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Abstract 

Background Breast cancer (BRCA) is the most common malignancy with high morbidity and mortality in women, 
and transcription factor (TF) is closely related to the occurrence and development of BRCA. This study was designed 
to identify a prognostic gene signature based on TF family to reveal immune characteristics and prognostic survival of 
BRCA.

Methods In this study, RNA-sequence with corresponding clinical data were obtained from The Cancer Genome 
Atlas (TCGA) and GSE42568. Prognostic differentially expressed transcription factor family genes (TFDEGs) were 
screened to construct a risk score model, after which BRCA patients were stratified into low-risk and high-risk groups 
based on their corresponding risk scores. Kaplan–Meier (KM) analysis was applied to evaluate the prognostic impli-
cation of risk score model, and a nomogram model was developed and validated with the TCGA and GSE20685. 
Furthermore, the GSEA revealed pathological processes and signaling pathways enriched in the low-risk and high-risk 
groups. Finally, analyses regarding levels of immune infiltration, immune checkpoints and chemotactic factors were all 
completed to investigate the correlation between the risk score and tumor immune microenvironment (TIME).

Results A prognostic 9-gene signature based on TFDEGs was selected to establish a risk score model. According to 
KM analyses, high-risk group witnessed a significantly worse overall survival (OS) than low-risk group in both TCGA-
BRCA and GSE20685. Furthermore, the nomogram model proved great possibility in predicting the OS of BRCA 
patients. As indicted in GSEA analysis, tumor-associated pathological processes and pathways were relatively enriched 
in high-risk group, and the risk score was negatively correlated with ESTIMATE score, infiltration levels of CD4+ and 
CD8+T cells, as well as expression levels of immune checkpoints and chemotactic factors.

Conclusions The prognostic model based on TFDEGs could distinguish as a novel biomarker for predicting progno-
sis of BRCA patients; in addition, it may also be utilized to identify potential benefit population from immunotherapy 
in different TIME and predict potential drug targets.
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Introduction
To date, breast cancer (BRCA) has been the most 
common cancer among women worldwide, with high 
morbidity and mortality [1]. Over the last several dec-
ades, significant progress has been made in the field 
of BRCA treatment, including surgery, radiotherapy, 
chemotherapy, hormonal therapy, targeted therapy, 
immunotherapy and so on [2–7]. Nevertheless, the 
mortality for BRCA remains high due to its compli-
cated pathogenesis, development and metastasis [8].

As is known to all, transcription factors (TFs) play an 
important role in promoting or inhibiting downstream 
genes via binding specific sequences, with significant 
influence on the occurrence, migration, invasion and 
other biological processes of tumors [9]. Meanwhile, 
TFs are reported to be crucial to the occurrence and 
development of BRCA [10, 11]. Recently, the role of 
tumor immune microenvironment (TIME) in BRCA 
and its effect on tumor progression have increasingly 
aroused general concern [12, 13]. It is worth not-
ing that, TFs can also affect the prognosis of BRCA 
by various TIME, with specific mechanism remain-
ing unclear [14, 15]. Therefore, it is urgently required 
to explore the underlying molecular mechanisms and 
prognostic indicators for patients with BRCA.

In some previous studies, bioinformatics analysis was 
completed based on prognosis model of malignant tumors 
in terms of lncRNA, circRNA or mRNA [16–19]. In our 
study, we acquired RNA-sequence with corresponding clin-
icopathological data of BRCA patients from The Cancer 
Genome Atlas (TCGA) and GSE42568, after which we con-
ducted a comprehensive bioinformatics analysis based on 
levels of gene-expression, Venn analysis and univariate Cox 
analysis with clinical data from TCGA-BRCA. By select-
ing prognostic differentially expressed transcription factor 
family genes (TFDEGs), we managed to set up a risk score 
system of BRCA for validation in cohorts of TCGA and 
GSE20685. To further investigate the potential mechanisms 
and pathways thereof, the function and gene set enrich-
ment analyses (GSEA) were completed on the basis of dif-
ferentially expressed genes (DEGs) from high-risk group 
compared with low-risk group; meanwhile, Connectivity 
Map (CMap) database was used to predict potential drug 
targets for high-risk group. In addition, various analyses with 
regard to tumor-infiltrating immune cells (TIICs), immune 
checkpoints and chemotactic factors were adopted to clarify 
the correlation between the risk score and TIME.

