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Abstract 

Objects Colorectal cancer (CRC) is one of the most common cancers in the world. Approximately two-thirds of 
patients with CRC will develop colorectal cancer liver metastases (CRLM) at some point in time. In this study, we 
aimed to construct a prognostic model of CRLM and its competing endogenous RNA (ceRNA) network.

Methods RNA-seq of CRC, CRLM and normal samples were obtained from The Cancer Genome Atlas (TCGA) and 
Gene Expression Omnibus database. Limma was used to obtain differential expression genes (DEGs) between CRLM 
and CRC from sequencing data and GSE22834, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes 
functional enrichment analyses were performed, respectively. Univariate Cox regression analysis and lasso Cox regres-
sion models were performed to screen prognostic gene features and construct prognostic models. Functional enrich-
ment, estimation of stromal and immune cells in malignant tumor tissues using expression data (ESTIMATE) algorithm, 
single-sample gene set enrichment analysis, and ceRNA network construction were applied to explore potential 
mechanisms.

Results An 8-gene prognostic model was constructed by screening 112 DEGs from TCGA and GSE22834. CRC 
patients in the TCGA and GSE29621 cohorts were stratified into either a high-risk group or a low-risk group. Patients 
with CRC in the high-risk group had a significantly poorer prognosis compared to in the low-risk group. The risk score 
was identified as an independent predictor of prognosis. Functional analysis revealed that the risk score was closly 
correlated with various immune cells and immune-related signaling pathways. And a prognostic gene-associated 
ceRNA network was constructed that obtained 3 prognosis gene, 14 microRNAs (miRNAs) and 7 long noncoding 
RNAs (lncRNAs).

Conclusions In conclusion, a prognostic model for CRLM identification was proposed, which could independently 
identify high-risk patients with low survival, suggesting a relationship between local immune status and prognosis of 
CRLM. Moreover, the key prognostic genes-related ceRNA network were established for the CRC investigation. Based 
on the differentially expressed genes between CRLM and CRC, the prognosis model of CRC patients was constructed.
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affected and regulated the expression of the seven tar-
get genes and were found to be related to prognosis and 
tumor-infiltrating immune cell types [18]. KCNQ1OT1 
ceRNA network could be involved in regulation of TME 
and survival of CRC patients [19]. However, ceRNA 
networks and prognostic models of CRC based on liver 
metastasis-associated genes are lacking.

This theory focuses on the potential prognostic genes 
which were asscoiated with the identifications for CRLM 
samples that are different from the primary CRC case 
and are accompanied with worse prognosis. The differ-
entially expressed genes (DEGs) between the CRC and 
CRLM samples were selected to construct a prognostic 
risk models. And meanwhile, the potential mechanism 
relevant to the key prognostic genes were evaluated by 
identifying the associated tumor immune microenviron-
ment components and constructing the targeted ceRNA 
network based on the TCGA-CRC cohorts. Our study 
aims to construct a prognosis model for CRC patients 
based on differentially expressed genes between CRLM 
and CRC.

Materials and methods
Clinical samples collection
A total of 10 CRC samples with LM and 10 CRC sam-
ples without LM from The Third Affiliated Hospital of 
Kunming Medical University were enrolled in the study. 
Seven pairs of samples were subjected to qRT-PCR, while 
three pairs of samples were subjected to transcriptome 
sequencing. The sample information was shown in Addi-
tional file  1: Table  S1. Written informed consent was 
obtained from all participating patients prior to enroll-
ment into the study. Study protocols were approved by 
the Ethics Committee of The Third Affiliated Hospital of 
Kunming Medical University, based on the ethical princi-
ples for medical research involving human subjects of the 
Helsinki Declaration.

Data source
Gene expression and clinical data were obtained from 
The Cancer Genome Atlas Program-colon adenocar-
cinoma (TCGA-COAD) and TCGA-rectum adeno-
carcinoma (TCGA-READ), which contain 51 normal 
colorectal and 622 CRC samples (611 of which have sur-
vival data). The GSE22834, GSE29621, GSE12945 and 
GSE72718 datasets were obtained from the Gene Expres-
sion Omnibus (GEO) database, GSE22834 included 
a total of 31 CRC samples and 32 CRLM samples, 

Introduction
Colorectal cancer (CRC) is the third most common can-
cer with a high metastasis and recurrence rate [1]. In the 
past decade, the diagnosis and treatment of CRC have 
been greatly improved. However, distant metastases, 
especially liver metastases lead to the poor prognosis 
and high fatality rate in CRC patients [2]. Approximately 
14–25% of CRC patients have simultaneous liver metas-
tasis, while 20–33% of patients have metachronous liver 
metastasis. Radical resection of metastasis is still the first 
choice for colorectal cancer liver metastases (CRLM), but 
only 10%-20% of patients are suitable for radical resection 
[3]. Therefore, it is necessary to better understand the 
pathogenesis and provide more effective treatment for 
CRLM, and early detection of liver metastases is urgent 
for the prognosis and survival of CRC patients.

