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Introduction
Chronic kidney disease (CKD) is an international health 
issue [1]. A considerable number of CKD patients will 
progress to end-stage renal disease (ESRD) [2]. There-
fore, finding preventative strategies for ESRD is especially 
important. Previous epidemiological studies have pointed 
out some potential risk factors to increase the incidence 
of ESRD. Significant roles are played by diabetes, hyper-
tension, and obesity in the development of ESRD [3]. 
However, the etiology of ESRD remains obscure. Explor-
ing the pathophysiology of ESRD aids in developing pre-
ventative and therapeutic measures.
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Abstract
Background Epidemiological evidence relating sleep disorders to end-stage renal disease (ESRD) has been obscure. 
The present study is sought to examine the association between sleep traits and ESRD.

Methods For this analysis, we selected genetic instruments for sleep traits from published genome-wide association 
studies (GWAS). As instrumental variables, independent genetic variations linked with seven sleep-related features 
(sleep duration, getting up in the morning, daytime napping, chronotype of morning/evening person, sleeplessness/
insomnia, non-snoring, and daytime dozing) were chosen. A two-sample Mendelian randomization (TSMR) study 
was conducted to assess the causal relationship between sleep traits and ESRD (N = 33,061). The reverse MR analysis 
subsequently determined the causal relationship between ESRD and sleep traits. The causal effects were estimated 
using inverse variance weighted, MR-Egger, weighted median. To conduct sensitivity studies, Cochran’s Q test, 
MR-Egger intercept test, MR-PRESSO, leave-one-out analysis, and funnel plot were used. To study the potential 
mediators, multivariable mendelian randomization analyses were undertaken further.

Results Genetically predicted sleeplessness/ insomnia (OR = 6.11, 95%CI 1.00-37.3, P = 0.049, FDR = 0.105), getting up 
in the morning easily(OR = 0.23, 95%CI 0.063–0.85; P = 0.0278, FDR = 0.105), non-snoring (OR = 4.76E-02, 95%CI 2.29E-
03-0.985, P = 0.0488, FDR = 0.105) was suggestively associated with the risk of ESRD. However, we found no evidence 
favoring a causal association between other sleep traits and ESRD through the IVW method.

Conclusion The present TSMR found no strong evidence of a bidirectional causal association between genetically 
predicted sleep traits and ESRD.
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The prevalence of sleep problems in patients with CKD 
has been shown to be significant, with roughly 50% of 
patients suffering from poor sleep quality or insomnia 
[4], and 44% of patients with ESRD experiencing sleep 
disturbance [5]. Several studies indicated that sleep was 
one of the potential risk factors for the development and 
progression of CKD [6, 7]. A prospective cohort study 
found that individuals with poor sleep habits had an ele-
vated risk of CKD [7]. In addition, sleep disorder is fre-
quently linked to obesity [8, 9], metabolic syndrome [10], 
diabetes [11], and hypertension [12], all of which hasten 
the progression of renal disease [13]. A cohort study 
identified poor sleep quality as a predictor of ESRD and 
found that both short (5 h) and long (8 h) sleep duration 
were linked to the risk of ESRD [6]. However, researchers 
were unable to determine if sleep disruption raises the 
risk of ESRD.

Mendelian randomization (MR) analysis uses genetic 
variants as instrumental variables (IVs) for exposure, 
which reduces measurement error and bias. MR is used 
to test exposure-outcome causal inferences. Two-sample 
MR (TSMR) allows IV analysis when the exposure and 
the outcome variables are measured in two independent 
datasets, so this approach can be particularly valuable 
when applied to large datasets that exist relating GWAS 
data to disease outcomes, but which lack intermediate 
phenotype data [14]. We conducted a TSMR research to 
examine the causative influence of seven sleep traits on 
ESRD.

Methods
Study design
Figure  1 shows the overview of the study design. We 
conducted a bidirectional MR analysis to assess sleep 
traits’ association with ESRD. Setting dialysis and glo-
merular filtration rate as additional outcomes to supple-
ment results, and then we conducted multivariable MR 
to test the true causal association between sleep traits 
and ESRD. All statistical analyses were performed using 
the two-sample MR package (version 0.5.6) [15] and MR-
PRESSO package (version 1.0) [16] in R (version 4.2.1). 
The study methods were compliant with the STROBE-
MR checklist [17] (Supplementary Tables 12, Additional 
File 1).

