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Abstract 

Background Retinoblastoma (RB) is frequently occurring malignant tumors that originate in the retina, and their 
exact cause and development mechanisms are yet to be fully comprehended. In this study, we identified possible 
biomarkers for RB and delved into the molecular mechanics linked with such markers.

Methods In this study GSE110811 and GSE24673 were analyzed. Weighted gene co-expression network analysis 
(WGCNA) was applied to screen modules and genes associated with RB. By overlapping RB-related module genes 
with differentially expressed genes (DEGs) between RB and control samples, differentially expressed retinoblastoma 
genes (DERBGs) were acquired. A gene ontology (GO) enrichment analysis and a kyoto encyclopedia of genes and 
genomes (KEGG) enrichment analysis were conducted to explore the functions of these DERBGs. To study the protein 
interactions of DERBGs, a protein–protein interaction (PPI) network was constructed. Hub DERBGs were screened 
using the least absolute shrinkage and selection operator (LASSO) regression analysis, as well as the random forest 
(RF) algorithm. Additionally, the diagnostic performance of RF and LASSO methods was evaluated using receiver 
operating characteristic (ROC) curves and single-gene gene set enrichment analysis (GSEA) was conducted to explore 
the potential molecular mechanisms involved with these Hub DERBGs. In addition, the competing endogenous RNA 
(ceRNA) regulatory network of Hub DERBGs was constructed.

Result About 133 DERBGs were found to be associated with RB. GO and KEGG enrichment analyses revealed that 
the important pathways of these DERBGs. Furthermore, the PPI network revealed 82 DERBGs interacting with each 
other. By RF and LASSO methods, PDE8B, ESRRB, and SPRY2 were identified as Hub DERBGs in patients with RB. From 
the expression assessment of Hub DERBGs, it was found that the levels of expression of PDE8B, ESRRB, and SPRY2 were 
significantly decreased in the tissues of RB tumors. Secondly, single-gene GSEA revealed a connection between these 
3 Hub DERBGs and oocyte meiosis, cell cycle, and spliceosome. Finally, the ceRNA regulatory network revealed that 
hsa-miR-342-3p, hsa-miR-146b-5p, hsa-miR-665, and hsa-miR-188-5p may play a central role in the disease.

Conclusion Hub DERBGs may provide new insight into RB diagnosis and treatment based on the understanding of 
disease pathogenesis.
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Background
Retinoblastoma (RB), An ophthalmological common 
intraocular cancer, poses a serious threat to the vision 
and well-being of patients [1, 2]

Being a genetic disease, RB is caused by the deletion of 
the tumor suppressor gene, BR1 [3]. With the advance-
ment in gene detection technology, abnormal expression 
of genes such as MYCN has become an important factor 
in the progression of RB [4]. Due to the advancements in 
methods and innovation, RB treatment has undergone a 
noteworthy transformation from excision, radiotherapy, 
and intravenous chemotherapy to intra-arterial chemo-
therapy combined with local therapy [5–7].

While the pathogenesis of RB is unclear, the rate of 
eyeball removal in patients with advanced RB remains 
high, indicating the need for further treatment innova-
tions. It is imperative to study the biological process 
(BP) and related potential mechanisms of RB to develop 
a new treatment strategy. Researchers have discussed 
the most important prognostic factors and potential 
mechanisms of RB through the use of existing data on 
RB and bioinformatics methods [8, 9]. For example, 
an analysis conducted by Wen et  al. [10] identified two 
critical microRNA targets in RB: let-7a and let-7b by 
analyzing a variety of bioinformatics studies and identi-
fying microRNA-target gene-transcription factor regu-
latory networks in RB. According to Gao et  al. [11] the 
long noncoding RNA (lncRNA) MEG3 may play a role in 
tumor suppression in RB, and the activation of Lnc00152 
by Sp1 induces EMT through the miR-30d/SOX9/ZEB2 
pathway and enhances the invasion and metastasis of RB 
cells through this pathway. The pathogenesis of cancer is 
extremely complex, but more research needs to be con-
ducted on this topic.