The tumor microenvironment (TME) is composed of 
many different and interacting cell populations, which 
is closely related to the prognosis and response to treat-
ment. Many factors produced by immune, stromal, or 
malignant cells, remodel TME and the adaptive immune 
response culminating in liver metastasis [4–6]. Activation 
of the Wnt signaling pathway and migration of granulo-
cytes might take a vital role in CRLM [7]. The NOTCH1 
signaling could drive metastasis through transforming 
growth factor (TGF) β-dependent neutrophil recruit-
ment in TME [8]. The abnormal aggregation of immune 
cells, like tumor associated macrophages (TAMs) [9], 
regulatory T cells (Tregs) [10] and natural killer cells (NK 
cells) [11] in TME significantly affected the prognosis and 
metastasis of CRC.

Competing endogenous RNA (ceRNA) regulated tar-
get mRNA expression at the post-transcriptional level 
through competing for miRNAs binding sites. As a 
bridge, ceRNA connects the function of coding mRNAs 
with non-coding RNA [11–13]. Many studies have indi-
cated that ceRNA was involved in pathogenesis and 
metastasis of CRC in  vitro and in  vivo experiments 
[14–17]. MIR4435-2HG is mainly involved in tumori-
genesis and metastasis through miR-206/YAP1 axis [16]. 
LncRNA UICLM promotes CRLM by acting as a ceRNA 
for microRNA-215 to regulate ZEB2 expression [17]. 
Therefore, it is highlighting to investigate the roles of 
ceRNA in pathogenesis and prognosis of CRLM.

In addition, several studies have constructed ceRNA 
networks closely related to the pathogenesis of CRC 
through bioinformatics methods [18, 19].The MIR4435-
2HG- and ELFN1-AS1-associated ceRNA subnetworks 
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GSE29621 included a total of 65 CRLM samples and all 
with survival data, and GSE72718 included a total of 19 
CRC samples and 9 CRLM samples. GSE12945 included 
a total of 62 CRC samples with survival data. In addition, 
3 CRC samples and 3 CRLM samples were from our own 
sequencing.

Analysis of differentially expressed genes (DEGs)
The differentially expressed analysis in the sequenc-
ing data and GSE22834 was performed to screen DEGs 
between CRC and CRLM with |log2 fold change(FC)|> 1 
and p < 0.05 as did differentially expressed miRNAs 
(DEmiRNAs) and differentially expressed lncRNAs 
(DElncRNAs) in CRC and normal samples using the- 
“limma”-package in R [20].

Gene ontology (GO) and Kyoto encyclopedia of genes 
and genomes (KEGG) function enrichment analysis
The DEGs between the CRC and CRLM samples in 
sequencing data were were overlapped with that in 
GSE22834 data to conduct the Gene ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
function enrichment analysis [21–23], which was per-
formed using the “clusterProfiler” package in R.

Construction and verification of a prognostic model
First, the TCGA cohort was randomly divided into a 
training set (n = 415) and a test set (n = 207) according 
to a 7:3 ratio. Univariate Cox regression analysis of the 
overlapped DEGs was performed to screen genes with 
p < 0.05 which were significantly associated with survival 
of patients in the TCGA-training cohorts. Least absolute 
shrinkage and selection operator (LASSO) regression 
analysis was further utilized to select the prognosis genes 
for the risk model construction using the “Lasso” package 
in R. Next, the risk score for each patient in TCGA-train-
ing set was calculated according to the following formula: 
Risk score = Σ Coef j × Exp j, where Coef j and Exp j rep-
resent coefficients and relative gene expression of these 
prognosis genes, respectively. Following the median risk 
score was considered as the cut-off value, the individu-
als from TCGA-training set were divided into high-risk 
and low-risk groups. And meanwhile, the different risk 
groups of TCGA-testing set, GES29621 and GSE12945 
set were generated in the same way, respectively. Kaplan–
Meier (K–M) survival analysis was utilized to test 
whether risk score was associated with prognosis. To 
evaluate the predictive accuracy of the risk score model, 
the time-dependent receiver operating characteristic 
(ROC) curve analysis in 1-, 3-, and 5 years was arranged 
using the “survivalROC” package, where the area under 
the curve (AUC) values was positively correlated with 
predictive accuracy. Moreover, clinical informations 

among four cohorts was extracted, and scatter diagram of 
risk score and survival states as well as clinicopathologi-
cal heatmaps of prognostic genes expression differences 
in age, sex, grade, TMN staging, and survival status were 
drawn to explore the clinical correlation of prognostic 
genes.

Construction and validation of a nomogram
To provide clinicians with a quantitative method for pre-
dicting the probability of survival at 1-, 3-, and 5 years in 
CRC patients, we developed a nomogram [21] that inte-
grates various clinical risk factors in a prognostic model. 
The nomogram was screened for prognostic factors by 
univariate and multivariate Cox regression analysis. The 
calibration curves [22] of the nomogram were generated 
by plotting the predicted probabilities of the nomograms 
against the observed ratios, where the best prediction 
results occurred when the slope was close to 1. Simul-
taneously, the ROC and decision curve analysis (DCA) 
curves were plotted for the prognostic accuracy and clin-
ical utilize of the nomogram.

Gene set enrichment analysis (GSEA)
To investigate the enriched biological processes and sign-
aling pathways that differ between CRC samples of the 
high- and low-risk group, and the functional mechanisms 
of most significantly and non-significantly expressed dif-
ferential genes, the Gene set enrichment analysis (GSEA) 
was performed by using “clusterProfiler”- package in R.