Data sources
Sleep-related characteristics and outcome data sources 
have been gathered and made accessible online, an addi-
tional file shows this in more detail (see Supplementary 
Tables 1, Additional File 1). Since this study was based on 
published data, no ethical approval nor informed consent 
was required.

Exposures
Summary statistics from IEU open GWAS project were 
used as the data for sleep traits [18], which included 
337000 unrelated individuals aged from 40 to 69 years 
old from a study of UK Biobank between 2006–2010 [19]. 
Instrumental Variables (IVs) were chosen from previ-
ously known single-nucleotide polymorphisms (SNPs) 
related to each sleep trait (exposure). Insomnia was char-
acterized as difficulty falling asleep at night or waking 
up in the middle of the night. Getting up in the morning 
was evaluated based on how easy it was to locate, and the 
significant self-report was fairly easy. The genetic con-
nection to non-snoring was based on snoring complaints 
from a partner, relative, or friend. The genetic relation-
ship of sleep duration was determined by asking people 
how many hours they slept per day, and the units of mea-
surement were hours per day. Chronotype is the natu-
ral propensity for the individual to sleep at a particular 
time, and the morning chronotype is someone who self-
reported as more of a ‘morning’ person than an ‘evening’ 
person.

Outcome
Summary statistics for ESRD were downloaded from 
the NHGRI-EBI GWAS Catalog (Buniello, MacAr-
thur, et al., 2019) for study GCST008031 (Wojcik GL 
et al. 2019) downloaded on 01/09/2022. ESRD was 
defined as an eGFR (by the CKD-Epi Equation) of < = 15 
ml/min/1.73m2. ESRD was modeled as a binary out-
come, and models were adjusted for age, sex, race/eth-
nicity, study, and study center, etc. The study comprised 
33,061 individuals, including 602 cases and 32,459 con-
trols [20]. The summary statistics for glomerular filtra-
tion rate (GFR) were downloaded from the NHGRI-EBI 
GWAS Catalog (Buniello, MacArthur, et al., 2019) on 
17/12/2022 for study (GCST003375) including 32,834 
European ancestry individuals. The assessment of GFR 
was based on cystatin C, and GFRcys was estimated as 
76.7 × (serum cystatin C)−1.19 [21]. The outcome sum-
mary statistics for dialysis were obtained from the 5th 
release of the FinnGen study with 648 cases and 212,841 
controls [22].

Risk factors
Summary statistics for diabetes were downloaded from 
the NHGRI-EBI GWAS Catalog (Buniello, MacArthur, 
et al., 2019) for study GCST006867 downloaded on 
17/12/2022 [23]. The summary statistics for depression 
and hypertension were obtained from the 5th release of 
the FinnGen study [22]. Genetic instrumental variables 
for BMI were obtained from the Genetic Investigation of 
Anthropometric Traits (GIANT) Consortium via the IEU 
Open GWAS [15].
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Selection of instrumental variables
To determine the optimal IVs for sleep, we first extracted 
SNPs from published data strongly associated with sleep 
traits (p < 5 × 10− 8). Linkage disequilibrium (LD) SNPs 
were eliminated (r2 0.001, clumping window = 10,000 kb) 
to ensure exposure instrument independence. Then, we 
extracted the sleep trait instrumental factors from the 
ESRD GWAS and eliminated palindromic SNPs. After 
harmonizing exposure and outcome data, we discovered 
that the same allele affects both exposure and outcome. 
Last, we filtered SNPs with F-statistics greater than 10 

to ensure instrument reliability and eliminate bias to sat-
isfy the relevance assumption of MR analysis that genetic 
instruments were associated with the risk factor of inter-
est. 28 SNPs for sleeplessness/insomnia, 37 for getting 
up in the morning, 22 for non-snoring, 44 for sleep dura-
tion, 80 for morning chronotype, 48 for napping during 
the day, and 18 for daytime dozing were extracted for 
MR analysis. The total F value for sleep duration, getting 
up in the morning, morning chronotype, napping dur-
ing the day, insomnia, non-snoring, and daytime doz-
ing were 660.15, 547.39, 1321.85, 935.98, 423.11, 334.99, 