A better comprehension of the genetic, environmental, 
as well as immune-regulatory factors of RB may provide 
important insights into its diagnosis and pathogenesis. 
Bioinformatics assessments have been used to diagnose 
many diseases, but enough assessments in RB have not 
been performed. This study aims to identify the biomark-
ers of RB prognosis using multiple bioinformatics-based 
datasets and explain its pathogenesis using functional 
enrichment analysis and the competing endogenous 
RNA (ceRNA) network. These findings may contribute 
to an additional understanding of the pathogenesis of RB 
and guide future research on this disease.

Materials and methods
Source of data
A total of two RB datasets, GSE110811 and GSE24673, 
were retrieved out of the Gene Expression Omnibus 
(GEO) (https:// www. ncbi. nlm. nih. gov/ geo/). GSE110811 

(19 retinal tissue samples and 31 RB samples) and 
GSE24673 (2 cadaveric eye samples and 9 RB samples) 
were subsequently merged into a new dataset that con-
tained 40 RB samples and 21 normal samples.

Weighted gene co‑expression network analysis (WGCNA)
The gene-expression profiles from the GSE110811 and 
GSE24673 datasets were used to investigate the RB-
associated module via the “WGCNA” R package (ver-
sion 1.70-3) [12]. Initially, an adjacency matrix was 
constructed based on the formula for the adjacency 
matrix to describe the correlation strength between the 
nodes [13].

where, i and j represent two different genes, and xi and xj 
represent expression scores of the corresponding genes. 
Sij represents the correlation coefficient, and aij repre-
sents the strength of the correlation between i and j. In 
this research, the adjacency matrix was constructed with 
a scale-free topological index of 0.85 and an optimal soft-
threshold power ( β ) of 12. The adjacency matrix was then 
converted into a matrix of topological overlap. Finally, 
hierarchical clustering trees were constructed by dynami-
cally cutting trees (module sizes of 25) for identifying key 
modules through the introduction of genes with similar 
expression patterns into the same module.

Differential genes expression analysis
As a first step, differentially expressed genes (DEGs) 
between RB samples and normal samples in the merged 
dataset were identified using the “limma” R package 
(version 3.46.0), with an adjusted p value of < 0.05 and a 
|log2FC|> 1 [14]. To obtain differentially expressed ret-
inoblastoma genes (DERBGs), the DEGs were intersected 
with key module genes using the VennDiagram R pack-
age (version 1.6.20) [15]. To evaluate the potential func-
tions of DERBGs, a Gene Ontology (GO) function and 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analyses were conducted using the 
clusterProfiler R package [16–20].

Protein–protein interaction (PPI) network construction
To investigate if there are protein interactions between 
DERBGs, the Search tool to retrieve Interacting Genes 
and Proteins (STRING) website (https:// string- db. org) 
was used to map a PPI network of these DERBGs. Further, 
the PPI network was visualized using Cytoscape, and the 
top ten DERBGs were identified using the maximal clique 
centrality (MCC) algorithm of Cytohubba [21].

sij = cor xi, xj aij = sijβ

https://www.ncbi.nlm.nih.gov/geo/
https://string-db.org
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Screening and validation of Hub DERBGs
Hub DERBGs were screened using the random forest 
(RF) method with the “Randomforest” R package (ver-
sion 4.7-1) and the least absolute shrinkage and selec-
tion operator (LASSO) regression assessment with the 
“glment” R package (version 4.1-1) [21, 22]. Besides, the 
“pROC” R package (V 1.17.0.1) was used to evaluate the 
diagnostic performance of the RF and LASSO methods 
[23]. Following this, the Hub DERBG expression values 
were validated in the merged dataset (p < 0.05).

Single‑gene gene set enrichment analysis (GSEA)
To explore the regulatory pathways and biological functions 
associated with these Hub DERBGs, the “clusterProfiler” 
R package (version 3.18.0) was used to perform the GSEA 
of each DERBG [16, 17]. An adjusted p value of < 0.05 was 
used to indicate significant thresholds for GSEA.