Immuno‑infiltration analysis
Single-sample gene set enrichment analysis (ssGSEA) 
was performed using the “GSVA”package in R to derive 
enrichment scores for each immune-related term to 
assess the level of infiltration of 28 immune cell species. 
The spearman method was used to determine the corre-
lation coefficients.

Competing endogenous RNA (CeRNA) network 
construction
First, we intersected the “prognostic genes” with the dif-
ferent expression (DE) mRNA in TCGA to obtain the 
“key prognostic genes”. Then Miranda software was used 
to predict the target miRNAs of the key prognostic genes, 
and next the predicted miRNAs were intersected with 
the DEmiRNAs in TCGA to obtain “key miRNAs”. Then 
Miranda software was used to predict the target lncR-
NAs of the key miRNAs, and then the predicted lncR-
NAs were intersected with the DElncRNAs in TCGA 
to obtain “key lncRNAs”. The competing endogenous 
RNA (ceRNA) network was constructed based on these 
key lncRNAs, key miRNAs, key prognostic genes and 
visualized using Cytoscape 3.6. Spearman correlation 
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analysis was conducted for the correlation between key 
RNAs which were involved in the ceRNA network and 28 
immune infiltration cells. The K-M survival analysis was 
used to evaluate the association of key RNAs expression 
and prognosis in TCGA-CRC cohorts.

Quantitative real‑time PCR
Total RNA was isolated from CRC samples with/with-
out LM using RNA extract (Servicebio, Guangzhou, 
China) and reverse transcribed using SureScript-First-
strand-cDNA-synthesis-kit (Servicebio, Guangzhou, 
China). PCR conditions were forty cycles at 95  °C for 
1 min, followed by 95 °C for 20 s, 55 °C for 20 s, and 72 °C 
for 30  s. The relative expression of genes is calculated 
by the  2−△△Ct method. The sequences of the qRT-PCR 
primers are listed in Additional file 2: Table S2.

Results
Identifification of DEGs between CRC and CRLM
As shown in Fig. 1A, a total of 1125 DEGs between CRC 
and CRLM samples were detected in our sequencing 
data, which including 885 up-regulated and 270 down-
regulated DEGS, and the heatmap of top 100 DEGs 
were shown in Fig. 1B. In the GSE22834 we found a total 

1491 DEGs, including 805 up-regulated and 686 down-
regulated DEGs (Fig.  1C), and the heatmap of top 100 
DEGs were illustrated in Fig. 1D. After that, 112 co-DEGs 
between sequencing data and the GSE22834 dataset were 
detected and displayed by Venn graph (Fig. 1E).

In order to found the function of 112 co-DEGs, GO and 
KEGG pathways enrichment analysis were performed. 
They were enriched in 264 GO biological processes (BPs), 
21 GO cellular component (CCs), 44 GO molecular func-
tions (MFs), and 14 KEGG pathways (Fig. 2A, B).

Identification of prognosis‑related DEGs and establishment 
of eight gene prognostic model
To screen DEGs related to the survival of CRC patients, 
univariate Cox regression analysis of 112 DEGs were 
performed in training datasets. As shown in Fig. 3A, we 
obtained eight prognosis-related DEGs: APOD, AKR1C1, 
TTC38, ALAD, ALDOB, DNASE1L3, SERPINA1 and 
GRB7. The eight prognosis-related DEGs were subjected 
to LASSO Cox regression analysis and tenfold cross-
validation to identify the DEGs significantly associated 
with CRC prognosis. We found that eight DEGs were 
significantly related to the prognosis of CRC patients at 
the best lambda value equal to 0.0079 (Fig. 3B, C). Thus, 

Fig. 1 DEGs of CRC and CRLM samples in transcriptome sequence data and GSE22834. A A total of 1125 DEGs in transcriptome sequence data. B 
Heatmap of top 100 DEGs between CRC and CRLM in transcriptome sequence data. C A total 1491 DEGs in GSE22834. D Heatmap of top 100 DEGs 
between CRC and CRLM in transcriptome sequence data. D Heatmap of top 100 DEGs between CRC and CRLM in GSE22834. E Co-DEGs between 
transcriptome sequence data and GSE22834
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Risk score =  0.0904  × APOD  + 0.186 1 × AKR1 C1 + (− 0.25 
36) × T TC38 + 0 .4189  × ALAD + (−  0.0505)  × ALDOB + ( 
− 0.1702)  × DNASE1L3 +  (− 0.0683 ) × SERP I NA1  +  
0.0865 × GR B7. 

By using K-M survival curves to assess survival differ-
ences between high- and low-risk patients in risk model, 
the results showed that over time, the survival rate of 
the high-risk group decreased more significantly than 
the low-risk group and that the average prognosis was 
poorer in the high-risk group (p = 0.0035) (Fig. 4A). The 
prognostic value of the K–M survival curve was identi-
fied by the ROC curve, and the result found the AUCs of 
ROC analysis at 1, 3 and 5  years were 0.624, 0.630 and 
0.662 (Fig. 4B), respectively. It is indicated that the K–M 
survival curve has moderate confidence. Figure 4C shows 
the distribution of risk scores in patients with CRC and 
the relationship between risk scores and survival time. 
Furthermore, we analyzed the relationship between eight 

prognostic-related DEGs with clinical characteristics in 
the training dataset. As shown in Fig. 4D and Table 1, M 
stage, N stage, T stage and Stage are significantly corre-
lated with the level of risk score (p < 0.05).