Materials and methods
Data sources
RNA-sequence with corresponding clinical data of 
BRCA and normal samples were obtained from TCGA 
(https:// portal. gdc. cancer. gov/) [20], consisting of 1109 

BRCA patients with comprehensive profiles of gene 
expression and clinical characteristics, 40 of which 
were removed for incomplete transcriptomic and clini-
cal information. After that, the remaining 1069 BRCA 
patients with complete information were included as 
training set for further analyses. The GSE42568 set, 
including 104 BRCA samples and 17 normal sam-
ples, was downloaded from Gene Expression Omni-
bus (GEO) (https:// www. ncbi. nlm. nih. go/ geo/), while 
TF family including 1536 genes were retrieved from 
the Molecular Signatures Database (MSigDB) (www. 
gsea- msigdb. org/ gsea/ msigdb/ human/ gene_ famil es. 
jsp). In addition, the cohort of GSE20685 (involving 327 
BRCA samples) in GEO (https:// www. ncbi. nlm. nih. go/ 
geo/) was regarded as the testing set, including RNA-
sequencing configuration files and clinical information.

Selection and functional clustering analyses of TFDEGs
The DEGs between tumor and normal samples were 
identified using the “DESeq2” package in TCGA-BRCA 
and “GEO2R” in GSE42568 with thresholds of |log2 
(fold-change)|values > 1 and adjusted P < 0.05. Mean-
while, Venn analysis was applied to select overlapping 
DEGs among three algorithms mentioned above, and 
the “ggplot2” package to generate Volcano Plot and 
Differential Ranking Chart of the TFDEGs. By means 
of “clusterProfiler” package (version 3.14.3), Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analyses (www. 
kegg. jp/ kegg/ kegg1. html) were performed for patients 
based on the 113 TFDEGs [21]. Moreover, a protein–
protein interaction (PPI) network of 113 TFDEGs was 
generated via Search Tool for the Retrieval of Interact-
ing Genes (STRING) (https:// string- db. org).

Constructing and validating risk score model
Based on clinical data of TCGA-BRCA, univariate Cox 
analysis of overall survival (OS) was applied to identify 
TFDEGs with prognostic values and then visualized 
by forest plot (P < 0.05) [22]. Least Absolute Shrinkage 
and Selection Operator (LASSO) regression model was 
conducted to reduce the overfitting high-dimensional 
prognostic genes [23]. Then, the screened genes were 
integrated into a risk signature, after which a risk score 
system was established based on the normalized values 
of gene expression and coefficients in accordance with 
the following formula.

Risk score =

n

i=1

expressiongene_i × lasso_coeffieicentgene_i

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.go/geo/
http://www.gsea-msigdb.org/gsea/msigdb/human/gene_familes.jsp
http://www.gsea-msigdb.org/gsea/msigdb/human/gene_familes.jsp
http://www.gsea-msigdb.org/gsea/msigdb/human/gene_familes.jsp
https://www.ncbi.nlm.nih.go/geo/
https://www.ncbi.nlm.nih.go/geo/
http://www.kegg.jp/kegg/kegg1.html
http://www.kegg.jp/kegg/kegg1.html
https://string-db.org
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The risk score was calculated for each BRCA patient, 
after which patients were divided into low-risk and 
high-risk groups according to the median risk score of 
TCGA-BRCA. Furthermore, patients were also assigned 
into subgroups by clinicopathological characteristics 
[including age, T stage, N stage, M stage, TNM stage, 
Menopause status (Pre: < 6  months since last menstrual 
period AND no prior bilateral ovariectomy AND not on 
estrogen replacement; Post: prior bilateral ovariectomy 
OR > 12 months since last menstrual period with no prior 
hysterectomy), and PAM50], so as to identify the correla-
tion between risk score and clinical features. In addition, 
Kaplan–Meier (KM) analysis was utilized to evaluate 
the relationship between risk groups and OS of different 
groups.

Nomogram
To assess whether the risk score model could serve as an 
independent predictive indicator, univariate and mul-
tivariate Cox regression analyses were completed with 
clinicopathological indicators, including the age, T stage, 
N stage, M stage, status of estrogen receptor (ER), pro-
gesterone receptor (PR), human epidermal growth factor 
receptor 2 (HER2), as well as menopause. All the inde-
pendent prognostic clinicopathological parameters and 
risk scores were summarized to establish a nomogram for 
predicting the OS rates of 2-, 3- and 5-year. Furthermore, 
calibration, time-dependent receiver operating charac-
teristic (ROC) curves and concordance index (C-index) 
were applied to assess the discriminatory ability of the 
nomogram.

Analyses of 9 TFDEGs in risk score model
We performed differential expression analysis of identi-
fied risk genes in TCGA-BRCA, among which GO and 
KEGG pathway enrichment analyses with P values < 0.05 
were regarded as statistically significant. Furthermore, 
Human Protein Atlas (HPA) database (http:// www. prote 
inatl as. org/) was applied to evaluate the protein expres-
sion of the risk genes.

DNA methylation plays a key role in prognostic assess-
ment and potential biomarker in cancer development 
[24]. MethSurv (https:// biit. cs. ut. ee/ meths urv/) was 
adopted in this study to determine the expression and 
prognostic patterns of single CpG methylation of the 
TFDEGs in BRCA [25]. In this analysis, DNA methyla-
tion values were represented by beta values ranging from 
0 to 1.