Fig. 1 Overview of study design. BMI indicates body mass index; ESRD, End-stage renal disease; GWAS genome-wide associations study; IVW inverse-vari-
ance weighted; SNP single-nucleotide polymorphisms. Data extracted were beta coefficients with corresponding standard errors of the SNP-insomnia, 
SNP-getting up in the morning, SNP-non-snoring, SNP-sleep duration, SNP- morning chronotype, SNP-napping during the day, SNP-daytime dozing, 
SNP-ESRD, SNP-dialysis, SNP-glomerular filtration rate, SNP-depression, SNP-BMI, SNP-hypertension and SNP-diabetes associations
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and 315.36, respectively, and the phenotypic variation 
explained (PVE) for each exposure were 0.0019, 0.0016, 
0.004, 0.0028, 0.0013, 0.0011, and 0.001, respectively. 
In the reverse MR analysis, a more relaxed threshold 
was used (p < 5 × 10− 6) to select more SNPs of ESRD, 
which had been previously used in MR research [24]. 
We extracted 23 SNP for ESRD with a total F-statistic of 
124.05 and then removed the SNPs with F < 10 to satisfy 
the first MR assumption. Finally, we integrated 7 SNPs 
for ESRD. The PVE for ESRD was 0.23. The additional file 
(see Supplementary Tables  2–9, Additional File 1) pro-
vided an overview of GWAS datasets and related SNPs.

Mendelian randomization analysis
Using random-effects Inverse-variance weighted (IVW), 
MR Egger, and Weighted median, we examined if sleep 
traits caused ESRD risk. We chose IVW as the primary 
technique for MR analysis. In addition, false discovery 
rate (FDR) adjusted p-values proposed by Benjamini and 
Hochberg were used to address multiple correction test-
ing [25]. An FDR lower than 0.05 indicated statistical 
significance and supported strong evidence of a causal 
relationship. Associations with p < 0.05 but FDR > 0.05 
were regarded as suggestive evidence of association.

Sensitivity analysis
Cochran’s Q test, the MR-Egger regression test and the 
Mendelian Randomization Pleiotropy Residual Sum and 
Outlier (MR-PRESSO) test were used to identify het-
erogeneity or pleiotropy [16, 26, 27]. To check repro-
ducibility, we ran a sensitivity analysis utilizing the 
leave-one-out technique.

Multivariable MR
To determine whether the genetic instruments were 
associated with the risk factor of interest, were indepen-
dent of potential confounders, and could only affect the 
outcome through the risk factor and not through alter-
native pathways, we conducted multivariable MR using 
genetic variants associated with numerous, potentially 
connected exposures to estimate the effect of each expo-
sure on a single outcome [28]. We included some risk fac-
tors as potential confounders in the sleep traits and ESRD 
relationship. The multivariable MR was applied to test 
whether there was a true causality between sleep traits 
and ESRD. Only causality suggested by the primary MR 
analysis would undergo further tests.

Results
Primary MR analysis for the association between sleep 
traits and ESRD
According to IVW analysis, there were suggestive asso-
ciations between sleeplessness/ insomnia (OR = 6.11, 
95%CI 1.00-37.3, P = 0.049, FDR = 0.105, Power = 0.95), 

Getting up easily in the morning (OR = 0.23, 95%CI 
0.063–0.85; P = 0.0278, FDR = 0.105, Power = 0.1)(Fig.  4), 
non-snoring (OR 4.759E-02, 95%CI 2.29E-02–0.985, 
P = 0.0488, FDR = 0.105, Power = 0.12) and the risk of 
ESRD (Table  1). For other sleep behaviors, we found 
no evidence of associations between genetically-pre-
dicted sleep duration (OR = 0.622, 95%CI 0.158–2.447, 
P = 0.49, FDR = 0.686) (See Supplementary Fig.  1, Addi-
tional File 1), the morning chronotype (OR = 0.88, 95%CI 
0.44–1.753, P = 0.73, FDR = 0.851) (See Supplementary 
Fig.  2, Additional File 1) and ESRD. Similarly, daytime 
dozing (0R = 1.2, 95%CI 4.48E-02–3.21E + 02, P = 0.91, 
FDR = 0.91) (See Supplementary Fig.  6, Additional File 
1)and rarely daytime napping (OR = 4.15, 95%CI 0.93–
18.44, P = 0.06, FDR = 0.105) (See Supplementary Fig.  3, 
Additional File 1) was not observed evidence of having a 
causal association with ESRD risk. (Figures 2 and 3).