Validation of eight gene prognostic model
To determine whether this clinical prognostic model is 
reliable when applied to different populations, we used 
the same constructs to evaluate the testing set (TCGA) 
and validation set (GSE29621). The TCGA testing set 
includes 177 samples, the GSE29621 includes 65 sam-
ples. As shown in Figs. 5A and 6A, high-risk group has 
shorter survival probability than low-risk group. Due 
to the limitation of sample size, we further constructed 
K–M analysis of 5-years OS. The accuracy of prognos-
tic model was evaluated, AUCs of the 1, 3, 5 years ROC 
curve in testing set were 0.610, 0.646, 0.688, respectively 

Fig. 2 The function of 112 DEGs. A Enriched GO enrichment analysis of 112 DEGs. B Enriched KEGG pathways of 112 DEGs

 Fig . 3 Identification of prognosis-related DEGs. A Univariate Cox regression analysis of eight prognosis-related DEGs. B LASSO Cox regression 
analysis eight prognosis-related DEGs. C Tenfold cross-validation of eight prognosis-related DEGs
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(Fig.  5B). The AUCs of the 1, 3 and 5  years ROC curve 
in validation set were 0.612, 0.622, 0.652 (Fig.  6B). Fur-
thermore, the patients in testing set and validation set 
were divided into low-risk group and high-risk group, 
as shown in Figs.  5C and 6C, with blue dots indicat-
ing low-risk patients and red dots indicating high-risk 
patients, hazardous genes mainly expressed in high-risk 
group and protective genes mainly expressed in low-risk 
group. In contrast, there was no significantly correlated 
between the expression of eight gene signatures and 
clinical features (T stage, N stage, M stage, stage, gender, 
and age) in testing set (Fig. 5D and Table 2) and valida-
tion set (Fig. 6D and Table 3). These results suggest that 

clinical prognostic models can accurately predict the 
prognosis of CRC patients, while some relevant clinical 
features need to be identified. Meanwhile, we obtained 
CRC patients’ with survival data from the GSE12945 set 
to validate the prognostic model. The result found that 
the AUC scores of ROC curves at 1-, 3-, and 5-year were 
0.732, 0.612 and 0.602, respectively, indicating that the 
prognostic signature had a good predictive performance 
(Additional file 3: Figure S1). Subsequently, by using K–M 
survival curves to assess survival differences between 
high- and low-risk groups of colon cancer patients and 
rectal cancer patients, the results showed that over time, 
the survival rate of the high-risk group decreased more 

Fig. 4 Establishment of eight gene prognostic model in TCGA testing set. A The Kaplan–Meier Curve for Survival between high-risk and low-risk 
patients in TCGA training set. B The AUCs of ROC curve analysis in training set. C Distribution of the risk curve and survival status between high-and 
low-risk group in training set. D The correlations between eight prognoses related DEGs and clinical characteristics in training set
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significantly than the low-risk group both in colon cancer 
patients (p < 0.001) and rectal cancer patients (p = 0.017) 
(Figs. 6E, F).

Univariate and multivariate analyses of independent 
prognostic factors
To analyze which clinical characteristics are independ-
ent prognostic factors affecting patient survival, we 
performed univariate Cox regression analysis and mul-
tivariate Cox regression analysis. Results of univariate 
Cox regression analysis showed that staging (HR 2.343; 
95% CI 1.870–2.935; p < 0.001), M stage (HR 4.473; 
95% CI 2.982–6.710; p < 0.001), N stage (HR 2.120; 95% 
CI 1.686–2.665; p < 0.001), T stage (HR 3.133; 95% CI 
2.110–4.651; p < 0.001), risk score (HR 1.634; 95% CI 
1.321–2.022; p < 0.001) and age (HR 1.036; 95% CI 1.017–
1.056; p < 0.001)were associated with poorer prognosis of 
CRC patients (Fig. 7A and Table 4). Results of multivari-
ate Cox regression analysis showed that age (HR 1.045; 
95% CI 1.025–1.065; p < 0.001), M stage (HR 2.694; 95% 

CI 1.666–4.356; p < 0.001), N analysis (HR 1.455; 95% CI 
1.456–1.102; p < 0.001), T-stage (HR 2.108; 95% CI 1.311–
3.104; p < 0.001) and risk score (HR 1.334; 95% CI 1.051–
1.693; p < 0.001) could independently influence prognosis 
of CRC patients (Fig. 7B and Table 5). These results sug-
gest that our risk score is reasonable as an independent 
prognostic factor for CRC patients.