Construction of a ceRNA regulatory network
Differentially expressed microRNAs (DEmiRNAs) 
were identified in the GSE41321 dataset (p < 0.05 and 
|logFC|> 1) using the “limma” R package (version 
3.46.0) [14]. Meanwhile, the miRWalk DB (http:// mirwa 
lk. umm. uni- heide lberg. de/) was utilized for predict-
ing miRNAs from the Hub DERBGs (binding p > 0.95 
and energy <  −  15).  To obtain the miRNA–messenger 
RNA (mRNA) relationship pair and common miRNAs, 
the predicted miRNAs were intersected with DEmiR-
NAs. Further, the “DEseq” R package (V1.34.0) was used 
to identify differentially expressed long noncoding RNAs 
(DElncRNAs) in the GSE125903 dataset (p < 0.05 and 
|logFC|> 1) [24]. Also, based on the common miRNAs, 
the Starbase database (http:// starb ase. sysu. edu. cn/)  was 
employed to predict lncRNAs (binding p > 0.95 and 
energy < − 15) [25]. Finally, a ceRNA regulatory network 
was constructed by integrating the interactions between 
DEmiRNAs and DElncRNAs. To visualize the ceRNA 
network, the Cytoscape R package (V3.8.2) was used [21].

Statistical analysis
R software (https:// www.r- proje ct. org/, V4.0.3) was 
used to perform statistical analyses and to visually plot 
the results. Using Pearson correlation analysis, cor-
relation coefficients and p values were calculated for 
the RB-related module and patients with RB. A p value 
of < 0.05 was considered statistically significant.

Results
Identification of the RB‑associated modules and genes 
through WGCNA
A co-expression network was constructed by apply-
ing WGCNA to all samples and genes in the merged 

dataset to identify RB-related modules and genes. 
Additional file 1 provides a comprehensive overview of 
the Principal Component Analysis (PCA) carried out 
on the gene expression datasets. The sample dendro-
gram in Fig. 1A indicates that the merged dataset does 
not contain any outliers. Following this, a scaleless net-
work was constructed with a 12 soft-threshold power 
(β), and an index of scale-free topologies of 0.85 was 
set (Fig.  1B). Using a dynamic tree-cutting method to 
introduce genes with similar expression patterns into a 
single module (module size = 25), a hierarchical cluster-
ing tree with 8 modules was constructed (Figs. 1C and 
D). As shown in Fig. 1E and F, MEgreen has the highest 
correlation with RB (Cor = 0.54, p = 1.6e−26). There-
fore, a total of 332 genes from the MEgreen module 
were analyzed in the following steps.

Identification of DERBGs in RB
The first step in identifying DERBGs associated with RB 
was to screen DEGs between RB samples and normal 
samples in the merged dataset. As illustrated in Fig. 2A 
and B, a total of 384 DEGs were identified in RB samples, 
of which 188 were downregulated and 196 were upregu-
lated. Following this, 133 DERBGs were obtained for fur-
ther analysis by intersecting DEGs with genes related to 
RB modules (Fig. 2C).

PPI network of DERBGs and functional analysis
A network map of the PPI network was developed using 
the STRING website to study the interactions among 
133 DERBGs. It was possible to obtain a PPI network 
with 118  interactions and 82 nodes (Fig.  3A). To rank 
these DERBGs with interactions, the MCC algorithm of 
the Cytoscape software was used (Fig. 3B; RDH8, RGR 
, CNGA1, ROM1, SAG, RHO, PAX6, RLBP1, CNGB1, 
and RDH12). To explore the role of 82 DERBGs in BPs, 
GO and KEGG were constructed. The clustering coeffi-
cient was 0.267. As a result of GO enrichment analysis, 
these DERBGs were primarily involved in five terms. 
For example, in BPs, the light was perceived as a sen-
sory stimulus, visual stimulus, and detectable stimulus; 
in addition, these DERBGs were primarily involved in 
five terms, such as photoreceptor outer segment, pho-
toreceptor cell cilium, and 9 + 0 non-motile cilium in 
the cellular component (CC); in molecular function 
(MF), these DERBGs were mainly engaged in G-pro-
tein-coupled photoreceptor activity, photoreceptor 
activity, the activity of cell–cell adhesion mediators, 
and the activity of cell adhesion mediators (Fig.  3C 
and D). According to the KEGG pathways, these DER-
BGs are significantly associated with phototransduc-
tion, axon guidance, pathways of signal transmission 

http://mirwalk.umm.uni-heidelberg.de/
http://mirwalk.umm.uni-heidelberg.de/
http://starbase.sysu.edu.cn/
https://www.r-project.org/
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regulating pluripotency, ferroptosis, and cocaine addic-
tion pathways (Fig. 3E and F).