Analysis of DEGs from high‑risk group
DEGs from high-risk group compared with low-risk 
group in TCGA-BRCA were screened by R packages 
mentioned above, after which GO and KEGG pathway 
enrichment analyses with P < 0.05 were considered sta-
tistically significant. In addition, GSEA (http:// softw are. 
broad insti tute. org/ gsea/ index. jsp) (version 3.14.3) [26] 
was applied to identify hallmarks of high-risk group, 
comparing with low-risk group, and get visualized by 
ridge map. Finally, a signature of DEGs from high-risk 
group compared with low-risk group was used to pre-
dict potential drug targets for BRCA patients in high-risk 
group through CMap database (https:// clue. io) [27].

The correlation between prognostic model and TIME
As is well-known to all, the tumor infiltrates immune 
cells resulting in great threaten to patients’ survival. The 
immune infiltration scores of TCGA-BRCA samples were 
computed by ESTIMATE [28], and the infiltration levels 
of 24 types of immune cells in BRCA samples were calcu-
lated through Immune Cell Abundance Identifier (Immu-
CellAI) (http:// bioin fo. life. hust. edu. cn/ ImmuC ellAI) [29]. 
In addition, we also validated the correlation between 
identified genes (TFDEGs) and immune cells by means 
of the "TIMER" (http:// timer. cistr ome. org/) analysis tool 
[30]. To further predict the TIME, the correlations of 
prognostic model with the expression of immune check-
points and chemotactic  factors were analyzed based on 
TCGA-BRCA.

Statistical analysis
Statistical analyses in this study were performed via R 
software (version 3.6.3) (R code, data input, and output of 
this study were provided in Additional file 1: R code and 
data), with log-rank test for the KM analysis. Further-
more, T test or Wilcoxon test was adopted to evaluate 
the differences in the risk score among various clinical 
characteristic subtypes, as well as those differences in the 
level of immune infiltration, immune checkpoints and 
chemotactic  factors between the low-risk and high-risk 
groups. *P < 0.05, **P < 0.01, ***P < 0.001.

Results
The detailed flowchart was shown in Fig. 1.

Identification of TFDEGs in BRCA patients
The DEGs were collected from sets of TCGA-BRCA 
(Fig. 2A) and GSE42568 (Fig. 2B). According to the cri-
teria, we obtained 5073 DEGs from TCGA-BRCA and 

http://www.proteinatlas.org/
http://www.proteinatlas.org/
https://biit.cs.ut.ee/methsurv/
http://software.broadinstitute.org/gsea/index.jsp
http://software.broadinstitute.org/gsea/index.jsp
https://clue.io
http://bioinfo.life.hust.edu.cn/ImmuCellAI
http://timer.cistrome.org/
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3195 DEGs from GSE42568, and downloaded 1536 genes 
of TF family on the basis of MSigDB (Additional file  2: 
Table S1). Based on overlapping DEGs among the afore-
mentioned three algorithms, a total of 113 TFDEGs were 
screened for further analysis (Fig. 2C).

Expression and functional clustering analysis of TFDEGs 
in BRCA 
Volcano Plot (Fig.  3A) and Differential Ranking Chart 
(Fig.  3B) of the 113 TFDEGs (75 up-regulated and 38 
down-regulated) were hereby performed based on 
TCGA-BRCA, with Go and KEGG pathway enrichment 
analyses to reveal the functions of the 113 TFDEGs. 
Moreover, these genes were obviously enriched in terms 
of epithelial cell proliferation, DNA-binding transcrip-
tion, transcription factor complex, and transcriptional 
mis-regulation in cancer (Fig. 3C), while the PPI network 
among the 113 TFDEGs also be conducted (Fig. 3D).

Constructing and validating risk score model
In this study, univariate Cox regression analysis was 
completed to explore the relationship between TFDEGs 
expression levels and OS in TCGA-BRCA. Eleven genes 
were identified as potential risk factors related to OS 
(Fig.  4A) by cut-off threshold of Cox P < 0.05, with the 
results of KM analyses shown in Additional file  3: Fig. 
S1. Furthermore, the LASSO regression algorithm was 
applied to refine the gene sets by calculating regres-
sion coefficients (Fig.  4B, C), after which 9 TFDEGs 

distinguished with most predictive value to establish the 
risk score model (Table  1). Based on the TFDEGs from 
the risk score model, the performance of ROC was then 
analyzed (Fig. 4D).