Construction and verification of nomogram
To develop a clinically applicable tool for prognostic 
assessment of the CRC patients, we built a nomogram 
based on the clinicopathological features included in the 
nomogram and extracted from the TCGA training and 
testing cohorts, including age, M-stage, N-stage, T-stage, 
and risk score (Fig. 7C). Calibration curves were plotted 
to assess the accuracy of the predictions of the column 
line graph with the C-index value is 0.783, and the cor-
rected C-index value is 0.772, indicating the high con-
sistencies between the predicted and observed survival 
probability. To go a step further, the predicted results of 
the 1-year prognosis in the nomogram (dashed line) were 
very close to the actual results (red line), and this prog-
nostic model had a better predictive value for short-term 
survival (1 year) than long-term survival (2 or 3 years) of 
the patients. (Fig. 7D). Next, the results of ROC analysis 
for the survival prediction at 1-, 3, 5  years were exhib-
ited in Fig.  7E, supporting that among the independent 
prognostic factors for CRC patients had good accuracy 
with the AUC values greater than 0.6. And meanwhile, 
the DCA results revealed that the prognostic utilize of 
nomogram were more excellent compared with individu-
als (Fig. 7F).

Molecular characteristics of the high‑ and low‑risk groups
GSEA was performed to identify significant changes in 
potential GO terms and KEGG pathways between high- 
and low-risk populations. The results showed that GO 
terms such as antimicrobial humoral response, basement 
membrane, bone development, bone morphogenesis, 
cartilage development, cofactor binding, cofactor meta-
bolic process, collagen binding and collagen containing 
extracellular matrix were significantly enriched in the 
high-risk group (Fig.  8A). Furthermore, allograft rejec-
tion pathway, autoimmune thyroid disease pathway, ecm 
receptor interaction pathway, focal adhesion pathway, 
graft versus host disease pathway, intestinal immune net-
work for IGA production pathway, olfactory transduction 
pathway, parkinsons disease pathway, peroxisome path-
way and retinol metabolism pathway were significantly 
enriched in the high-risk group (Fig. 8B). To explore the 
tumor microenvironment of the disease, we estimated 
the enrichment of immune cells in different risk tissues 
in the TCGA dataset. We estimated 28 immune cell 

Table 1 The correlation analysis between eight prognostic-
related DEGs with clinical characteristics in the training dataset

Total Expression p‑value

High Low

(N = 388) (N = 193) (N = 195)

Gender

female 177 (45.6%) 81 (42.0%) 96 (49.2%) 0.182

male 211 (54.4%) 112 (58.0%) 99 (50.8%)

Age (years)

 >  = 60 279 (71.9%) 135 (69.9%) 144 (73.8%) 0.459

 < 60 109 (28.1%) 58 (30.1%) 51 (26.2%)

M

M0 292 (75.3%) 137 (71.0%) 155 (79.5%) 0.034

M1 58 (14.9%) 38 (19.7%) 20 (10.3%)

MX 38 (9.8%) 18 (9.3%) 20 (10.3%)

N

N0 224 (57.7%) 88 (45.6%) 136 (69.7%)  < 0.001

N1 93 (24.0%) 57 (29.5%) 36 (18.5%)

N2 71 (18.3%) 48 (24.9%) 23 (11.8%)

T

T1 11 (2.8%) 4 (2.1%) 7 (3.6%) 0.003

T2 60 (15.5%) 18 (9.3%) 42 (21.5%)

T3 274 (70.6%) 144 (74.6%) 130 (66.7%)

T4 43 (11.1%) 27 (14.0%) 16 (8.2%)

Stage

Stage I 59 (15.2%) 16 (8.3%) 43 (22.1%)  < 0.001

Stage II 159 (41.0%) 70 (36.3%) 89 (45.6%)

Stage III 111 (28.6%) 69 (35.8%) 42 (21.5%)

Stage IV 59 (15.2%) 38 (19.7%) 21 (10.8%)
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subpopulations by using the ssGSEA strategy and showed 
that patients with CRC in the low-risk group had a rela-
tively high immune status compared to those in the high-
risk group (Fig. 8C), and the content of 15 of the 28 cell 
types was significantly different between the high and 
low risk groups (Fig. 8D).

Construction of ceRNA network
We next aimed to investigate DEGs, DElncRNAs, and 
DEmiRNAs between CRC and normal samples from 
TCGA cohort. A total of 1737 DEGs were detected, 
including 780 up-regulated and 957 down-regulated 
DEGs (Fig.  9A), and the heatmap of top 100 DEGs 
between CRC and CRLM were shown in Fig.  9B. 

Similarly, a total of 462 DEmiRNAs were detected, 
including 335 up-regulated and 107 down-regulated 
DEmiRNAs (Fig. 9C, D); a total of 51 DElncRNAs were 
detected, including 33 up-regulated and 18 down-reg-
ulated DElncRNAs (Fig. 9E, F). First, we intersected the 
eight prognostic genes with the DEGs in TCGA and 
obtained 3 key prognostic genes (APOD, DNASE1L3, 
GRB7). In addition, the intersection of DEmiRNAs and 
predicted target miRNA of 3 key prognostic gene were 
regard as key miRNA. Similarly, the intersection of DEl-
ncRNAs and predicted target lncRNAs of key miRNA 
were regard as key lncRNAs. Finally, we obtained 3 prog-
nosis genes, 14 miRNAs and 7 lncRNAs, which were 
used to construct ceRNA network (Fig. 10A). Spearman 

