatCNV includes plots and common 
thalassemia genotypes.

AOH detection program
We used the “homozyg” module of PLINK (version 
1.90b6.12) [23] for the detection of AOH. This program 
takes the variant allele fraction (VAF) of SNPs as input. 
The output includes identified homozygous regions and 
the proportion of homozygous sites.

ExpansionHunter
We used ExpansionHunter (version 3.2.0) [24] for the 
detection of repeat expansion. ExpansionHunter takes 
the BAM file as input. The output of ExpansionHunter 
includes variant genotypes and other useful information 
in the format of VCF.

https://github.com/shiquan/bamdst
https://github.com/shiquan/bamdst
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Disease‑specific variant detection program for SMA
We developed an in-house program specifically for the 
detection of spinal muscular atrophy (SMA). This pro-
gram takes the depth of exons and SNPs (generated using 
GATK’s DepthOfCoverage analysis tool) of each sample 
as input. The output includes the copy number of the 
SMN1 and SMN2 genes.

Detection workflow of pathogenic microorganisms
We developed and included a workflow for the detection 
of pathogenic microorganisms, which is implemented in 
the WGS pipeline. This workflow involves bacterial read 
separation using KneadData (version 0.10.0) (https:// 
bitbu cket. org/ bioba kery/ knead data/ wiki/ Home) and 
detecting pathogenic microorganisms using MetaPhlAn 
(version 3.0.13) [25], Kraken (version 2.1.2) [26] and 
Bracken (version 2.5) [27]. Reads that do not map any-
where on the human reference genome from a BAM file 
are extracted to generate a FASTQ file. This workflow 
takes the FASTQ files as input. The output includes the 
detected microbial communities and relative abundance.

Section 3: interpretation and reporting
Annotation units
The results of certain tools are often difficult to interpret. 
Annotation is necessary to facilitate interpretation and 
accelerate diagnosis. In our pipeline, we developed a suite 
of annotation programs for SNVs, Indels, CNVs, bal-
anced translocations and inversions, AOHs, and repeat 
expansions.

Automated scoring programs
To further facilitate the interpretation process, we imple-
mented autoPVS1 [28] and AutoCNV (version 1.1.0) [29] 
to classify and generate predictions for SNVs and CNVs, 
respectively. AutoPVS1 is an automatic classification tool 
for PVS1 interpretation of null variants. AutoCNV is a 
semiautomatic CNV interpretation system based on the 
2019 ACMG/ClinGen Technical Standards for CNVs. 
AutoPVS1 and AutoCNV can accelerate and facilitate the 
interpretation of SNVs and CNVs.

SpliceAI
We used SpliceAI (version 1.3) [30], a deep learning-
based tool, to identify splice variants. SpliceAI takes a 
VCF file as input and outputs predictions for variants 
within genes in the VCF format.

Online interpretation and reporting system
We also developed a laboratory-held web-based system 
for interpretation and reporting (https:// genet ics. bgidx. 
cn/). This system provides a more user-friendly method 
for interpretation, especially for clinical scientists. After 

uploading the results from previous steps, the server pro-
vides detailed criteria and supportive evidence for all the 
variants after the analysis. The server generates a final 
report for all of the variants. Clinical scientists can then 
download the report for genetic counseling.

Section 4: others
SJM
We used Simple Job Manager (SJM) (version 1.2.0) to 
manage our jobs. SJM provides a convenient method for 
specifying dependencies between jobs and the resource 
requirements for each job (https:// github. com/ Stanf 
ordBi oinfo rmati cs/ SJM).

Trio‑analysis
A higher diagnostic yield has been reported for trio-anal-
ysis [10]. In our pipeline, trio-analysis was also developed, 
which could detect all variants in parallel. Trio-analysis 
offers several key advantages, including the ability to 
take advantage of family-based trio information. Using 
the segregation pattern, trio-analysis can help eliminate 
false-positives.