MR analysis for the association between sleep traits and 
other outcomes
Setting dialysis to the outcome, based on IVW analysis, 
revealed no evidence of a causal association between 
sleep duration (OR = 0.303, 95%CI 7.00E-2–1.31, P = 0.11, 
FDR = 0.681), sleeplessness/insomnia (OR = 0.485 95%CI 
0.055-4.28e + 00, P = 0.514, FDR = 0.681), chronotype 
(OR = 0.619, 95%CI 0.279–1.373, P = 0.238, FDR = 0.681), 
getting up in the morning (OR = 0.538, 95%CI 0.096–
3.002, P = 0.877, FDR = 0.877), non-snoring (OR = 6.901, 
95%CI 1.088E-01-4.376E + 02, P = 0.362, FDR = 0.681), 
daytime dozing (OR = 3.011, 95%CI 9.93E-02-91.304, 
P = 0.527, FDR = 0.681), nap during the day (OR = 1.627, 
95%CI 0.285–9.307, P = 0.584, FDR = 0.681) and dialysis.

In the analysis of the effect of sleep traits on glomerular 
filtration rate (GFR), there was no evidence of an effect 
of sleeplessness/ insomnia (b = -0.0007, 95%CI -0.143-
0.142, P = 0.993, FDR = 0.993), sleep duration (b = -0.018, 
95%CI-0.122-0.086, P = 0.730, FDR = 0.9765), chronotype 
(b = -0.015, 95%CI -0.064-0.033, P = 0.542, FDR = 0.9765), 
getting up in the morning (b = 0.021, 95%CI-0.093-0.136, 
P = 0.715, FDR = 0.9765), daytime dozing (b = 0.023, 
95%CI -0.197-0.242, P = 0.837, FDR = 0.9765) on GFR 
based on the IVW method. There were suggestive evi-
dence of effects of genetic liability to non-snoring 
(b = 0.232, 95%CI 0.017–0.447, P = 0.034, FDR = 0.119) 
and napping during the day (b = -0.078, 95%CI -0.149-
0.006, P = 0.033, FDR = 0.119) on GFR.

Sensitivity analysis
In the sensitivity analysis, we conducted funnel pot, 
Cochran’s Q test, leave-one-out analysis, and MR-Egger 
intercept tests. The MR-Egger regression test revealed no 
horizontal pleiotropy for sleeplessness/insomnia (Inter-
cept=-0.06, P = 0.4), sleep duration (Intercept = 0.021, 
P = 0.58), morning chronotype (Intercept=-0.024, 
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P = 0.17), getting up easily in the morning (Inter-
cept=-0.025, P = 0.38), non-snoring (Intercept = 0.089, 
P = 0.245), daytime dozing (Intercept= -0.053, P = 0.567), 
nap during the day (Intercept=-0.046, P = 0.204). The 
Cochran’s Q test revealed no heterogeneity in the IVW 

results for insomnia (Q = 21.32, P = 0.67), sleep duration 
(Q = 45.45, P = 0.256), morning chronotype (Q = 84.24, 
P = 0.268), getting up easily in the morning (Q = 20.28, 
P = 0.978), daytime dozing (Q = 12.62, P = 0.761), non-
snoring (Q = 13.7, P = 0.85), daytime dozing (Q = 12.62, 

Table 1 The causal relationship between sleep traits and ESRD, dialysis and glomerualr filtration rate
Exposure Outcome IVW MR Egger Weighted median

OR/b 95%CI P FDR OR/b 95CI P OR/b 95CI P
Sleeplessness/insomnia ESRD 6.117 1.004-

3.72e + 01
0.049 0.105 1038.81 0.007-

1.63e + 08
0.26 4 0.324-

4.92e + 01
0.28

Sleep duration 0.622 0.158–2.446 0.49 0.686 0.131 0.0005–37.97 0.48 1.81 0.275–11.917 0.53

Morning chronotype 0.889 0.447–1.767 0.73 0.8517 2.68 0.486–14.754 0.26 1.296 0.454–3.698 0.68

Getting up in the 
morning

0.232 0.063–0.853 0.028 0.105 1.16 0.027–50.53 0.938 0.166 0.027–1.015 0.051

Non-snoring 4.76E-02 2.3e-03-0.985 0.049 0.105 1.10E-06 2.22e-14-54.17 0.145 3.75E-02 5.03e-04-2.79 0.134