The risk score for each patient in TCGA-BRCA (train-
ing set) and GSE20685 (testing set) was calculated in 
accordance with the expression levels of 9 genes and their 
regression coefficients, as shown in Fig. 4E and F respec-
tively. After that, patients were divided into low-risk and 
high-risk groups by median risk score. According to gen-
eral distribution of survival times, patients with higher 
risk score might bear worse OS (Fig.  4E, F). Further-
more, the expression levels of the screened genes were 
investigated in this study (Fig. 4E, F). As indicated in KM 
analyses, high-risk group witnessed a significantly poorer 
clinical outcome than those of low-risk group in both 
training (P < 0.001, Fig.  4G) and testing sets (P = 0.003, 
Fig. 4H), attesting to our risk score model’s great poten-
tial for predicting the prognosis of BRCA patients.

As shown in Fig.  5A–G, the relationship between 
risk score and clinical characteristics in the training set 
(TCGA-BRCA) was analyzed in this study, suggesting 
obviously higher risk score in groups of patients with 
age > 60  years (P = 0.046), T stage: II (P < 0.001), TNM 
stage: II (P = 0.008), HER2 (compared with LumA or 
LumB: P = 0.005; compared with Basal: P = 0.020). Nev-
ertheless, no obvious difference was found between the 
risk scores and N stage, M stage as well as menopause 
status.

Fig. 1 Flow diagram of the study
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In our study, the prediction efficiency of risk groups 
was further validated by several subgroups. According to 
the KM analyses, high-risk patients generally had a worse 
OS in subgroups of age ≤ 60 years, age > 60 years, T1&2, 
T3&4, N0&1, N2&3, M0, LumA or LumB, Stages I&II, 
Stages III&IV, menopause status (pre) and menopause 
status (post) (Fig. 5H–S). However, no significant differ-
ence was found in subgroups of M1 and Her2 & Basal 
(Additional file 4: Fig. S2).

Nomogram
To determine whether the risk score model could be 
regarded as an independent risk factor for OS of BRCA 
patients, the potential prognostic indicators (age, T 
stage, N stage, M stage, ER status, PR status, HER2 sta-
tus, and menopause status) were therefore analyzed via 
univariate and multivariate Cox regression in TCGA-
BRCA (Table 2). For the purpose of in-depth study, all the 
independent prognostic clinicopathological parameters 

Fig. 2 Screening of TFDEGs in BRCA. Volcano plots of differentially expressed genes (DEGs) analysis in set of A TCGA-BRCA and B GSE42568 (the red 
and blue dots are up- and down-regulated genes); C Venn analysis indicating the overlap of genes among DEGs in TCGA-BRCA, GSE42568 set and 
transcription factor (TF) family genes from Molecular Signatures Database (MSigDB)
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Fig. 3 Expression and functional clustering analyses of 113 TFDEGs in BRCA. TFDEGs in TCGA-BRCA set displayed by: A Volcano Plot (the red and 
blue dots are up- and down-regulated genes) and B Differential Ranking Chart; C Gene ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) (www. kegg. jp/ kegg/ kegg1. html) analyses of TFDEGs; D protein–protein interaction (PPI) networks constructed by STRING

http://www.kegg.jp/kegg/kegg1.html
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Fig. 4 Construction and assessment of risk score model. A The 11 prognostic TFDEGs extracted by univariate Cox regression analysis and 
represented by a forest plot; B the tenfold cross-validation for variable selection in the LASSO model; C the LASSO coefficient profile of 11 TFDEGs; 
D receiver operating characteristic (ROC) curve suggesting the predictive precision of the risk score model; risk plot distribution, survival status of 
patients, and heat map including 9 TFDEGs in E TCGA-BRCA and F GSE20685; Kaplan–Meier (KM) survival curves of overall survival (OS) for patients 
between low-risk and high-risk groups in G TCGA-BRCA and H GSE20685
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and risk scores were evaluated by univariate and multi-
variate Cox regression in TCGA-BRCA (Fig. 6A, B) and 
GSE20685 (Fig.  6C, D), indicating that high-risk group 
witnessed significantly worse OS in both training set 
[hazard ratio (HR) = 2.733, 95% confidence interval (95% 
CI) 1.705–4.379, P < 0.001] and testing set (HR = 3.670, 
95% CI 1.592–8.460, P = 0.002). Therefore, the age, N 
stage and risk score were identified as independent risk 
factors for OS then integrated into nomogram model 
(Fig.  6E), with C-index (with corresponding 95% CI) of 
0.712 (95% CI 0.685–0.739). After that, we calculated the 
score for each BRCA according, and the predictive capa-
bility and consistency of the nomogram were assessed by 
calibration curve. The calibration plots showed outstand-
ing consistency among the 2-, 3-, and 5-year OS rates 
when comparing with the ideal and nomogram model in 
both training (Fig. 6F) and testing (Fig. 6G) sets. Besides, 
time-dependent ROC analysis was also utilized to assess 
the discriminatory ability of the nomogram (Fig. 6H, I).

