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Abstract 

Background The interaction between tumor cells and immune or non-immune stromal cells creates a unique tumor 
microenvironment, which plays an important role in the growth, invasion and metastasis of gastric cancer (GC).

Methods The candidate genes were selected to construct risk-score by univariate and multivariate Cox regression 
analysis. Nomograms were constructed by combining clinical pathological factors, and the model performance 
was evaluated by receiver operating characteristic curve, decision curve analysis, net reclassification improvement 
and integrated discrimination improvement. The functional enrichment between high-risk group (HRisk) and low-
risk group (LRisk) was explored through GO, KEGG, GSVA and ssGSEA. CIBERSORT, quanTIseq and xCell were used to 
explore the immune cell infiltration between HRisk and LRisk. The relevant EMT scores, macrophage infiltration scores 
and various metabolic scores were calculated through the “IOBR” package and analyzed visually.

Results Through univariate and multivariate Cox regression analysis, we obtained the risk-score of fittings six lipid 
metabolism related genes (LMAGs). Through survival analysis, we found that risk-score has significant prognostic 
significance and can accurately reflect the metabolic level of patients. The AUCs of the nomogram model incorporat-
ing risk-score 1, 3 and 5 years were 0.725, 0.729 and 0.749 respectively. In addition, it was found that the inclusion of 
risk-score could significantly improve the prediction performance of the model. It was found that the arachidonic acid 
metabolism and prostaglandin synthesis were up-regulated in HRisk, and more tumor metastasis related markers and 
immune related pathways were also enriched. Further study found that HRisk had higher immune score and M2 mac-
rophage infiltration. More importantly, the immune checkpoints of tumor associated macrophages involved in tumor 
antigen recognition disorders increased significantly. We also found that ST6GALNAC3 can promote arachidonic acid 
metabolism and up-regulate prostaglandin synthesis, increase M2 macrophage infiltration, induce epithelial mesen-
chymal transformation, and affect the prognosis of patients.

Conclusions Our research found a novel and powerful LMAGs signature. Six-LMAGs features can effectively evalu-
ate the prognosis of GC patients and reflect the metabolic and immune status. ST6GALNAC3 may be a potential 
prognostic marker to improve the survival rate and prognostic accuracy of GC patients, and may even be a potential 
biomarker of GC patients, indicating the response to immunotherapy.
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Introduction
Gastric cancer (GC) is the fifth most common malignant 
tumor and the third leading cause of cancer-related death 
in the world [1]. East Asia, including China, has the high-
est mortality rate [2, 3]. Although the overall survival rate 
has improved with the progress of surgical treatment, 
chemotherapy and targeted therapy, the survival rate of 
GC patients is still less than 30% [4, 5]. At present, the 
specific mechanism of GC development is still unclear. 
Recent evidence shows that the interaction between 
tumor cells and immune or non-immune stromal cells 
creates a unique tumor microenvironment, which plays 
a crucial role in tumor growth, invasion and metastasis 
[6, 7].

Epithelial mesenchymal transformation (EMT) of can-
cer cells has been identified to play a key role in tumor 
progression, invasion and metastasis, and is a way for 
cancer cells to gain more aggressiveness. In the process 
of EMT, epithelial cells decreased the expression of epi-
thelial markers (E-cadherin) and took place phenotypic 
transformation, and increased the expression of mesen-
chymal markers (N-cadherin, VIM, ZEB1), thus showing 
decreased intercellular adhesion and increased motility 
[8, 9]. Enhanced motility and invasiveness provided by 
EMT are crucial for the metastasis of cancer progression, 
and the acquisition of mesenchymal phenotype has been 
proved to enhance the resistance to chemotherapy and 
lead to poor prognosis [10, 11]. Studies have shown that 
lipid metabolism reprogramming plays a key role in the 
process of EMT.