Screening and expression level validation of Hub DERBGs
The RF algorithm was used to identify the top ten DER-
BGs (PDE8B, FBXO32, ESRRB, RDH8, TAOK3, SPRY2, 
MCUR1, CASZ1, CABP4, and SIK2) from the merged 

dataset for further validation and selection of Hub 
DERBGs with significantly characteristic value for clas-
sifying RB and normal samples (Fig.  4A and B). Addi-
tionally, three DERBGs were selected using the LASSO 
algorithm (lambda min = 0.06493903) (Figs.  4C and 
D). By integrating the DERBGs screened by the RF and 
LASSO algorithms, a total of 7 DERBGs were identified, 

Fig. 1 Weighted gene co-expression network analysis results. A Sample dendrogram and trait heatmap; B Scale independence and mean 
connectivity; C Cluster dendrogram; D Eigengene dendrogram and eigengene heatmap; E Module trait relationships; F Scatter plot of genes in the 
green module

Fig. 2 Genome-wide analysis of gene expression of retinoblastoma (RB). A A volcano plot of differentially expressed genes (DEGs); B Heatmap of 
DEGs; C Venn diagram of DEGs detected among RB DEGs and RB module genes
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of which 3 (PDE8B, ESRRB, and SPRY2) were selected 
simultaneously by both algorithms (Fig.  4E). For clas-
sification and diagnostic purposes, those DERBGs were 
identified as Hun DERBGs. Further, the receiver operat-
ing characteristic (ROC) curve analysis and the confu-
sion matrix heat map together demonstrate that RF and 

LASSO algorithms can provide good diagnostic per-
formance (Figs.  4F–I).  The merged dataset was used to 
validate the levels of expression of three Hub DERBGs 
(PDE8B, ESRRB, and SPRY2). In RB tumor tissue, the lev-
els of mRNA of PDE8B, ESRRB, and SPRY2 were greatly 
reduced (Fig. 4J).

Fig. 3 A protein–protein interaction (PPI) network of differentially expressed retinoblastoma genes (DERBGs) and functional analysis. A PPI network; 
B The top 10 genes; C Gene Ontology (GO) enrichment of DERBGs; D Chord plot of GO enrichment; E Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment of DERBGs; F Chord plot of the KEGG pathway enrichment

(See figure on next page.)
Fig. 4 Screening and expression level validation of Hub differentially expressed retinoblastoma genes (DERBGs). A Importance ranking of the top 
10 DERBGs; B Random forest algorithm; C Lasso-logistic algorithm; D Lasso result graph; E Venn diagram of differentially expressed genes (DEGs) 
detected using the random forest algorithm and Lasso-logistic algorithm; F Confusion matrix heat map of the Lasso-logistic algorithm; G Receiver 
operating characteristic (ROC) curve analysis of the Lasso-logistic algorithm; H Confusion matrix heat map of the random forest algorithm; I ROC 
curve analysis of the random forest algorithm; J messenger RNA (mRNA) expression levels of PDE8B, ESRRB, and SPRY2
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Fig. 4 (See legend on previous page.)
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Singe‑gene GSEA of Hub DERBGs in RB
A single-gene GSEA based on the KEGG gene sets was 
performed to determine the molecular mechanisms 
involved in Hub DERBGs in RB. As shown in Fig. 5, the 
top five KEGG pathways enriched by each Hub DERBG 
were identified. The estrogen-related receptor beta 
(ESRRB) gene was associated with cell cycle, spliceosome, 
and oocyte meiosis, as well as the p53  signaling path-
way and DNA replication (Fig. 5A). Figure 5B shows the 
association between SPRY2 and cell cycle, spliceosome, 
DNA replication, p53 signaling pathway, and meiosis of 
oocytes. There was a correlation between PDE8B and 
DNA replication, hematopoietic cell lineage, intestinal 
immune network for IgA production, primary immuno-
deficiency, and ubiquitin-mediated proteolysis (Fig. 5C).