The DEGs between groups and potential drug targets 
for high‑risk group
To clarify the potential influence of the screened 
TFDEGs expression levels on transcriptomic profile of 
BRCA, Go and KEGG pathway enrichment analyses 
were performed in order to investigate the functions of 
DEGs from high-risk group, comparing with low-risk 
group in TCGA-BRCA (Fig. 7A), suggesting these genes 
significantly enriched in terms of T cell activation, cell 
chemotaxis, receptor ligand activity together with ion 
channel activity. Based on GSEA analysis of DEGs from 
high-risk group compared with low-risk group, path-
ways as those related to cell cycle, cellular senescence 
and DNA methylation were enriched in high-risk group, 
while T cell receptor signaling pathway, metabolism 

of lipids, chemokine receptors bind chemokines, and 
immunoregulatory interactions were enriched in low-risk 
group (Fig. 7B), indicating TFDEGs’ potential role in the 
metabolism, progression and tumor microenvironment 
of BRCA.

Besides, we uploaded both up- and down-regulated 
DEGs into the CMap database to predict potential 
drug the for high-risk group. CMap applies a system-
atic approach to reveal interactions among drugs, com-
pounds, and diseases based on DEGs from high-risk 
group compared with low-risk group. The top 20 drugs 
with positive correlations and the top 20 drugs with neg-
ative correlations were obtained from CMap (Fig.  7C). 
These drugs were ranked by p-values and were deter-
mined based on the DEGs signatures against the CMap 
database. Terconazole, QX-314, and several histamine 
receptor modulators may serve as potential therapeutic 
drugs for BRCA patients in high-risk group.

Analyses of 9 TFDEGs in risk score model
The 9 TFDEGs were significantly differential expression 
(4 up-regulated and 5 down-regulated) in TCGA-BRCA 
(Fig.  8A, B) and closely related to each other (Fig.  8C). 
In addition, immunohistochemical analysis in HPA was 
applied to further investigate the expression level of the 
9TFDEGs (Fig. 8D).

DNA methyltransferases on CpG island methylation 
are transcription factors in the suppression or promotion 
of cell growth which is a reversible process [31]. In this 
study, we present the heatmap and prognostic value of 
DNA methylation clustering the expression levels of the 
9 TFDEGs in BRCA (Additional file 5: Fig. S3 and Addi-
tional file 6: Table S2). With regard to DNA methylation 
expression levels, cg01024618, cg05008688, cg07787851 

Table 1 TFDEGs and their relationship with OS, and their coefficients in LASSO regression model

TFDEGs Differentially expressed transcription factor family genes; OS Overall survival; LASSO Least absolute shrinkage and selection operator; HR Hazard ratio; 95% CI 
95% confidence interval

Gene Description HR (95% CI) P value Coefficients

ZNF106 (ZNF474) Zinc finger protein 106 1.45 (1.05–2.00) 0.025 0.217

OVOL1 Ovo-like zinc finger 1 1.48 (1.07–2.04) 0.018 0.103

CBX2 Chromobox homolog 2 1.38 (1.00–1.91) 0.047 0.048

NFKBIE Nuclear factor of kappa light polypeptide gene enhancer 
in B-cells inhibitor, epsilon

0.72 (0.52–0.99) 0.042 − 0.221

LEF1 Lymphoid enhancer-binding factor 1 0.70 (0.50–0.96) 0.029 − 0.169

KLF15 Kruppel-like factor 15 0.69 (0.50–0.95) 0.022 − 0.108

EGR3 Early growth response 3 0.56 (0.40–0.77)  < 0.001 − 0.055

NR3C2 Nuclear receptor subfamily 3, group C, member 2 0.68 (0.49–0.94) 0.019 − 0.049

MEOX1 Mesenchyme homeobox 1 0.70 (0.50–0.96) 0.027 − 0.034
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Fig. 5 The predictive power of the risk score system. Correlation between the risk score and clinical characteristics: A age; B T stage; C N stage; D M 
stage; E TNM stage; F menopause status; G PAM50; KM curves for OS prediction of in subgroups of H age ≤ 60 years; I age > 60 years; J T1&2; K T3&4; 
L N0&1; M N2&3; N M0; O LumA or LumB; P stages I&II; Q stages III&IV; R menopause status (pre) and S menopause status (post)
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from ZNF106; cg16233472, cg19694099, cg15453482 
from OVOL1; cg22228071, cg18045515, cg22892904, 
cg07335357, cg14726117, cg17346145 from CBX2; 
cg19109431 from NFKBIE; cg12271317, cg00337658, 
cg11113607 from LEF1; cg07275757, cg10590842 from 
NR3C2 came up with the highest levels and significant 
prognostic values (likelihood ratio (LR) test P < 0.05) in 
BRCA.

Correlation between prognostic model and TIME
Based on this study, the risk score was negatively corre-
lated with immune infiltration score (including Stromal 
score, Immune score, and ESTIMATE score) (Fig. 9A, B).