Daytime dozing 1.2 4.48d-
02-3.21e + 01

0.91 0.91 831.7 1.94e-
07-3.56e + 12

0.56 5.75 3.46e-
02-3.14e + 02

0.607

Nap during the day 4.159 0.938–18.449 0.06 0.105 259.31 0.405-
165921.23

0.099 7.06 0.846–58.93 0.07

ESRD Sleepless-
ness/
insomnia

0.997 0.990–1.003 0.324 1.031 0.975–1.089 0.329 0.998 0.989–1.007 0.720

Sleep 
duration

-0.001 -0.008-0.006 0.783 -0.022 -0.08-0.036 0.489 -0.002 -0.01-0.007 0.712

Morning-
chrono-
type

0.994 0.986–1.003 0.173 0.995 0.925–1.005 0.912 0.994 0.984–1.005 0.315

Getting 
up in the 
morning

1.002 0.995–1.008 0.616 0.981 0.926–1.039 0.539 1.001 0.992–1.009 0.862

Non-
snoring

1.002 0.995–1.010 0.543 0.967 0.903–1.036 0.388 1.000 0.994–1.006 0.994

Daytime 
dozing

1.001 0.996–1.006 0.598 1.045 1.007–1.085 0.068 0.999 0.993–1.006 0.831

Nap dur-
ing the 
day

0.995 0.989–1.001 0.088 1.012 0.964–1.063 0.648 0.998 0.991–1.005 0.552

Sleeplessness/insomnia Dialysis 0.485 0.055-
4.28e + 00

0.514 0.681 446.026 1.721-
1.156e + 05

0.041 0.555 0.032-
9.433e + 00

0.684

Sleep duration 0.303 7.00e-02-1.31 0.11 0.681 0.009 2.49e-05-3.42 0.12 0.341 4.09e-02-2.85 0.32

Morning chronotype 0.619 0.279–1.373 0.238 0.681 0.354 0.053–2.374 0.288 0.287 0.092–0.888 0.03

Getting up in the 
morning

0.538 0.096–3.002 0.877 0.877 0.184 0.0003–99.841 0.601 0.554 0.055–5.534 0.615

Non-snoring 6.901 1.088e-
01-4.376e + 02

0.362 0.681 17373.55 2.635e-
05-8.304e + 12

0.349 11.224 1.239e-
01-1.016e + 03

0.293

Daytime dozing 3.011 9.93e-02-
91.304

0.527 0.681 0.0005 3.105e-11-
7589.52

0.379 1.465 1.453e-02-
147.69

0.871

Nap during the day 1.627 0.285–9.307 0.584 0.681 3.093 0.004-
2428.268

0.741 1.558 0.154–15.719 0.707

Sleeplessness/insomnia Glomeru-
lar filtra-
tion rate

-0.0007 -0.143-0.142 0.993 0.993 -0.227 -1.382-0.927 0.708 -0.008 -0.172-0.155 0.921

Sleep duration -0.018 -0.122-0.086 0.730 0.9765 0.123 -0.485-0.731 0.697 -0.058 -0.177-0.061 0.338

Morning chronotype -0.015 -0.064-0.033 0.542 0.9765 0.089 -0.144-0.322 0.460 -0.002 -0.063-0.059 0.954

Getting up in the 
morning

0.021 -0.093-0.136 0.715 0.9765 0.064 -0.497-0.624 0.827 0.053 -0.068-0.175 0.387

Non-snoring 0.232 0.017–0.447 0.034 0.119 -0.478 -2.435-1.478 0.643 0.239 0.001–0.478 0.049

Daytime dozing 0.023 -0.197-0.242 0.837 0.9765 -0.209 -1.772-1.353 0.799 -0.072 -0.285-0.142 0.489

Nap during the day -0.078 -0.149- -0.006 0.033 0.119 -0.055 -0.384-0.275 0.748 -0.077 -0.171-0.018 0.113
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p = 0.761), nap during the day (Q = 24.68, P = 0.996). In 
addition, the MR-Egger regression test for the MR analy-
sis of other outcomes revealed no horizontal pleiotropy 
and the Cochrane Q test revealed no heterogeneity (see 
Table  2). The leave-one-out analyses demonstrated the 
results’ consistency.