Construction and assessment of a ceRNA regulatory 
network for Hub DERBGs in RB
To identify additional miRNAs and lncRNAs that may 
regulate the expression of Hub DERBGs, 54 DEmiRNAs 
were detected in the GSE41321 dataset, all of which were 
upregulated (Fig.  6A). Meanwhile, the miRWalk data-
base was applied to predict miRNAs, and the predicted 
miRNAs were intersected with DEmiRNAs to deter-
mine the nine  common miRNAs (hsa-miR-1225-5p, 
hsa-miR-1202, hsa-miR-342-3p, hsa-miR-146b-5p, hsa-
miR-1207-5p, hsa-miR-892b, hsa-miR-665, hsa-miR-575, 
and hsa-miR-188-5p; Fig. 6B). Moreover, 83 DElncRNAs 
in the GSE125903 dataset were identified, of which 59 
DElncRNAs were upregulated and 24 DElncRNAs were 
downregulated (Fig.  6C). In addition, based on these 9 
common miRNAs, 13  lncRNAs (DLEU2, LINC00668, 
SNHG15, CRNDE, DLEU1, PTPRG-AS1, LINC00664, 
ENTPD3-AS1, EXTL3-AS1, LINC00963, SNHG7, 

SNHG17, and LINC01134) and 4 miRNAs (hsa-miR-
342-3p, hsa-miR-665, hsa-miR-185) were analyzed using 
the Starbase database (Fig.  6D). Finally, interactions 
between these miRNAs and lncRNAs were integrated 
to construct a ceRNA regulatory network, and the visu-
alization of the network was carried out using Cytoscape 
(Fig. 6E).

Discussion
RB is one of the most serious eye diseases that can result 
in blindness, disability, and even death in infants [26–28]. 
Thus, the progression of novel strategies to diagnose and 
treat RB requires a detailed understanding of the mecha-
nisms involved.

Additional file  2 illustrates the flow chart of the pre-
sent study. This research aimed to identify RB DEGs and 
RB-associated gene modules using a systems biology 
approach called WGCNA. About 384 DEGs and nine 
module-clinical trait relationships significantly corre-
lated with RB, which suggests that these module genes 
contribute significantly to the occurrence and progres-
sion of RB. From cross-DEG and RB-associated module 
genes, 133  DERBGs were obtained for further analysis. 
Further, functions and pathways involved in RB patho-
genesis were examined. Fourteen GO terms and 5 KEGG 
pathways that were significantly enriched were identi-
fied. Among them, the notable ones are the pathways 
regulating the pluripotency of stem cells and ferroptosis. 
Certain cancers involve pathways of signal transmission 
that regulate stem cell pluripotency [29]. A new type of 
cell death characterized by distinct properties and rec-
ognizing functions that may be associated with physical 
conditions or different diseases, such as cancer, is called 
ferroptosis [30].

Fig. 5 Significantly enriched pathways of Hub differentially expressed retinoblastoma genes in retinoblastoma obtained by gene set enrichment 
analysis. A Enrichment plots for the five key pathways abnormally activated in estrogen-related receptor beta; B Enrichment plots for the five 
key pathways abnormally activated in Sprouty RTK signaling antagonist 2; C Enrichment plots for the five key pathways abnormally activated in 
phosphodiesterase 8B
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Fig. 6 ceRNA regulatory network of Hub differentially expressed retinoblastoma genes in retinoblastoma. A Volcano plot of differentially expressed 
miRNAs (DEmiRNAs) in the GSE41321 dataset; B DEmiRNAs network; C Volcano plot of differentially expressed long noncoding RNAs (DElncRNAs) in 
the GSE125903 dataset; D mi-LncRNAs network; E ceRNA network
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PPI networks of DEGs were built. RDH8, RGR, CNGA1, 
ROM1, SAG, RHO, PAX6, RLBP1, CNGB1, and RDH12 
were identified as the ten most important Hub genes iden-
tified from PPI analysis. A previous bioinformatics study on 
RB also showed that ROM1, CNGB1, and RDH12 may have 
a role in predicting the progress of RB, which is consist-
ent with the findings of this research [31]. Previous stud-
ies have shown that SAG is a prospective target that could 
further be explored as a potential candidate in therapy and 
may further assist in understanding the mechanism of RB 
[32]. SAG is related to photoreceptors, which are the “cell 
of origin” in RB. The proteins might likely participate in 
unidentified pathways in RB. Interestingly, RGR , CNGA1, 
and RLBP1 play an important role in retinitis pigmentosa. 
Whether they also play an important role in RB needs fur-
ther investigation [33]. It can be inferred that the progres-
sion of RB may be significantly influenced by these genes.