Lipids not only play a key role in maintaining cell 
membrane homeostasis, but also in signal transduction. 
More and more evidence show that lipid metabolism is 
an important regulator of cancer progression and EMT. 
Eicosanoid, including prostaglandins (PGs), leukotrienes 
(LTS) and lipoxins (LXS), are signal molecules produced 
mainly through the oxidation of arachidonic acid (AA) 
[12–14]. AA derived eicosanoid plays a complex role 
in controlling a wide range of physiological processes, 
including cytokine production, antibody formation, 
differentiation, cell proliferation, migration and anti-
gen presentation [15]. Prostacyclin can promote cancer 
development through a variety of mechanisms, includ-
ing regulating tumor epithelial cell biology and pro-
moting tumor related angiogenesis. PGE2 catalyzed by 
COX2 plays a key role in the invasion of ovarian cancer 
cells [16], and can promote the proliferation of cancer 
cells in vitro and in vivo [17, 18]. PGE2 promotes tumor 
invasion and metastasis by activating PI3K/Akt/mTOR 
pathway and JAK2/STAT3 pathway [19]. COX-2-derived 
PGE2 can stimulate cell proliferation, angiogenesis and 
enhance cell invasiveness [20], but the mechanism of 
inhibiting tumor immunity is not clear.

Tumor-associated macrophage (TAMs) play an impor-
tant role in tumor micro-environment (TME) of various 
solid malignancies. The number of infiltrated M2 mac-
rophages and total TAM may be factors of poor progno-
sis in patients with gastric cancer, while M1 macrophage 
infiltration is associated with better survival [21]. At the 
same time, the phenotypic changes of macrophages are 
closely related to the lipid metabolism reprogramming 
of cancer cells, and guide macrophages to play a com-
pletely different immune function. Studies have shown 
that eicosanoid can regulate the inflammatory function 
of macrophages. For example, macrophage derived PGs 
limit TNF-a production in an autocrine manner. The 
effect of PGE2 on macrophages is to inhibit Th1 immune 
response [22]. However, the mechanism of eicosanoid on 
macrophage polarization is not clear.

Activated immune cells and cancer cells have similar 
metabolic pathways in some aspects, but they also com-
pete for basic nutrients in TME. In addition, it is found 
that the metabolic pathway of immune cells is closely 
related to their immune function. Therefore, understand-
ing the major metabolic differences between gastric can-
cer cells and immune cells activated in TME to connect 
intratumoral metabolism and immunotherapy may be a 
potential mechanism to enhance tumor immunotherapy. 
Therefore, we established a novel lipid metabolism score 
and constructed a nomogram in combination with clin-
icopathological factors to predict patient overall survival. 
We further explored the specific mechanism of lipid 
metabolism reprogramming promoting the progression 
of gastric cancer, and explored the relationship between 
lipid metabolism reprogramming and immune cell infil-
tration; Finally, we identified ST6 N-acetylgalactosami-
nide alpha-2,6-sialyltransferase 3 (ST6GALNAC3) as a 
potential therapeutic target related to lipid metabolism, 
which will contribute to the immunotherapy of gastric 
cancer.

Methods
Patient cohort and data preparation
The selection criteria for this study are as follows: (1) 
definite histological diagnosis of GC; (2) definitive clini-
cal data; (3) at least 30 days of overall survival after initial 
pathologic diagnosis [23]; (4) complete RNA-seq data. 
RNA-seq data and related clinical data were downloaded 
from TCGA (Additional file  1: Fig. S1) and GEO data-
bases. TCGA data included 335 GC samples. GSE84437 
contains 426 GC samples (Additional file  2: Table  S1). 
In addition, we collected 243 lipid metabolism-associ-
ated genes (LMAGs) based on the Molecular Signatures 
Database v7.0.8,9 [24]. 19 LMAGs were identified as 
prognostic by using univariable Cox regression analysis. 
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Candidate genes for constructing the risk model were 
selected by multivariate Cox stepwise regression analysis.