In addition, the correlation between the prognos-
tic model and immune cells infiltration of patients in 

TCGA-BRCA cohort were also taken into account, with 
the proportion of different infiltrating immune cells 
retrieved from ImmuCellAI. The results indicated that 
the risk score was positively correlated with neutrophil, 
monocyte, nTreg, Tem, DC, and Th17, while negatively 
correlated with Tfh, NK, CD4 + T cells, Tgd, CD8 + T 
cells, Tc, and NKT (Fig. 9C). Furthermore, the high-risk 
group generally witnessed less infiltrating immune cells, 
especially CD4 + and CD8 + T cells (Fig. 9D).

As analyzed with the TIMER tool, expressions of 
TFDEGs were also correlated with immune infiltra-
tion profiles in BRCA. In summary, expression of each 
TFDEGs gene was associated with tumor purity and 
markers of different immune cells (Additional file 7: Fig. 
S4).

Table 2 Univariate and multivariate Cox analysis of OS in TCGA-BRCA 

BRCA  Breast cancer; TCGA  The Cancer Genome Atlas; OS Over survival; HR Hazard Ratio; 95% CI 95% confidence interval; ER Estrogen receptor; PR Progesterone 
receptor; HER2 Human epidermal growth factor receptor 2. Bold indicates that the difference is statistically significant

Characteristics Total (N) Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

Age 1082

  ≤ 60 601 Reference

  > 60 481 2.020 (1.465–2.784)  < 0.001 3.154 (1.616–6.155)  < 0.001
T stage 1079

 T1 276 Reference

 T2 629 1.332 (0.887–1.999) 0.166 1.013 (0.520–1.973) 0.970

 T3&T4 174 1.953 (1.221–3.123) 0.005 1.649 (0.683–3.982) 0.266

N stage 1063

 N0 514 Reference

 N1 357 1.956 (1.329–2.879)  < 0.001 1.376 (0.702–2.697) 0.352

 N2 116 2.519 (1.482–4.281)  < 0.001 2.985 (1.297–6.869) 0.010
 N3 76 4.188 (2.316–7.574)  < 0.001 6.068 (2.364–15.573)  < 0.001

M stage 922

 M0 902 Reference

 M1 20 4.254 (2.468–7.334)  < 0.001 3.639 (1.152–11.498) 0.028
ER status 1032

 Negative 240 Reference

 Positive 792 0.712 (0.495–1.023) 0.066 0.469 (0.189–1.164) 0.102

PR status 1029

 Negative 342 Reference

 Positive 687 0.732 (0.523–1.024) 0.068 1.028 (0.440–2.403) 0.948

HER2 status 715

 Negative 558 Reference

 Positive 157 1.593 (0.973–2.609) 0.064 0.931 (0.476–1.821) 0.836

Menopause status 931

 Pre 229 Reference

 Post 702 2.165 (1.302–3.600) 0.003 2.083 (0.863–5.032) 0.103
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Fig. 6 Nomogram and verification of prognostic model. A univariate and B multivariate Cox analyses of clinical factors and risk score with OS in 
TCGA-BRCA; C univariate and D multivariate Cox regression analyses of clinical factors and risk score with OS in GSE20685; E nomogram predicting 
2-, 3- and 5-years survival rate of BRCA patients; the calibration curves for 2-, 3-, and 5-year OS in F TCGA-BRCA and G GSE20685; time-dependent 
ROC curves for predictive performance of the model in H TCGA-BRCA and I GSE20685
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Fig. 7 The DEGs between groups and potential drug targets for high-risk group. A GO and KEGG analyses of DEGs from high-risk group compared 
with low-risk group; B ridge map of gene set enrichment analysis (GSEA) for DEGs from high-risk group compared with low-risk group; C 
Connectivity Map (CMap) analysis to find the potential drug targets for high-risk group. The 20 top and bottom drugs represented positive and 
negative correlations, respectively, with BRCA patients in high-risk group. CMap analysis identified terconazole, QX-314, and several histamine 
receptor modulators as potential therapeutic drugs for BRCA patients in high-risk group
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Moreover, we evaluated the relationship between risk 
score model and immune checkpoints (Fig.  9E), to find 
the expression levels of PDCD1 (PD-1), CD274 (PD-L1), 
CTLA4, LAG3, TIGIT and CD96 negatively correlated 
with the risk score (Fig. 9F).

Finally, we analyzed the relationship between risk score 
model and chemotactic factors (Fig. 9G), suggesting that 
the expression levels of CCL2, CCR4, CXCR4, CCR2, 
CCR5 and CXCR2 were negatively correlated with the 
risk score (Fig. 9H).