Fig. 5 Validation of eight gene prognostic model. A The Kaplan–Meier Curve for Survival between high-and low-risk patientsin the TCGA testing 
set. B The AUCs of prognostic model by ROC curve in testing set. C Distribution of the risk curve and survival status between high-and low-risk 
group in test set. D The correlations between eight gene expression and clinical features in testing set
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correlation analysis was first used to exhibit the relation-
ship between RNAs involved in the network and the 28 
immune factors. As shown in Fig.  10B, these key genes 
were positively correlated with both immune genes. 
Next, the survival analysis of key genes, key lncRNAs 
and key miRNAs were performed in the TCGA cohort. 
As the results of Fig. 10C, only the individuals with dif-
ferent expression levels of DNASE1L3 had distinct differ-
ences in the survival probabilities rether than APOD and 
GRB7. And meanwhile, the K-M survival curves of the 
key miRNAs and lncRNAs with significantly differences 
were displayed in Fig. 10D–E, indicating the cohorts with 
high expression levels of hsa-miR-2355-3p (p = 0.03) and 
ELFN1-AS1 (p = 0.034) had poorer prognosis. While 
there was greater survival probability in the follow-in 
case samples with the high expression levels of hsa-miR-
1226-3p at 1–2  years. Simultaneously, the gene expres-
sion results were consistant with that in survival analysis.

To further validate the accuracy of eight prognosis 
genes to predicted CRLM, the expression of eight prog-
nosis genes was detected in the GSE72718. As shown in 

Fig.  11A, the expression of the ALDOB, AKR1C1 and 
SERPINA1 in CRLM samples were significantly up-
regulated compared with CRC samples, similar expres-
sion trends were obtained in the sequencing data and 
GSE22834 dataset (Fig.  11B, C). ALDOB, AKR1C1 and 
SERPINA1 expression were up-regulated in CRC with 
LM compared to CRC without LM.

To further investigate the expression of eight progno-
sis-related genes in tumor tissues, we performed real-
time qPCR using 7 CRC samples with LM and 7 CRC 
samples without LM. The result showed that APOD, 
AKR1C1, ALAD, ALDOB, DNASE1L3 and SERPINA1 
were high expression in CRC samples with LM, while 
TTC38 and GRB7 were high expression in CRC samples 
without LM (Fig. 12).

Discussion
In this study, the differentially expressed analysis was 
performed between CRC and CRLM samples. The prog-
nostic model containing eight differential genes were 

Fig. 6 Validation of eight gene prognostic model in GSE29621 set. A The Kaplan–Meier Curve for Survival between high-and low-risk patients in 
GSE29621 set. B The AUCs of prognostic model by ROC curve in GSE29621 set. C The risk curve and survival status between high-and low-risk group 
in GSE29621 set. D Distribution of the correlations between eight gene expression and clinical features in GSE29621 set. E The survival probability 
between high-and low-riskcore in colon patients. F The survival probability between high-and low-riskcore in rectal patients
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further constructed by univariate Cox regression analysis 
and LASSO Cox analysis for CRLM identification, that is, 
the case individuals with CRLM might had poorer prog-
nosis. The prognostic value and clinical utilize of the risk 
model was varified based on the CRC-related datasets.

Among eight prognosis-related genes, APOD was 
considered as a good diagnostic marker for CRC [23]. 
DNASE1L3 might be a biomarker associated with prog-
nosis and immune infiltration in CRC [24]. Another 
study showed that miR374a-5p could promote metastasis 
of CRC by targeting GRB7 [25]. These results proved that 
the model contributed to judging the prognosis of CRC 
patients.

Functional analysis indicated that antimicrobial 
humoral response and ECM receptor interaction path-
way were significantly enriched in high-risk group. 
One study found that antimicrobial interventions could 
reduce Fusobacterium load, cancer cell proliferation, 
and tumor growth and metastasis in  vivo [26]. Another 
study suggested that the gut microbiome depletion by 

oral antibiotics inhibited the growth and liver metasta-
ses of CRC in murine model [27]. Yuzhalin AE [28] et al. 
showed that CRLM growth depends on PAD4-driven 
citrullination of the extracellular matrix. ECM proteins 
were supposed to act as candidate serological or tissue 
biomarkers and potential targets for imaging of occult 
metastases and residual or recurrent tumors [29]. There-
fore, we speculate that antimicrobial human response and 
ECM receiver interaction pathway might be involved in 
CRLM progression. It should be noted that AUC greater 
than 0.7 is considered to have high accuracy of diagnos-
tic model, while AUC greater than 0.6 is considered to 
have high accuracy of prognostic model. Several studies 
also showed that the accuracy of the prediction model 
is good based on AUC > 0.6 [30, 31]. The area under the 
ROC curve of 1-5-year overall survival predicted in our 
study is greater than 0.6, indicating that the accuracy of 
the prediction model is good.