Evaluation of risk model independence
The patients were divided into low-risk (LRisk) and high-
risk group (HRisk) with the median risk score as the 
cutoff. Kaplan–Meier analysis was used to estimate the 
difference in overall survival among classified patients. 
Then, to combine the OS-model with clinicopathological 
data, the nomograms were developed by “regplot” pack-
age. In addition, the area under the curve (AUC) of the 
receiver operating characteristic (ROC) was calculated 
to evaluate the predictive ability of nomogram or other 
models. We also utilized the decision curve analysis 
(DCA) to evaluate the potential clinical effects of models. 
We calculated the expression of LMAGs in single cells 
using TISCH database, and explored the prognostic sig-
nificance of LMAGs using OncoLnc and HPA database.

Functional analysis
Based on GSVA score, "LIMMA" R software package was 
used to analyze the difference REACTOME path between 
the two groups of HRisk patients in the two cohorts. 
Gene ontology (GO) and KEGG analyses were performed 
to enrich the DEGs into associated pathways using the 
“clusterProfiler” R package [25]. In addition, in order to 
estimate the activation degree of 50 HALLMARK path-
ways, "ssGSEA" R package were applied under the stand-
ard setting.

Tumor immune microenvironment analysis
The immune score, stromal score and tumor purity 
of patients were calculated by R package "estimate". 
Ciberport, quantiseq and xcell algorithms were used to 
estimate the degree of immune cell infiltration. The cor-
relation between LMAGs and immune cells was calcu-
lated by TIMER and TIMER2.0. We calculated relevant 
EMT scores according to the work of Powles et al. [26], 
macrophage infiltration scores according to the work of 
Rooney [27], Danaher [28], Bindea [29] and Peng [30] 
et al., and various metabolic scores according to the work 
of smiraglia et al. [31], the above algorithms are included 
in the “IOBR” R package, and finally calculated and visu-
alized with “IOBR” R package [32].

RNA isolation and quantitative real‑time RT‑PCR
We performed experiments with reference to previous 
studies [33]. AGS GC cells were obtained from Zhong-
qiao New Prefecture in Shanghai. All cells were grown in 
medium containing 10% fetal bovine serum (FBS; Gibco, 
NY, USA) and 1% penicillin–streptomycin (HyClone, 
Logan, UT, USA) in a standard humidified incubator. 
Total RNA was extracted using TRIzol Reagent (TaKaRa, 

Beijing, China) and reverse transcribed into cDNA using 
the PrimeScript RTMaster Mix (Perfect Real Time) rea-
gent (TaKaRa, Beijing, China) according to the manu-
facturer’s instructions. Quantitative real-time PCR 
(qRT-PCR) was performed on an ABI 7500HT Fast Real-
Time PCR System (Applied Biosystems, CA, USA). The 
average fold of relative mRNA expression was deter-
mined using the  2−ΔΔCt method with GAPDH as an inter-
nal control [33]. Primer sequences for qRT-PCR were as 
follows:

ST6GALNAC3, forward 5′-ACC AGC GTT CCT CTT 
TTG CT-3′ and reverse 5′-TCA TGC GCT TCT CTG 
TGG TC-3′;
ROR2, forward 5′-AAG GAA CCT CCC CAG CCA -3′ 
and reverse 5′-GCC ACC ACC CCT TTC TAC G-3′;
TAGLN, forward 5′-CCA TGC CAG ACA GCA GAG 
G-3′ and reverse 5′-ACT CTG CTT TGG AGT ACA 
GCC-3′;
GAPDH, forward 5′-TCG ACA GTC AGC CGC ATC 
TT-3′ and reverse 5′-GAG TTA AAA GCA GCC CTG 
GTG-3′.

Statistical analysis
All statistical analyses were conducted by R software 
(“ggcorrplot” package and “ggstatsplot” package) (version 
4.1.2). Survival curves were compared using log-rank test 
and performed using the Kaplan–Meier method. P < 0.05 
(two-tailed) was considered statistically significant.

Results
Screening candidate genes for constructing risk‑score
243 genes related to lipid metabolism were collected 
through KEGG database. We found that 19 genes related 
to lipid metabolism were meaningful through univariate 
Cox regression analysis (Additional file 3: Table S2). Then 
we performed multivariate Cox stepwise regression anal-
ysis on the 19 genes. Finally, we obtained the risk-score 
of fitting 6 genes related to lipid metabolism (ADH4, 
AKR1B1, CYP4A11, NEU2, SMPD3, ST6GALNAC3).