Contamination QC
Maternal cell contamination presents a serious risk for 
misdiagnosis, especially for chorionic villus and amni-
otic fluid, which are frequently used in prenatal diagno-
sis. Based on VAF, we developed an in-house model that 
could detect contamination ratios > 5%. This model was 
used for contamination QC in our pipeline.

Databases
The successful detection of potential variants cannot be 
achieved without the support of databases. We imple-
mented dbSNP 147 [31], gnomAD (release 2.1) (https:// 
gnomad. broad insti tute. org), Exome Aggregation Con-
sortium (ExAC) (release 1), 1000 Genomes Project phase 
3 (1000GP3, IGSR: The International Genome Sample 
Resource. https:// www. inter natio nalge nome. org/ home) 
and NHLBI GO Exome Sequencing Project of 6500 
(ESP6500) as a population-based polymorphism database. 
ClinVar [32], Human Gene Mutation Database (HGMD) 
[33], Online Mendelian Inheritance in Man (OMIM) 
[34], Orphanet [35] and DECIPHER (https:// decip her. 
sanger. ac. uk/.) databases were also implemented in our 
pipeline. All the databases can be updated quarterly or 
yearly through our internal script. Based on publicly 
available databases and our own data, we also developed 
a series of our own databases (BPDD: BGI PHOENIX-
Genetic Disease Database; BPVD: BGI PHOENIX-Var-
iant Database; BPGD: BGI PHOENIX-Gene Database; 
BPPD: BGI PHOENIX-Phenotype Database; BPCD: 

https://bitbucket.org/biobakery/kneaddata/wiki/Home
https://bitbucket.org/biobakery/kneaddata/wiki/Home
https://genetics.bgidx.cn/
https://genetics.bgidx.cn/
https://github.com/StanfordBioinformatics/SJM
https://github.com/StanfordBioinformatics/SJM
https://gnomad.broadinstitute.org
https://gnomad.broadinstitute.org
https://www.internationalgenome.org/home
https://decipher.sanger.ac.uk/
https://decipher.sanger.ac.uk/
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BGI PHOENIX-in-house Control Database (WGS data 
of healthy Chinese population)) for annotation and 
interpretation.

Analysis of 45 samples with known variants
In this study, 45 samples with known variants of various 
types were recruited and reanalyzed using our WGS 
pipeline. All the variants (Additional file  1: Table  S1) 
were validated previously, including 6 SNVs and Indels, 
3 MT variants, 5 aneuploidies, 1 triploidy, 23 CNVs, 5 
balanced rearrangements, 2 repeat expansions, 1 sam-
ple with multiple AOHs, and 1 with exon 7–8 deletion 
of the SMN1 gene.

The samples we recruited were all positive samples 
of various variants. For each variant type, samples with 
other variant types could be regarded as negative sam-
ples. Based on the definitions of sensitivity and speci-
ficity [36], taking samples with SNVs as an example, we 
calculated sensitivity and specificity using the following 
formulas:

Results
Variant detection
All types of variants that can be detected using our 
pipeline are summarized in Additional file 1: Table S1, 
including SNVs, indels, structural variants (CNV and 
balanced rearrangement), MT variants, other complex 
variants (repeat expansion, pseudogene and AOH), and 
pathogenic microorganisms. Here, we recommend a 
suite of tools for calling various types of variants.

SNV/Indels
In our pipeline, the best-practice workflow developed by 
the Broad Institute (BWA for alignment and GATK for 
variant calling) was used for the detection of SNV/Indels.

Six samples with known SNVs and Indels were used 
for validation (Additional file 1: Table S1). All 6 variants 
were confirmed previously by Sanger sequencing. All 6 
variants were also successfully detected using our WGS 
pipeline. This best-practice workflow is one of the most 
commonly used and well-accepted workflows for the 
detection of SNVs and indels, the results of the 6 vari-
ants further demonstrated its detection sensitivity.