The RF and Lasso logistics diagnostic models revealed 
the top three genes with the highest score degree, namely 
PDE8B, ESRRB, and SPRY2. PDE8B (phosphodiester-
ase 8B) is a gene encoding an enzyme that catalyzes the 
hydrolysis of a secondary messenger molecule, cAMP, by 
cyclic nucleotide phosphodiesterase (PDE).  In addition, 
SPRY2 (Sprouty RTK Signaling Antagonist 2) encodes a 
protein that belongs to the Sprouty family [34–37]. Out-
comes from GSEA were enriched for p53 SIGNALING 
PATHWAY and SPLICEOSOME, in agreement with pre-
vious findings, indicating that the gene plays an impor-
tant role in RB initiation and development [38, 39].

In an extensive range of processes, ESRRB, a protein-
coding gene, plays an important role in the cell cycle, 
spliceosomes, and oocyte meiosis, as well as the p53 
signaling pathway and DNA replication [40, 41]. Among 
them, HEMATOPOIETIC CELL LINEAGE, PRIMARY 
IMMUNODEFICIENCY, and UBIQUITIN-MEDIATED 
PROTEOLYSIS are strongly associated with the mecha-
nism of cancer [42–45]. Nevertheless, the role of ESRRB 
in the progression of RB remains unknown.

Competitive endogenous RNA networks elucidate the 
mechanisms of RNA interactions that serve as key players 
in numerous biological processes. Although the precise 
mechanisms are yet to be fully understood, it is evident 
that these noncoding RNAs assume distinct functions in 
RB development. For example, study has shown that part 
of lncRNA DANCR can increase tumor aggressiveness 
[46]. The other study also showed that the lncRNA UCA1 
promotes carboplatin resistance in RB cells by acting as 
a ceRNA for miR-206 [47]. Our study has revealed novel 
regulatory networks that were not previously reported. 
The regulatory analysis of the ceRNA network presents 
an opportunity for further validation and investigation 
through gene overexpression and knockout, as well as the 
use of double-luciferase reporter analysis.

The following are some of the highlights of this study. 
First, multiple datasets were used in this study, which 
resulted in stronger outcomes than those observed in 
previous studies. Second, two diagnostic models have 
been developed in this study for the first time before 
the selection of final key genes by crossover. From a 
comparative analytical perspective, this is worthy of 
further investigation. In conclusion, the follow-up anal-
ysis in this study was complete, and the constructed 
ceRNA could be used as a basis for further research. 
Nevertheless, a limitation of this study is that it was 
not possible to validate the results by Quantitative Real 
Time Polymerase Chain Reaction (qRT-PCR) due to the 
lack of clinical samples.

Conclusions
To summarize, this study identified key genetic compo-
nents and the functional pathways that may contribute 
to the progression of RB. In this study, Hub genes and 
pathways were identified that may contribute to a better 
understanding of the mechanisms underlying RB patho-
genesis. Bioinformatics methods were used to construct 
a regulatory network for ceRNA related to RB. As well 
as identifying potential prognostic biomarkers, a deeper 
understanding of the development of RB tumors has 
been achieved. In the future, more experimental studies 
are required to validate the underlying biological regula-
tory mechanisms involved.
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