Establishment and verification of risk‑score
Through survival analysis, we found that the risk-score 
has significant prognostic significance. The higher 
the risk-score, the lower the overall survival rate of 
patients (Fig.  1A, B). The metabolic programming 
between HRisk and LRisk was calculated by “IOBR” 
package. We found that there were significant differ-
ences in the expression of lipid metabolism related 
products between HRisk and LRisk (Fig. 1D and Addi-
tional file  1: Fig. S2A, Fig.  1F and Additional file  1: 
Fig. S2B). GSVA was used to calculate the difference 
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between HRisk and LRisk in the REACTOME database 
(Fig. 1C, E). We found that there was a significant dif-
ference in the enrichment of lipid metabolism related 
pathways between HRisk and LRisk. We also verified 
it with GEO data and got the same conclusion. More 

importantly, we found that the HRisk group promoted 
arachidonic acid metabolism and prostanoid biosyn-
thesis. Therefore, the lipid metabolism related score we 
constructed can accurately reflect the level of metabo-
lism in patients.

Fig. 1 Establishment and verification of risk-score. Kaplan–Meier curve of HRisk and LRisk in TCGA (A) and GSE84437 (B). The enrichment of 
REACTOME database pathway between HRisk and LRisk was analyzed by GSVA in TCGA (C) and GSE84437 (E). The “IOBR” package calculates the 
subroutine reprogramming between HRisk and LRisk in TCGA (D) and GSE84437 (F)
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Establishment, evaluation and verification of Nomogram
We combined risk-score and clinicopathological factors 
to conduct univariate Cox regression analysis, and found 
that the patient’s age, T stage, N stage and risk-score were 
meaningful. Then we incorporated the meaningful indi-
cators of univariate Cox regression analysis into the mul-
tivariate Cox regression, and built a model to predict the 
overall survival rate of patients (Fig.  2B and Additional 
file 1: Fig. S3A). We found that this model can accurately 
predict the prognosis of patients in training set and vali-
dation set (Fig.  2A). We visualized the model through 
nomogram, and found that nomogram have good con-
sistency through calibration curve detection (Fig.  2C). 

According to ROC curve, the AUC of nomogram in 1, 3 
and 5 years are 0.725, 0.729 and 0.749 respectively, indi-
cating that nomogram have good prediction performance 
(Fig.  2D–F). In addition, we also found that risk-score 
has better predictive ability than conventional clinico-
pathological factors. The same is true in the validation set 
(Additional file 1: Fig. S3B-D). In addition, when the NRI 
and IDI were analyzed, which are more sensitive than the 
other methods used in this study, we found that includ-
ing the risk-score can significantly improve the predic-
tive accuracy of the nomogram models (Additional file 4: 
Table S3). We also used the DCA to assess the potential 
clinical effects of the nomograms with or without the 

Fig. 2 Establishment and evaluation of Nomogram. Kaplan–Meier curve of Nomogram in TCGA (A). Nomogram built according to TCGA (B). 
Nomogram calibration curve for 1, 3 and 5 years (C). Nomogram ROC curve for 1, 3 and 5 years (D–F). Nomogram DCA curve for 1, 3 and 5 years 
(G–I)
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risk-score (Fig.  2G–I). We found that nomogram with 
risk-score have better clinical decision-making ability. 
To sum up, we found that risk-score has a good ability 
to predict the overall survival of patients, and nomo-
gram incorporated into risk-score have a good prediction 
performance.