SensitivitySNV =

Samples carrying disease − associated SNVs detected by WGS

Samples carrying disease − associated SNVs detected by Sanger

SpecificitySNV =

Samples carrying other disease − associated variants detected by WGS

Samples carrying other disease − associated variants detected by Sanger

Noncoding variants
SpliceAI was implemented for the prediction of splice vari-
ants in our pipeline (Additional file 1: Figure S1). Using a 
deep residual neural network, the effect on splicing (splice 
donor, splice acceptor, or neither) of each position in a 
pre-mRNA transcript can be predicted using SpliceAI. 
For genes with a high proportion of splicing mutations, 
SpliceAI exhibited better performance for the predic-
tion of splicing alterations, and then significantly assisted 
in diagnosis. During the deployment of our pipeline, we 
also tested the performance of SpliceAI for the detection 
of splice variants using variants derived from 2 published 
articles [37, 38] and the HGMD database, (Additional 
file 1: Figure S1). Compared with MaxEntScan [39], scSNV 
[40] and MMSplice [41], SpliceAI exhibited better detec-
tion sensitivity, specificity, accuracy, and prediction rate 
for the prediction of splice-altering variants in the human 
genome (Additional file  1: Figure S1). Moreover, we 
observed that the prediction scope of MaxEntScan, scSNV 
and MMSplice is limited, which in turn further recom-
mended SpliceAI for the detection of splice variants.

MT variants
Mutect2 was implemented for the detection of MT vari-
ants in our pipeline. MT variants often exhibit a low allele 
fraction (AF), which may be easily mistaken for inherent 
sequencer noise. Mutect2 could provide high detection 
sensitivity for variants with low levels of AF and allow for 
the tracing of lineages of rare MT variants.

Three samples with known MT variants were used 
for validation (Additional file 1: Table S1). All 3 variants 
were confirmed previously by Sanger sequencing. All 3 
variants were also successfully detected using our WGS 
pipeline (Additional file 1: Table S1). Mutect2 was widely 
used for somatic calling, and our results further demon-
strated its ability to detect variants with extremely high 
depths. The heteroplasmy of the 3 variants was also pro-
vided by Mutect2.

Aneuploidy and triploidy
In our pipeline, an in-house program was developed for 
the detection of aneuploidies and triploidies. This pro-
gram was developed based on the mechanisms of diploid 
and triploidy. Diploid cells contain two copies of each 
autosomal chromosome; thus, theoretically, the ratio of 
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all heterozygous SNPs should be close to 1/2. For triploid 
cells, the ratio of all heterozygous SNPs should be close 
to 1/3 or 2/3. In our program, binomial distribution was 
used to fit the ratio of all the heterozygous SNPs. Ane-
uploidy for each chromosome and triploidy can then be 
identified.

Six samples with known aneuploidies and triploidies 
were used for validation (Additional file 1: Table S1, Fig-
ures  S2-S7). All variants were confirmed previously by 
karyotyping or chromosomal microarray analysis (CMA). 
All the aneuploidies and triploidies were also successfully 
detected using our WGS pipeline.

CNV
CNVnator/mops, ExomeDepth and LUMPY were imple-
mented in our pipeline for the detection of CNVs. Pre-
vious reports have demonstrated substantial variation in 
the sensitivity of CNV detection across different tools. 
Most CNV detection tools were developed based on 
read depth (read count) or read pair algorithms [42]. The 
combination of the results of two or more complemen-
tary tools may offer better detection sensitivity for CNVs 
with differing lengths. We implemented an SV detec-
tion suite in our pipeline. For large CNVs of more than 
1 M, we recommended CNVnator, a depth-based CNV 
tool [10]. For other smaller CNVs, we recommended 
LUMPY, a CNV tool using both split and anomalous 
read pair information [10]. ExomeDepth, a depth-based 
CNV tool, is more suitable for the detection of exome 
CNVs.

Nineteen samples with known CNVs were used for 
validation (Additional file 1: Table S1). All -variants were 
confirmed previously by quantitative polymerase chain 
reaction (qPCR), low pass WGS, long range PCR, or 
CMA. All variants were also successfully detected using 
our WGS pipeline. After testing in our previously pub-
lished article [10] and testing the nineteen samples with 
known CNVs in this study, we determined that the com-
bination of the results of multiple complementary tools 
may offer superior detection sensitivity.