Table 2 The correlation analysis between eight prognostic-
related DEGs with clinical characteristics in the testing dataset

Total Expression p‑value

High Low

(N = 170) (N = 85) (N = 85)

Gender

Female 79 (46.5%) 39 (45.9%) 40 (47.1%) 1

Male 91 (53.5%) 46 (54.1%) 45 (52.9%)

Age (years)

 >  = 60 119 (70.0%) 52 (61.2%) 67 (78.8%) 0.019

 < 60 51 (30.0%) 33 (38.8%) 18 (21.2%)

M

M0 137 (80.6%) 63 (74.1%) 74 (87.1%) 0.046

M1 23 (13.5%) 17 (20.0%) 6 (7.1%)

MX 10 (5.9%) 5 (5.9%) 5 (5.9%)

N

N0 94 (55.3%) 34 (40.0%) 60 (70.6%)  < 0.001

N1 44 (25.9%) 30 (35.3%) 14 (16.5%)

N2 32 (18.8%) 21 (24.7%) 11 (12.9%)

T

T1 6 (3.5%) 0 (0%) 6 (7.1%)  < 0.001

T2 38 (22.4%) 11 (12.9%) 27 (31.8%)

T3 110 (64.7%) 60 (70.6%) 50 (58.8%)

T4 16 (9.4%) 14 (16.5%) 2 (2.4%)

Stage

Stage I 40 (23.5%) 10 (11.8%) 30 (35.3%)  < 0.001

Stage II 51 (30.0%) 22 (25.9%) 29 (34.1%)

Stage III 55 (32.4%) 35 (41.2%) 20 (23.5%)

Stage IV 24 (14.1%) 18 (21.2%) 6 (7.1%)

Table 3 The correlation analysis between eight prognostic-
related DEGs with clinical characteristics in the GSE29621 dataset

Total Expression p‑value

High Low

(N = 65) (N = 33) (N = 32)

Gender

Female 25 (38.5%) 11 (33.3%) 14 (43.8%) 0.543

Male 40 (61.5%) 22 (66.7%) 18 (56.2%)

Grade

Mod diff 51 (78.5%) 29 (87.9%) 22 (68.8%) 0.069

Poorly diff 10 (15.4%) 4 (12.1%) 6 (18.8%)

Well diff 4 (6.2%) 0 (0%) 4 (12.5%)

M

M0 46 (70.8%) 22 (66.7%) 24 (75.0%) 0.375

M1 18 (27.7%) 11 (33.3%) 7 (21.9%)

MX 1 (1.5%) 0 (0%) 1 (3.1%)

N

N0 32 (49.2%) 13 (39.4%) 19 (59.4%) 0.139

N1 25 (38.5%) 17 (51.5%) 8 (25.0%)

N2 7 (10.8%) 3 (9.1%) 4 (12.5%)

NX 1 (1.5%) 0 (0%) 1 (3.1%)

T

T2 8 (12.3%) 0 (0%) 8 (25.0%) 0.006

T3 52 (80.0%) 31 (93.9%) 21 (65.6%)

T4 5 (7.7%) 2 (6.1%) 3 (9.4%)

Stage

Stage 1 7 (10.8%) 0 (0%) 7 (21.9%) 0.033

Stage 2 22 (33.8%) 11 (33.3%) 11 (34.4%)

Stage 3 18 (27.7%) 11 (33.3%) 7 (21.9%)

Stage 4 18 (27.7%) 11 (33.3%) 7 (21.9%)
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The abnormal enrichment of immune cells in the TME 
was a significant sigh in formation of the premetastatic 
niche. The ssGSEA showed that the content of 15 among 
28 cell types was significantly different between high- 
and low-risk groups. The interaction between tumor 
and tumor-associated macrophages (TAMs) in TME of 
metastasis promote CRLM [32, 33]. TAMs also could 

enhance the migration, invasion and circulating tumor 
cell (CTC)-mediated CRLM by inducing EMT [34]. One 
study showed that neutrophil extracellular traps pro-
mote the development and progression of liver metasta-
ses after surgical stress [35]. A meta-analysis indicated 
that an elevated pretreatment neutrophil-to-lymphocyte 
ratio(NLR) was closely correlated with poor long-term 

Fig. 7 Construction and verification of nomogram based on the TCGA training and testing sets. A Univariate Cox regression analysis of 
independent prognostic factors of CRC patients. B Multifactorial Cox regression analysis of independent prognostic factors of CRC patients. C 
Construction of nomogram based on the TCGA training and testing sets. D Calibration curve of the nomogram. E ROC analysis for prognostic 
accuracy of independent prognostic factors for CRC in TCGA training set at 1-, 3-, 5 years. F Decision curve analysis (DCA) for clinical utilize of 
nomogram at 1-, 3-, 5 years

Table 4 Univariate Cox regression analysis of independent prognostic factors of CRC patients

Variable Coef HR HR.95L HR.95H p value

Stage 0.851424618 2.34298233 1.870486654 2.934833128 0.000000000000127

M 1.498098335 4.473174498 2.982146765 6.709693275 0.000000000000443

N 0.751346183 2.119851805 1.68601042 2.665328531 0.000000000127

T 1.142054939 3.13320029 2.11056009 4.651345443 0.0000000147

Risk 0.490970447 1.633901065 1.320612836 2.021510482 0.00000617

Age 0.035417926 1.036052611 1.016627896 1.055848475 0.000244733

Gender − 0.035011578 0.965594236 0.654021278 1.425599229 0.86019078
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survival (OS and RFS) in CRLM patients [36]. The aggre-
gation of immune cells in TME could exert a significant 
impact on process of CRLM.