Reverse MR analysis
In assessing the influence of ESRD on the risk of sleep 
traits, the IVW technique revealed no evidence favour-
ing a causal effect of ESRD on the risk of insomnia 
(OR = 0.997, 95%CI = 0.990–1.003, P = 0.324), getting up 
early (OR = 1.002, 95%CI 0.995–1.008, P = 0.616), non-
snoring (OR = 1.002, 95%CI 0.995–1.010, P = 0.543), sleep 

Fig. 3 Genetic liability to sleep traits in relation to end-stage renal disease

 

Fig. 2 Associations of genetic liability to 7 sleep traits with ESRD. Genetic liability to Non-snoring, getting up early, and insomnia was suggestively associ-
ated with ESRD in the primary analysis. Estimates are from the random-effects inverse variance weighted method
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duration (b = -0.001, 95%CI -0.008-0.006, P = 0.783), 
morning chronotype (OR = 0.994, 95%CI 0.986–1.003 
P = 0.173), daytime napping (OR = 0.995, 95%CI 0.989–
1.001 P = 0.088) or daytime dozing (OR = 1.001, 95%CI 
0.996–1.006, P = 0.598). In the sensitivity analysis, the 
MR-Egger regression test revealed no horizontal pleiot-
ropy and the Cochrane Q test revealed no heterogeneity 
(Table 2).

Multivariable MR analysis
Genetic liability to diabetes and BMI was significantly 
associated with ESRD (See Supplementary Tables  10, 
Additional File 1). In the multivariable MR adjusting for 
diabetes, there was no evidence for a causal association 
of genetic liability to sleeplessness/ insomnia, getting up 
early in the morning and non-snoring with ESRD. Like-
wise, after adjustment for BMI, associations between 
genetic liability to sleeplessness/ insomnia, getting up 
early in the morning, and non-snoring and ESRD did not 
persist (See Supplementary Tables 11, Additional File1).

In the multivariable MR analysis adjusting for depres-
sion, getting up early in the morning consistently showed 

a causality with ESRD (OR = 0.246, 95%CI 0.093–0.647, 
P = 0.0045, FDR = 0.0114), and the association between 
non-snoring and ESRD remained significant (OR = 0.034, 
95%CI 0.0028–0.407, P = 0.0076, FDR = 0.0114). However, 
the causal association between sleeplessness/ insomnia 
and ESRD disappeared. After adjusting for hyperten-
sion, most associations between sleep traits and ESRD 
did not persist, but only the association between the 
genetic reliability to non-snoring and ESRD remained 
significant (OR = 0.038, 95%CI 0.0029–0.512, P = 0.0135, 
FDR = 0.0405) (See Supplementary Tables 11, Additional 
File 1).

Discussion
Principal findings
In this bidirectional TSMR investigation, sleepless-
ness/insomnia, waking up early, and not snoring were 
suggestively associated with the risk of ESRD. Fur-
thermore, However, our data did not show evidence 
providing a causal connection between genetic predispo-
sition to ESRD and sleep disturbances. Some of the asso-
ciations remained after adjustment for depression and 

Table 2 Sensitivity analysis of the causal association between sleep traits and the risk of ESRD.
Exposure Outcome MR-IVW MR-Egger MR-Egger intercept MR-PRESSO

Q Q_df Q_pval Q Q_df Q_pval Intercept SE P val Global test Pval
Sleeplessness/insomnia ESRD 21.32 25 0.67 20.6 24 0.662 -0.06 0.07 0.4 0.782

Sleep duration 45.45 40 0.256 45.09 39 0.232 0.021 0.037 0.58 0.334

Morning chronotype 84.24 77 0.268 82.17 76 0.294 -0.024 0.017 0.17 0.201

Getting up in the morning 20.28 35 0.978 19.49 34 0.978 -0.025 0.028 0.38 0.976

Non-snoring 13.7 20 0.85 12.27 19 0.874 0.089 0.07 0.245 0.813

Daytime dozing 12.62 17 0.761 12.28 16 0.724 -0.053 0.09 0.567 0.783

Nap during the day 24.68 46 0.996 23.02 45 0.997 -0.046 0.036 0.204 0.997

ESRD Sleeplessness/insomnia 18.72 19 0.475 18.56 18 0.419 -0.000575 0.00145 0.696 0.505