Balanced translocation and inversion
LUMPY, a general probabilistic tool, was implemented in 
our pipeline for the detection of balanced translocations 
and inversions. LUMPY integrates read-pair, split-read 
and read-depth signals, and combines the information 
of sites of known variants to improve detection sensitiv-
ity. During the deployment of our pipeline, we also tested 
the performance of BreakDancer [43] and Delly [44] for 
the detection of balanced translocations and inversions. 
Compared with these tools, LUMPY was faster and 
exhibited better detection sensitivity for known and vali-
dated SVs in our lab (data not shown).

Four samples with known balanced translocations 
were used for validation (Additional file 1: Table S1, Fig-
ures  S8-S12). All variants were confirmed previously by 
karyotyping. All variants were also successfully detected 
using our WGS pipeline.

Thalassemia CNV
BatCNV, a self-developed tool, was implemented in 
our pipeline for the detection of CNVs in thalassemia. 
BatCNV was developed for the detection of large gene 
deletions and duplications. First, adjustable sliding win-
dows in the genome (unique regions) were used to 
calculate the read count of each window. Then, GC cor-
rection and batch correction were applied to minimize 
data fluctuations. Subsequently, a hidden Markov model 
(HMM) algorithm was used to predict the copy number 
status of each window. Finally, thalassemia genotypes 
were determined by combining the breakpoint informa-
tion. BatCNV largely reduced the influence of homology 
on the detection of thalassemia CNVs. The performance 
of BatCNV for the detection of CNVs in thalassemia has 
already been validated in a large-scale population in our 
previous reports [22, 45].

Four samples with known thalassemia CNVs were used 
for validation (Additional file  1: Table  S1). All variants 
were confirmed previously by gap-PCR. All variants were 
also successfully detected using our WGS pipeline.

AOH
In our pipeline, PLINK was used for the detection of 
AOH. Regions with AOH are indicated by a change in 
the rate of heterozygous SNPs and homozygous SNPs. 
Regions with terminal AOH ≥ 5 Mb were then reported. 
A literature survey indicated that several tools could 
detect AOH using NGS data, including UPDio and 
BCFtools/RoH. PLINK exhibited better detection sen-
sitivity for known and validated AOHs in our lab (data 
not shown). In addition, using 101 regions with known 
AOHs, we determined the optimal window size (each 
window contains 20 SNPs) for PLINK in the detection of 
AOH (Additional file 1: methods).

One sample with multiple known AOHs was used for 
validation (Additional file  1: Table  S1, Figures  S13-S29). 
All AOHs were confirmed previously by CMA. Com-
pared with the known variation verification method, 
our WGS pipeline detected a greater number of AOH 
regions. This is primarily because several AOH regions 
were split into subregions by PLINK. These results fur-
ther demonstrated the ability of PLINK to detect AOH. 
We also determined the influence of window sizes on 
PLINK. We recommend determining the optimal win-
dow size for PLINK before using this method for AOH 
detection.
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Repeat expansion
To date, tools (using MPS data) for the detection of 
repeat expansion are still rare. ExpansionHunter, a 
sequence-graph based tool, was employed in our pipe-
line for the detection of repeat expansion. Expansions of 
short tandem repeats can cause several disorders, such as 
Fragile X Syndrome and Huntington’s Disease. For long 
repeat regions, special algorithms should be developed to 
analyze short tandem repeats using MPS data.