Potential functional analyses of the risk‑score
In order to further explore the biological function of lipid 
metabolism reprogramming, through GO analysis of the 
differential genes between HRisk and LRisk (Additional 
file  5: Table  S4), we found that more immune related 
pathways were enriched in GOBP, and more extracel-
lular matrix (ECM) related pathways were enriched 
in GOCC and GOMF (Fig.  3A, D). We also found that 
ECM, focal adhesion and vascular smooth muscle con-
traction were significantly enriched in KEGG database 
(Fig. 3B, E). More importantly, we analyzed the difference 
of Hallmark between HRisk and LRisk through ssGSEA, 
and found that angiogenesis and epithelial mesenchymal 
transition were significantly enriched in HRisk (Fig. 3C, 
F). We further analyzed the EMT related markers of 
Powles et  al. And found that the patients in the HRisk 
group had higher EMT scores than those in the LRisk 
group, and were more prone to epithelial mesenchymal 
transition (Fig.  4A–D). In conclusion, the reprogram-
ming of lipid metabolism may affect the invasion, metas-
tasis and immune microenvironment of tumor cells.

Correlation between risk‑score and tumor immune 
microenvironment
In order to further explore the impact of lipid metabo-
lism reprogramming on immune microenvironment, we 
calculated the tumor microenvironment score by ESI-
MATE algorithm. We found that HRisk group had higher 
immune score and stromal score, and lower tumor purity 
(Fig.  5A, B). Through further analysis of CIBERSORT 
(Fig. 5C, D and Additional file 1: Fig. S4A-B), quanTIseq 
(Fig.  5E, F and Additional file  1: Fig. S4C-D) and xCell 
(Additional file 1: Fig. S4E-F), it was found that M2 mac-
rophages generally increased in HRisk group. In addition, 
the training set and validation set were further veri-
fied by macrophage scores constructed by Rooney et al., 
Danaher et al., Bindea et al. and Peng et al. We found that 
there was more macrophage infiltration in HRisk group 
(Fig.  6A–D). More importantly, we found that in the 
HRisk group, the immune checkpoints (SIRPA, LILRB1, 
SIGLEC10) of tumor associated macrophages involved 
in tumor antigen recognition disorders increased sig-
nificantly (Fig.  6E, F), releasing anti phagocytic signals 
and negatively regulating the phagocytic function of 
macrophages.

Identification of key genes based on LMAGs
In order to further search for therapeutic targets related 
to lipid metabolism in tumor cells, we further analyzed 
the six genes of risk-score. Chi square analysis in the 
prognostic evaluation of biomarkers (Table 1 and Addi-
tional file  1: Fig. S5A-B). Through TIMER2.0 database 
analysis, we found that ADH4, CYP4A11 and ST6GAL-
NAC3 were negatively correlated with M1 macrophages 
and positively correlated with M2 macrophages (Fig. 7A). 
AKR1B1 and ST6GALNAC3 were stably and highly 
expressed in HRisk group (Fig. 7B, C). More importantly, 
through single cell database (TISCH) analysis, ST6GAL-
NAC3 is mainly expressed in tumor cells (Fig.  7D–F), 
and through OncoLnc and HPA database, it is found that 
the expression of ST6GALNAC3 significantly affects the 
prognosis of patients (Additional file 1: Fig. S5C-D), and 
the overall survival rate of patients with high expression 
of ST6GALNAC3 is low. ST6GALNAC3 may be a thera-
peutic target related to lipid metabolism in tumor cells. 
We also explored the relationship between LMAGs and 
macrophage infiltration, and found that ST6GALNAC3 
and AKR1B1 significantly promoted the secretion of 
macrophage chemokines (Fig. 8A). LMAGs significantly 
promoted the expression of M2 macrophage mark-
ers (Fig.  8B). We also found that ST6GALNAC3 and 
AKR1B1 can significantly promote the high expres-
sion of EMT-related markers (Fig.  8C). More impor-
tantly, we verified in the CCLE database and found that 
ST6GALNAC3 is significantly positively correlated with 
EMT markers (ROR2 and TAGLN) (Fig. 8D, E). We also 
explored the expression of ST6GALNAC3 in various gas-
tric cancer cell lines (Fig.  8F). Finally, we selected AGS 
cells for experimental verification. We found that ROR2 
and TAGLN decreased significantly with the knockdown 
of ST6GALNAC3 (Fig. 8G). ST6GALNAC3 may promote 
EMT through ROR2 or TAGLN. In addition, we fur-
ther investigated the effects of ST6GALNAC3 on EMT, 
macrophage infiltration and lipid metabolism repro-
gramming. We found that patients with high expression 
of ST6GALNAC3 had higher EMT scores (Fig.  9A–C; 
Additional file 1: Fig. S6A, 6D and 6G) and macrophage 
infiltration (Fig. 9D–F; Additional file 1: Fig. S6B, 6E and 
6H), as well as higher arachidonic acid metabolism and 
higher prostaglandin biosynthesis (Fig.  9G, H; Addi-
tional file  1: Fig. S6C and 6F). In addition, we found 
that ST6GALNAC3 was positively correlated with the 
immune checkpoints [34] (SIRPA, LILRB1, SIGLEC10) of 
tumor associated macrophages involved in tumor antigen 
recognition disorders (Fig.  9I). In conclusion, ST6GAL-
NAC3, as a potential target for lipid metabolism therapy, 
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Fig. 3 Potential functional analyses in TCGA and GSE84437. Go was used to analyze the enrichment between HRisk and LRisk (A). KEGG was used 
to analyze the enrichment between HRisk and LRisk (B). Analysis of Hallmark enrichment between HRisk and LRisk using ssGSEA (C). Go was used to 
analyze the enrichment between HRisk and LRisk (D). KEGG was used to analyze the enrichment between HRisk and LRisk (E). Analysis of Hallmark 
enrichment between HRisk and LRisk using ssGSEA (F)
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can promote arachidonic acid metabolism and upregu-
late prostaglandin synthesis, increase M2 macrophage 
infiltration, induce epithelial mesenchymal transforma-
tion, and affect the prognosis of patients.