Fig. 8 Analyses of 9 TFDEGs in prognostic model. Expression of 9 TFDEGs between normal and tumor in TCGA-BRCA by A unpaired samples and 
B paired samples; C relationship among the 9 TFDEGs; D the protein expression of 9 TFDEGs in BRCA tissue by immunohistochemistry from HPA 
database
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Discussion
To our knowledge, BRCA lists as the leading cause of 
cancer-related mortality among women all over the 
world. Despite of remarkable progress in diagnosis and 
treatment of BRCA over the last decades, a wide array of 
problems regarding its progression, metastasis and treat-
ment resistance are yet to be fully clarified [32–34].

TFs recognize specific DNA sequences to control 
chromatin and transcription, forming a complex system 
to guide the genome expression [9]. With a key role in 
human physiology, disease and variation, TFs are closely 
related to the occurrence and development of tumors 
[35–37].

In recent years, an increasing number of studies have 
found several TFs to participate in tumorigenesis, pro-
gression together with the microenvironment of BRCA, 
indicating their potential and promising role to serve as 
prognostic markers for BRCA [38–41]. Nevertheless, 
they appeared to be inconsistent due to small datasets, 
the heterogeneity of BRCA, as well as variation in data 
pre-processing approaches. It is worth noting that sev-
eral studies have figured out multigene panels’ possible 
role as prognostic indicators in BRCA [42–46], while all 
these studies only focused on the identification of prog-
nostic signatures. Hence, this study targeted at a compre-
hensive profiling of TF family in BRCA patients, in order 
to develop a prognostic model and explore its correlation 
with TIME.

In this study, we obtained gene expression and clinico-
pathological data of BRCA from TCGA and GEO data-
base, after which, by means of univariate Cox analysis 
and LASSO regression analysis, a risk score model com-
posed of nine genetic biomarkers was therefore estab-
lished based on TFDEGs. Furthermore, the risk score 
was verified to be both effective and stable for predict-
ing the prognosis of low-risk and high-risk groups in 
TCGA-BRCA and subgroups via KM curve. In order to 
predict the OS of BRCA patients, we also established a 
prognostic nomogram model based on TFDEGs, with a 
comprehensive integration of the risk score, age and N 
stage. Calibration plots revealed the robust predictive 
ability of the prognostic nomogram for OS in TCGA and 
GSE20685 cohorts, suggesting our prognostic model’s 
great potential in predicting the clinical outcomes of 
BRCA patients.

The 9-TFDEGs prognostic model was comprised 
of ZNF106, OVOL1, CBX2, NFKBIE, LEF1, KLF15, 
EGR3, NR3C2 and MEOX1, all of which were pro-
tein coding gene. In BRCA, ZNF106, KLF15, EGR3, 
NR3C2 and MEOX1 were significantly down-regulated, 
while OVOL1, CBX2, NFKBIE, LEF1 were obviously 
up-regulated.

With a variety of cellular functions, including insu-
lin receptor signaling, rRNA transcriptional regulation, 
ZNF106 is essential for maintaining motor and sen-
sory neurons [47]. According to Guo et al. [48] ZNF106 
enjoyed great prognostic significance in tumors with 
considerably lower expression. OVOL1, a key mediator of 
epithelial lineage determination and mesenchymal–epi-
thelial transition (MET), has been proved to be inversely 
correlated with the epithelial-mesenchymal transition 
(EMT) signature and serve as a great prognostic indica-
tor for BRCA patients [49]. In addition, CBX2 encodes 
a component of the multiprotein complex, which is 
required to maintain the transcriptionally repressive state 
of many genes throughout development via chromatin 
remodeling and modification of histones. Furthermore, 
Iqbal et al. [50] have reported that CBX2 and CBX7 could 
predict the outcomes and sensitivity to FDA-approved/
investigational drugs in BRCA, and pathways related 
to NFKBIE could lead to the activation of NF-KappaB 
by PKR and bacterial infections in CF airways. Study 
had revealed that it might be associated with the poten-
tial target of triple-negative breast cancer (TNBC) [51]. 
Moreover, the protein encoded by LEF1 can bind to a 
functionally important site in the T-cell receptor-alpha 
enhancer, thereby conferring maximal enhancer activ-
ity. As a TF of EMT, it is involved in the Wnt signaling 
pathway. Apart from EMT, LEF1 facilitates metastasis by 
improving the antioxidative capacity of epithelial BRCA 
cells [52]. As a putative BCCA suppressor gene, KLF15 
was recorded to get involved in negative regulation of 
peptidyl-lysine acetylation, together with positive regu-
lation of transcription by RNA polymerase II [53]. The 
protein of EGR3 encoded by this gene participates in the 
transcriptional regulation of genes in controlling biologi-
cal rhythm, and it may also play a certain role in various 
processes including muscle development, lymphocyte 
development, endothelial cell growth and migration, as 
well as neuronal development. Furthermore, Inoue has 