Two samples with known repeat expansion (CTG/
CAG) in the DMPK and ATN1 genes were used for vali-
dation (Additional file  1: Table  S1). All these variants 
were confirmed previously by PCR amplification and 
fragment analysis. Alleles larger than the read length 
are reported to be underestimated by ExpansionHunter 
[46]. Although ExpansionHunter was limited in the siz-
ing of alleles considerably larger than the read length, all 
variants were also successfully detected using our WGS 
pipeline. Established limited tools aid in detecting repeat 
expansion, thus, ExpansionHunter was the first choice 
for our pipeline. However, based on the results of the two 
samples with known repeat expansion, we recommended 
that further analysis and additional validation methods 
should be performed for positive results detected by 
ExpansionHunter.

SMA
In our pipeline, we developed an in-house program spe-
cifically for the detection of SMA [47]. More than 95% 
of SMA cases are caused by exon 7–8 deletion of the 
SMN1 gene [48]. For the influence of SMN2 (a homolo-
gous gene) on the detection of SMN1 copy number, spe-
cial algorithms should be developed using NGS data. 
In general, our in-house program calculated the copy 
number of SMN1 and SMN2 copy number based on the 
read number covering distinguished base pairs between 
SMN1 and SMN2.

One sample with known copy number loss in exons 7–8 
of the SMN1 gene was used for validation (Additional 
file  1: Table  S1). The variant was confirmed previously 
by multiplex ligation-dependent probe amplification 
(MLPA). The variant was also successfully detected using 
our WGS pipeline. This program has been validated in 
our previous studies and tested in a large cohort [47].

Intrauterine infection
A pathogenic microorganism detection workflow was 
implemented in the WGS pipeline. In some circum-
stances, the detection of pathogenic microorganisms is 
crucial for WGS. For example, fetal structural anomalies 
caused by intrauterine infection may not be detectable by 
regular WGS. Our workflow was composed of a suite of 
well-known tools (KneadData, MetaPhlAn, Kraken 2 and 

Bracken) and its databases. Using this workflow, the tools 
applied in our workflow were easy to use and updated in 
a timely manner, and the databases used in our workflow 
were comprehensive and small in size.

During the process of deployment, we tested the per-
formance of this workflow using virtual samples. Gra-
dient dilutions of cytomegalovirus (CMV)-positive 
amniotic fluid and CMV-negative amniotic fluid were 
collected to prepare virtual amniotic fluid samples with 
CMV infection. After sequencing, artificially pooled 
amniotic fluid samples were tested using our workflow. 
The abundance of CMV nucleic acid was also determined 
by qPCR. The results revealed that our workflow could 
detect CMV reads at a rate of ~ 2.31 copies/ml, which was 
far more sensitive than qPCR.

Analysis of 45 samples with known variants
For a certain variant type, samples with other variant 
types could be regarded as negative samples. For each 
variant type, the detection sensitivity and specificity 
of our WGS pipeline for the 45 samples was 100%. We 
manually interpreted the variants detected by the bioin-
formatics analysis pipeline. The numbers of variants and 
time required for manual interpretation of each type of 
variant for one sample are presented in Additional file 1: 
Table S2.

Discussion
In this study, we developed an optimized WGS pipeline 
for genetic disorders. Focusing on test development, 
detection and validation of various variants that have not 
been well established, we presented recommended strat-
egies, tools, and resources for the detection of different 
types of variants. We also tested the performance of our 
WGS pipeline for the detection of various variant types 
using 45 previously validated samples. Through this pilot 
study, we have achieved a deeper understanding of the 
capabilities and limitations of WGS for identifying and 
characterizing variants. Our study is particularly useful 
for clinical scientists to determine the range of sensitivi-
ties for different classes of variants for a particular WGS 
pipeline, which could be useful when interpreting and 
delivering clinical reports. The recommended strategies, 
tools, and resources presented here could also facilitate 
the introduction of WGS into clinical practice for clinical 
laboratories.