Discussion
We constructed a new lipid metabolism score by univari-
ate and multivariate analysis of lipid metabolism related 
genes. Then, we established nomogram by incorporating 
risk-score, T stage, N stage and age to predict the overall 
survival rate of patients. We found that nomogram has 
good prediction ability in both training set and verifica-
tion set. More importantly, through ROC, DCA, NRI and 
IDI, we found that risk-score can significantly improve 
nomogram’s predictive ability and clinical decision-mak-
ing ability. The new score has good predictive ability, and 
nomogram based on risk-score has good clinical applica-
tion prospects.

Arachidonic acid (AA) is a polyunsaturated fatty acid, 
which constitutes the phospholipid domain of most cell 
membranes and is released from cell membranes by cyto-
plasmic phospholipase A2 (PLA2) [35]. Free AA can be 
metabolized to PGE2 through cyclooxygenase (COX) 
pathway. In the process of tumor progression, PGE2 
combines with four e-prostaglandin (EP) receptors 1–4 
(EP 1–4), exerts its activity by acting on releasing cells 

(autocrine mechanism) and adjacent cells (paracrine 
mechanism), enhances tumor cell proliferation and sur-
vival, promotes angiogenesis, and induces metastasis [15, 
35]. This is consistent with our study. Compared with 
LRisk group, patients in HRisk group have higher arachi-
donic acid metabolism level and prostaglandin biosyn-
thesis level, and lower overall survival rate.

Through GO, KEGG and ssGSEA analysis, we found 
that HRisk group patients significantly enriched tumor 
invasion and metastasis related pathways and immune 
related pathways. More importantly, by calculating the 
EMT score constructed by Powles and Zhang et  al., we 
found that the higher the lipid metabolism score, the 
higher the EMT score. The patients in the high lipid 
metabolism score have higher prostaglandin expres-
sion, and prostaglandins can induce angiogenesis and 
EMT, and promote tumor progression. This is consist-
ent with recent research conclusions. It is reported that 
PGE2 can activate hypoxia inducible factor 1 α (HIF-1 
α) [36] or cAMP signaling pathway stimulated VEGF 
expression [37]. In addition to the typical activation of EP 
receptors, PGE2 has been shown to promote cancer pro-
gression through interaction with carcinogenic signals, 
including epidermal growth factor (EGF) and its recep-
tor (EGFR) [38]. In particular, PGE2 and EGF/EGFR may 
synergistically promote the growth, invasion, epithelial 