Fig. 9 Correlation between prognostic model and TIME. A Relationship between immune infiltration scores (including Stromal score, Immune 
score, and ESTIMATE score) and risk score; B comparison of immune infiltration scores (including Stromal score, Immune score, and ESTIMATE 
score) between low-risk and high-risk groups; C correlations between risk model and tumor-infiltrating immune cells (TIICs); D comparisons of 
TIICs between low-risk and high-risk groups; E association between risk score and immune checkpoints; F comparison of six immune checkpoints 
between low-risk and high-risk groups; G association between risk score and chemotactic factors; H comparison of six chemotactic factors between 
low-risk and high-risk groups

(See figure on next page.)
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Fig. 9 (See legend on previous page.)
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found EGR3 involved in the estrogen-signaling pathway 
and  closely associated with the genesis and malignant 
progression of BRCA [54]. The NR3C2 protein func-
tions as a ligand-dependent TF binding to mineralocor-
ticoid response elements in order to transactivate target 
genes. As reported, miR-301b may be a tumor-promoting 
miRNA in BRCA, and miR-301b/NR3C2 axis mediated 
tumor development from cell proliferation and migration 
[55]. Additionally, study had revealed that combined p53- 
and PTEN-deficiency in TNBC activated expression of 
the MEOX1, which might serve as a potential therapeu-
tic target for managing p53- and PTEN-deficient TNBC 
[56].

Moreover, we performed GO and KEGG functional 
analyses based on DEGs between low-risk and high-risk 
groups, indicating that DEGs were significantly enriched 
in terms of T cell activation, cell chemotaxis, recep-
tor ligand activity and ion channel activity, which were 
closely related to the formation and development of 
tumors and immune microenvironment. Therefore, we 
further conducted GSEA between low-risk and high-risk 
groups, suggesting that pathways associated with forma-
tion and progression of tumor were enriched in the high-
risk group, while pathways related to tumor associated 
immune cells and immunotherapeutic responses regula-
tion were enriched in the low-risk group.

In addition, through CMap analysis, we revealed that 
certain drugs with highly negative correlations might 
serve as a potential treatment for high-risk group. Of 
course, this result needs to be further verified in vitro and 

vivo. Terconazole (TCZ), an azole antifungal drug, has 
been shown to enhance the cytotoxicity of antimitotic 
drugs in P-glycoprotein-overexpressing-resistant can-
cer cells [57]. Fuseya et al. [58] have found that systemic 
administration of QX-314 in mice could inhibit some 
behavioral aspects of bone cancer pain through selec-
tive inhibition of TRPV1-expressing afferents without 
coadministration of TRPV1 agonists. Cell proliferation 
is critical for tumor development and progression, and 
histamine is a main mediator of this biological process in 
different types of cancers. It has been recorded that his-
tamine receptor modulator could regulate cancer-asso-
ciated biological processes during cancer development 
in multiple cell types, including neoplastic cells and cells 
in the tumor micro-environment [59]. Collectively, the 
results suggested that these drugs are potential therapeu-
tic drugs for high-risk group.

Several studies have figured out that TIME was cor-
related with the prognosis of cancer patients [60–63]. 
To further clarify the relationship between TIME and 
the prognostic model, analysis was hereby performed 
to reveal the correlation between risk score and ESTI-
MATE score, tumor infiltrating immune cells, immune 
checkpoints as well as chemotactic factors.

In immune infiltration analyses, the risk score was 
found to be negatively correlated with ESTIMATE 
score, composing of Stromal score and Immune score. 
With regard to tumor infiltrating immune cells analysis, 
the risk score was negatively correlated with infiltra-
tion levels of CD4+ and CD8+T cells, which played a 

Fig. 10 A model for prognostic and immune signature of TFDEGs in BRCA 
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key role in immunotherapy [64, 65]. Based on immune 
checkpoints and chemotactic factors analyses, the 
established risk score was negatively correlated with 
the expression levels of immune checkpoints (such as 
PD1, PD–L1, CTLA4, LAG3, TIGIT, etc.) and chemo-
tactic factors (including CCL2, CCR4, CXCR4, CCR2, 
CCR5, etc.). In summary, compared with BRCA in 
low-risk groups, tumors of high-risk groups tended to 
be immunologically “cold” and might not benefit from 
immunotherapy.

In conclusion, the prognostic model based on 
TFDEGs can well predict the prognosis of BRCA 
patients; moreover, it may also be utilized to screen the 
appropriate immunotherapy benefit population and 
predict potential drug targets. The top of agenda for 
future research is to precisely identify high-risk groups, 
reverse the occurrence and development of tumor by 
screening effective drug targets, and transform immu-
nologically “cold” tumors into responsive “hot” lesions 
by changing the TIME (Fig. 10) [66–68].

Conclusions
The prognostic model based on TFDEGs could distin-
guish as a novel biomarker for predicting prognosis of 
BRCA patients; in addition, it may also be utilized to 
identify potential benefit population from immuno-
therapy in different TIME and predict potential drug 
targets.
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