Sleep duration 13.977 19 0.785 13.689 18 0.749 -0.0008 0.0015 0.598 0.805

Morning chronotype 19.29 19 0.438 19.294 18 0.429 -0.0018 0.00198 0.367 0.378

Getting up in the morning 12.44 19 0.866 10.28 18 0.922 0.0023 0.0015 0.159 0.834

Non-snoring 32.58 19 0.027 29.83 18 0.039 0.0016 0.0012 0.214 0.616

Daytime dozing 16.24 19 0.641 16.15 18 0.582 -0.00028 0.00098 0.777 0.624

Nap during the day 24.69 19 0.17 18.97 18 0.335 -0.0026 0.0012 0.054 0.178

Sleeplessness/insomnia Dialysis 36.41 26 0.084 28.78 25 0.273 -0.094 0.036 0.016 0.822

Sleep duration 37.87 40 0.567 36.44 39 0.587 0.047 0.039 0.239 0.604

Morning chronotype 97.76 79 0.075 97.26 78 0.069 0.013 0.019 0.528 0.094

Getting up in the morning 46.09 36 0.120 45.93 35 0.102 0.016 0.045 0.729 0.128

Non-snoring 37.39 21 0.015 36.27 20 0.014 -0.068 0.086 0.441 0.605

Daytime dozing 9.74 18 0.939 8.63 17 0.951 0.075 0.071 0.306 0.935

Nap during the day 56.12 47 0.169 56.08 46 0.147 -0.0075 0.038 0.846 0.148

Sleeplessness/insomnia Glomerular filtration rate 15.37 10 0.119 15.12 9 0.088 0.0025 0.0065 0.706 0.103

Sleep duration 25.01 15 0.049 24.63 14 0.038 -0.0019 0.004 0.650 0.063

Morning chronotype 32.57 27 0.211 31.59 26 0.207 -0.0019 0.002 0.378 0.197

Getting up in the morning 30.22 15 0.011 30.169 14 0.007 -0.0006 0.0039 0.882 0.554

Non-snoring 18.68 10 0.044 17.67 9 0.039 0.0056 0.0079 0.492 0.054

Daytime dozing 19.15 9 0.023 18.94 8 0.015 0.0019 0.0063 0.775 0.317

Nap during the day 31.90 29 0.324 31.88 28 0.279 -0.00027 0.0019 0.888 0.368
ESRD, end-stage renal disease; OR, odds ratio; CI, confidence interval; IVW, inverse-variance weighted; FDR, P-value corrected for False Discovery Rate
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hypertension. Diabetes and BMI might partly mediate 
the link between sleep traits and ESRD.

Previous studies
Poor sleep quality and disruptions have been commonly 
observed in CKD and ESRD patients. A cross-sectional 

research indicated ESRD patients had higher sleep dis-
turbances than CKD patients [29]. On the other hand, 
consistent with our findings, a recent observational 
research found that sleep disturbances were related to 
ESRD in patients with CKD [6] and that individuals with 

Fig. 4 Forest plot (A), leave-one-out sensitivity analysis (B), scatter plot (C), and funnel plot (D) of the suggestive causal effect of getting up in the morn-
ing on ESRD risk
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a healthy sleep pattern were associated with a substantial 
reduction in the risk of CKD [7].

In addition, we expanded these findings by demonstrat-
ing the effects of various sleep characteristics on ESRD. 
A Singapore Chinese Health Study found that both 
short and extended sleep durations were related to an 
increased risk of ESRD [30]. As for insomnia, a prospec-
tive cohort research revealed that nighttime insomnia 
is related to a modestly elevated risk of CKD [31], but a 
study reported that insomnia is not connected with the 
incidence of ESRD [32], which contradicts the present 
findings of MR analysis. There is a paucity of epidemio-
logical research on healthy sleep habits, but a study indi-
cated that a healthy lifestyle score system, which included 
a good sleep pattern, was connected with a reduced risk 
of CKD [33]. In addition, a study revealed that obstruc-
tive sleep apnea, the severity of which is related to snor-
ing [34], contributed to the progression of CKD [35]. 
Although we identified a detrimental impact of insom-
nia on ESRD and that getting up in the morning and not 
snoring delayed disease development, there was inad-
equate previous evidence for causal associations between 
sleep traits and ESRD. Possible explanations include pop-
ulation differences, sample size, and inappropriate con-
trol of confounding variables.