Fig. 4 Relationship between risk-score and EMT score. The box chart shows the relationship between risk-score and EMT score in TCGA (A) and 
GSE84437 (B). The heat map shows the relationship between risk-score and EMT score in TCGA (C) and GSE84437 (D)
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Fig. 5 The relationship between risk-score and tumor immune microenvironment. Comparison of TumorPurity, ImmuneScore and StromalScore 
between the HRisk and LRisk patients in TCGA (A) and GSE84437 (B). Boxplots depicting the CIBERSORT scores of 22 immune cells of the HRisk 
patients compared to LRisk patients in TCGA (C) and GSE84437 (D). Boxplots depicting the quanTIseq scores of 11 immune cells of the HRisk 
patients compared to LRisk patients in TCGA (E) and GSE84437 (F)
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Fig. 6 The relationship between risk-score and macrophage infiltration. The box chart shows the relationship between risk-score and macrophage 
infiltration in TCGA (A) and GSE84437 (B). The heat map shows the relationship between risk-score and macrophage infiltration in TCGA (C) and 
GSE84437 (D). The box diagram shows the relationship between risk-score and tumor associated macrophage immune checkpoints in TCGA (E) and 
GSE84437 (F)
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mesenchymal transition (EMT) and stem cell like pheno-
type of cancer cells [39]. In conclusion, our results show 
that risk-score can accurately distinguish patients with 
epithelial stromal transformation trend, help in clinical 
individualized treatment, and provide a theoretical basis 
for targeting prostaglandins to treat gastric cancer.

It is reported that patients with higher immune score 
and stromal score in gastric cancer have a worse progno-
sis [40]. This is consistent with our conclusion. We found 
that HRisk group had higher immune score and stro-
mal score, and lower tumor purity score. We found that 
M2 macrophages in HRisk group generally increased in 
infiltration through a variety of immune cell infiltration 
algorithms. In addition, we also verified the macrophage 
score constructed by Rooney et al., Danaher et al., Bindea 
et al. and Peng et al., and found that higher lipid metabo-
lism score would lead to increased macrophage infiltra-
tion. The analysis of immune cell infiltration showed that 
M2 macrophages generally increased and immunosup-
pressive cell infiltration increased. Although there was 
a high immune score, the patient had immunosuppres-
sion and had a worse prognosis. More importantly, we 
found that in the HRisk group, the expression of immune 
checkpoints (SIRPA, LILRB1, SIGLEC10) of tumor asso-
ciated macrophages involved in tumor antigen recogni-
tion disorders increased significantly, and the increased 

binding of CD47-SIRPA [41] and MHCI/ LILRB1 [42] 
would lead to tyrosine phosphorylation on immune 
receptor tyrosine—based on inhibitory motifs (ITIMs), 
release the "don’t eat me" signal, So as to inhibit mac-
rophage mediated phagocytosis and protect normal cells 
from damage of immune system. Drugs targeting MHCI/
LILRB1 axis may promote anti-tumor immune response 
and play a synergistic role with drugs targeting CD47-
SIRPA axis; CD24-SIGLEC10 [43] interaction blocks the 
cytoskeleton rearrangement required by macrophage 
phagocytosis and triggers the inhibitory signal transduc-
tion cascade. M0 has been found to express low levels 
of SIGLEC10, while SIGLEC10 is strongly expressed in 
M2. As described in the review, the reprogramming of 
lipid metabolism leads to increased infiltration of tumor 
associated macrophages, inhibits macrophage mediated 
phagocytosis, and enables tumor cells to escape the mon-
itoring and clearance of macrophages.