The WGS pipeline was optimized based on exten-
sive literature research and testing. Some tools were 
selected based on published literature where best prac-
tices were demonstrated. For example, Van der Auw-
era GA published GATK best practices for SNVs/indels 
[12], which have been widely used. For the detection of 
repeat expansions, a limited number of tools have been 
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reported. ExpansionHunter exhibited high performance 
based on our test. The selection of PLINK for the detec-
tion of AOHs was based on the testing of multiple tools. 
After testing, we found that PLINK was optimal (AOHs 
were detected in all enrolled positive samples). For CNV 
detection, our WGS pipeline employed 4 tools (CNVna-
tor/mops, ExomeDepth and LUMPY) for the detection 
of CNVs with differing lengths. The combination of the 
results of multiple complementary tools may offer better 
detection sensitivity.

For testing a sample (taking 40X as an example) using 
our WGS pipeline, the cost primarily includes 4 parts: 
materials (reagents for DNA extraction, library con-
struction and sequencing), labor, bioinformatics analy-
sis (computing resources) and depreciation expenses. 
The cost of materials accounts for the largest proportion 
(51%). However, compared with other conventional test-
ing methods, such as CMA, the cost of WGS remains 
much higher [49].

Clinical WGS is an ideal method for genetic disorders. 
However, WGS has some limitations. As clinical WGS 
has matured, we now have a much deeper understanding 
of the capabilities and limitations of WGS for identifying 
and characterizing variants. First, the potential of WGS 
for the detection of all types of variants highly relies on 
calling tools. Many tools have been developed with the 
development of WGS. However, the performance of dif-
ferent tools varies significantly. Standards addressing the 
definition and performance of a “best practice” tool for 
most classes of variants are lacking. Pilot studies in test 
development, optimization and validation of the WGS 
pipeline for genetic disorders are needed. One limitation 
of our study is that although we presented recommended 
strategies and tools in our WGS pipeline, we did not per-
form a comprehensive comparison of currently available 
tools for the detection of specific variants, which would 
be an interesting topic but remains out of the scope of 
this study. Second, although WGS possesses the poten-
tial to detect all kinds of variants, it does not mean that 
WGS is the only solution for a specific variant. For exam-
ple, conventional molecular karyotyping is widely used to 
detect chromosomal abnormalities with CNVs of more 
than 5–10  Mb [50]. SNP arrays and CMA are widely 
used for the detection of SNVs and CNVs. Compared 
with these traditional methods, clinical WGS remains 
expensive for the detection of specific variants. Clinical 
scientists should choose the best method according to 
the patient’s clinical requirements. Here, clinical require-
ments not only refer to the phenotypes of the patient, but 
also include of whether the patient can afford to undergo 
the test. Third, with the increasing information generated 
by WGS, greater challenges arise for clinical scientists to 
interpret and transform raw sequencing data into timely 

diagnoses and positive diagnosis yields, and convenient 
annotation tools and automated scoring programs are 
needed to address these gaps. Moreover, even if WGS can 
detect many variant types, all variants should not neces-
sarily be reported. Standards addressing the reporting 
criteria are lacking. Fourth, there were a limited number 
of testing samples with mosaicism, which is a limitation 
of this study. Therefore, the sensitivity in the detection of 
low-level mosaicism of variants in the nuclear and mito-
chondrial genomes cannot be provided in this pilot study.

We plan to test this system in other hospitals or clini-
cal institutions, including experiments, sequencing, and 
bioinformatics analysis. For the bioinformatics analy-
sis section, each section has been modularized and has 
application programming interfaces. A correspond-
ing operating system is needed. For labs, taking a WGS 
sample with a production of 180 G bases as an example, 
the required peak storage for bioinformatics analysis is 
approximately 2  TB. If all bam files (separate bam files 
and the whole bam file) and VCF files are saved, 0.5 TB 
of storage space is needed. The hardware configuration 
requires 96-core and 384 G memory.

In this study, through the deployment of an optimized 
WGS pipeline for genetic disorders, we presented recom-
mended strategies, tools, and resources for the detection 
of different types of variants. Using samples with known 
variants of various types, we validated and optimized the 
performance of our pipeline. This study piloted the test 
development, optimization, and validation of the WGS 
pipeline for genetic disorders and provided a set of rec-
ommendations and benchmarking resources for clinical 
WGS.
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