In order to complete the construction of the poten-
tial ceRNA network in CRC progression, the key 
prognostic genes (APOD, DNASE1L3, GRB7) as well 
as the key prognostic miRNA (hsa-miR-2355-3p, 

hsa-miR-1226-3p), lncRNA (ELFN1-AS1) were identi-
fied by taking the intersection of eight prognostic genes 
and DEGs, targeted miRNA and DEmiRNA, targeted 
lncRNA and DElncRNA, respectively. The prognostic 
value of which were confirmed in the TCGA cohorts 
as well. Several studies showed that ALDOB-mediated 
fructose metabolism drives metabolic reprogramming 

Table 5 Multivariate Cox regression analysis of independent prognostic factors of CRC patients

Variable Coef HR HR.95L HR.95H p value

Age 0.043893632 1.044871208 1.025209238 1.064910264 0.00000594

M 0.991100871 2.694198806 1.666424582 4.355857017 0.0000527

N 0.37557126 1.45582283 1.102169146 1.922953586 0.008166814

T 0.702146062 2.018078987 1.311857686 3.10448522 0.001397312

Risk 0.288178927 1.333995971 1.050954527 1.693265696 0.01786439

Fig. 8 Prognosis gene related functional annotation based on the GSEA and TCGA database. A Enriched GO terms between high- and low-risk 
group in GSEA. B Enriched KEGG pathways between high- and low-risk group in GSEA. C and D Enriched immune cells between high- and low-risk 
group in TCGA 
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Fig. 9 Expression of DEGs, DElncRNAs, and DEmiRNAs between CRC and normal samples in TCGA. A A total of 1737 DEGs in TCGA. B Heatmap of 
top 100 DEGs between CRC and CRLM in TCGA. C and D A total of 462 DEmiRNAs in TCGA. E and F A total of 51 DElncRNAs in TCGA 

Fig. 10 Construction of ceRNA network and validation the accuracy of eight genes model. A Construction of ceRNA network. B Spearman 
correlations of key gene expressions with immune cells infiltration. C Survival analysis and gene expression of 3 key prognostic genes (DNASE1L3, 
APOD and GRB7) in the TCGA cohort. D Survival analysis and gene expression of key miRNAs (hsa-miR-2355-3p and hsa-miR-1226-3p) in the TCGA 
cohort. E Survival analysis and gene expression of key lncRNA (ELFN1-AS1) in the TCGA cohort. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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of CRLM [9, 37, 38]. SerpinA1 promoted CRC pro-
gression through fibronectin, it might act as a novel 
prognostic biomarker and candidate therapeutic tar-
get for CRC [39]. Lnc MNX1-AS1 could drive prolif-
eration via a MYC/MNX1-AS1/YB1 signaling pathway 
in CRC [40]. LncRNA DLGAP1-AS1 contributed to 
CRC progression and 5-FU resistance by regulating 
smad2 pathway [41]. ELFN1-AS1 accelerated the pro-
liferation and migration of colorectal cancer via regu-
lation of miR-4644/TRIM44 axis [42]. Knockdown 
of DNASE1L3 would induce the expression of c-Myc 
protein in HCC cells [43]. MYC-driven up-regulation 
of lncRNA ELFN1-AS1 could silence TPM1 through 
epigenetic, and further promote tumor growth of CRC 

[44]. Overexpression of c-Myc would also increased 
expression of Serpina1 in metastatic pancreatic cancer, 
which was consistent with our conclusions. The above 
results showed that genes, miRNAs and lncRNAs in 
the ceRNA network demonstrated a strong correlation 
with the tumorigenesis and progression of CRC.

In this study, construction and validation of the prog-
nostic model for CRLM identification were performed 
based on the CRC and CRLM cohorts, and mean-
while, the potential ceRNA network targeting the key 
prognostic genes were predicted for the mechanism 
exploration in CRC progression. However, there are 
still some limitations in this paper that the insufficient 
number of sequencing samples might not fully confirm 

Fig. 11 A Boxplot of eight prognosis genes expression between CRC and CRLM samples in GSE72718. B The expression levels of eight prognosis 
genes between CRC and CRLM samples in sequencing data. C The expression levels of eight prognosis genes between CRC and CRLM samples in 
GSE22834 dataset. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001

Fig. 12 Examination of the expression of eight prognosis-related genes in CRC samples with LM and without LM by qRT-PCR. A APOD, B AKR1C1, C 
GRB7, D ALAD, E TTC38, F ALDOB, G DNASE1L3, H SERPINA1. *p < 0.05, **p < 0.01, ***p < 0.001
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its effectiveness, which required enlarging clinical sam-
ples to complete the verification.

Conclusions
In summary, the prognostic risk model which contained 
eight genes was confirmed to possess a high prognos-
tic value and could independently identify high-risk case 
patients with low survival. The relationships between 
immune microenvironment and CRC prognosis were eval-
uated as well. Moreover, the key prognostic genes-related 
ceRNA network were established for the CRC investiga-
tion. We make the case that the study may provide inspira-
tion for further research on the pathogenesis of CRC and 
CRLM.
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