We further found that ST6GALNAC3 was signifi-
cantly positively correlated with M2 macrophages and 
negatively correlated with M1 macrophages, and was 
significantly overexpressed in the high lipid metabolism 
score group. More importantly, ST6GALNAC3 is mainly 
expressed in tumor cells, but hardly expressed in immune 
cells and stromal cells. ST6GALNAC3 belongs to a family 
of sialyltransferases that transfer sialic acids from CMP-
sialic acid to terminal positions of carbohydrate groups 
in glycoproteins and glycolipids. Studies have shown 
that ST6GALNAC3 has prognostic significance in blad-
der cancer [44], liver cancer [45] and lung cancer [46]. 
ST6GALNAC3 methylation has diagnostic biomarker 
potential in prostate cancer tissues and liquid biopsy tis-
sues [47]. However, no relevant studies have reported the 
role of ST6GALNAC3 in arachidonic acid metabolism 
and immune microenvironment. Our study found that 
ST6GALNAC3 may be a therapeutic target related to 
lipid metabolism in tumor cells. We found that ST6GAL-
NAC3 can promote arachidonic acid metabolism and 
prostaglandin synthesis, increase M2 macrophage infil-
tration, inhibit macrophage phagocytosis, induce EMT, 
and affect the prognosis of patients.

Our research found a novel and powerful LMAGs sig-
nature. Six-LMAGs features can effectively evaluate the 
prognosis of GC patients and reflect the immune status. 
Six-LMAGs characteristics may be involved in the regu-
lation of immune related signaling pathways, and may 
provide a promising target for improving the prognosis 
and GC response to immunotherapy. Our results suggest 
that ST6GALNAC3 may be a potential prognostic marker 
to improve the survival rate and prognostic accuracy of 
GC patients, and may even be a potential biomarker of 
GC patients, indicating the response to immunotherapy.

Table 1 Chi square analysis in the prognostic evaluation of 
biomarkers

P values that are statistically significant are shown in bold

LMAGs expression Alive Dead P value

N 227 (61%) 144 (39%)

ADH4 0.37

 High 109 (59%) 76 (41%)

 Low 118 (63%) 68 (37%)

AKR1B1 0.002
 High 99 (54%) 86 (46%)

 Low 128 (69%) 58 (31%)

CYP4A11 0.97

 High 113 (61%) 72 (39%)

 Low 114 (61%) 72 (39%)

NEU2 0.1

 High 80 (56%) 63 (44%)

 Low 147 (64%) 81 (36%)

SMPD3 0.15

 High 120 (65%) 65 (35%)

 Low 107 (58%) 79 (42%)

ST6GALNAC3 0.009
 High 101 (55%) 84 (45%)

 Low 126 (68%) 60 (32%)
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Fig. 7 Expression of 6 LMAGs. The relationship between 6 LMAGs and macrophage is shown through TIMER2.0 (A). The heat map shows the 
relationship between risk-score and 6 LMAGs in TCGA (B) and GSE84437 (C). The expression of 4 LMAGs in tumor cells, stromal cells and immune 
cells was demonstrated by TISCH (D–F)
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Fig. 8 The relationship and function of ST6GALNAC3 with EMT and macrophage infiltration. The relationship between LMAGs and macrophage 
infiltration (A, B). The relationship between LMAGs and EMT (C). In the CCLE database, ST6GALNAC3 is significantly positively correlated with EMT 
markers (ROR2 and TAGLN) (D-E). The expression of ST6GALNAC3 in various gastric cancer cell lines (F). ROR2 and TAGLN decreased significantly 
with the knockdown of ST6GALNAC3 though PCR (G)
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Fig. 9 The relationship between ST6GALNAC3 and EMT, macrophage infiltration and metabolic reprogramming in TCGA. The box chart shows the 
relationship between ST6GALNAC3 and EMT score (A). The heat map shows the relationship between ST6GALNAC3 and EMT score (B). C shows 
the correlation between ST6GALNAC3 and EMT scores. The box chart shows the relationship between ST6GALNAC3 and macrophage infiltration 
(D). The heat map shows the relationship between ST6GALNAC3 and macrophage infiltration (E). F shows the correlation between ST6GALNAC3 
and macrophage infiltration. The box chart shows the relationship between ST6GALNAC3 and metabolic reprogramming (G). The heat map shows 
the relationship between ST6GALNAC3 and metabolic reprogramming (H). The relationship between ST6GALNAC3 and macrophage immune 
checkpoint (I)
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