According to research, sleep problems are linked to 
depression [36], which aligns with our discovery of a 
strong causal link between insomnia and depression. In 
addition, research suggested that depression may be a 
risk factor for the development of CKD [37]. This implied 
that sleep disturbance might affect ESRD through depres-
sion. The causal association between insomnia and ESRD 
attenuated after adjusting for depression, but the associa-
tions of non-snoring and getting up early in the morning 
with ESRD were even more robust in multivariable MR 
adjusting for depression, indicating that genetic correla-
tions between these two sleep traits and depression are 
less likely to be a source of biassing these findings.

Additionally, consistent with our analysis of multi-
variable MR, sleep traits were shown to affect BMI [38], 
hypertension [39], and diabetes [40]. Several studies also 
linked BMI [41], hypertension [42], and type 2 diabe-
tes [43] to ESRD. Specifically, our multivariable analy-
sis linked sleep traits to obesity, hypertension, and an 
increased risk of diabetes. These factors may mediate the 
association between sleep traits and ESRD. After adjust-
ing for these factors, most associations between sleep 
traits and ESRD did not persist, indicating that these fac-
tors might confound the observed associations between 
sleep traits and ESRD.

Potential mechanisms
The precise pathophysiological mechanisms behind 
the link between sleep traits and ESRD remain poorly 

known. In this and previous research, sleep character-
istics were connected to obesity, hypertension, and dia-
betes, and ESRD may be triggered by obesity [44], high 
blood pressure [42], and diabetes [43, 45].

Sleep disorders were associated with a condition of the 
hypothalamic-pituitary-adrenal axis [46]; snoring associ-
ated with OSA was linked to impaired autonomic ner-
vous function [47]. The higher risk of ESRD in patients 
with insomnia may be partially explained by sleep-
induced alterations in the autonomic nervous system 
and hypothalamic-pituitary axis [48, 49]. Additionally, 
inflammation might change due to insomnia, primary 
snoring, and obstructive sleep apnea [50, 51]. At the same 
time, systemic and local chronic inflammation (in the 
kidney) operate as risk factors for diabetic renal disease 
and its development into ESRD [52].

Strengths and limitations
Our study has several strengths. This is the first MR 
analysis of sleep attributes with ESRD, probing evidence 
of the causal association between sleep-related charac-
teristics and ESRD and studying the bidirectional cau-
sation relationship. Second, the MR design reduced the 
likelihood that confounding and other biases caused 
the observed bias. A large sample size and GWAS SNPs 
offered statistical validity for assessing causality. These 
steps improve conclusion validity.

Our study does, however, have certain shortcom-
ings. First, participants in the ESRD where we obtained 
outcome data were Hispanic/Latino, while the expo-
sure dataset we used was all European. A study show-
ing genome-wide admixture mapping of CKD identified 
European ancestry-of-origin loci in Hispanic and Latino 
individuals, and the locus with European ancestry was 
associated with the CKD risk [53]. However, population 
stratification may contribute to confounders. The ances-
try distribution, on the other hand, restricted the general-
izability of our findings to other groups. Second, we could 
not determine if there were dose-response connections 
between sleep traits and ESRD. Still, uncertainty remains 
around the potential effects of public policy interven-
tions on different sleep behaviors. Third, the findings of 
the Power analysis for non-snoring and getting up in the 
morning are minor, which might be due to the limited 
number of cases and sample size of ESRD. Finally, the 
results of the weighted median technique were not con-
sistent with the suggestive associations provided by the 
IVW method in the primary MR analysis, indicating the 
presence of pleiotropy. Although we conducted sensitiv-
ity analyses that revealed no obvious pleiotropy, we find 
it difficult to verify the assumption that genetic instru-
ments could only affect the outcome through the risk fac-
tor and not through pleiotropy.



Page 10 of 11Li et al. BMC Medical Genomics           (2023) 16:76 

Conclusions
Overall, our study of MR analysis had no strong evidence 
to support a protective or deleterious effect of genetically 
predicted sleep traits on ESRD nor strong evidence to 
support an effect of ESRD on sleep disorders. However, 
this study provides suggestive associations between get-
ting up early, insomnia, and non-snoring with ESRD, 
and the necessity of further research into the mechanism 
behind the link between sleep disorders and ESRD is 
highlighted by this study.
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