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Abstract 

Background  Glioblastoma (GBM) is a common malignant brain tumor with poor prognosis and high mortality. 
Numerous reports have identified the correlation between aging and the prognosis of patients with GBM. The pur-
pose of this study was to establish a prognostic model for GBM patients based on aging-related gene (ARG) to help 
determine the prognosis of GBM patients.

Methods  143 patients with GBM from The Cancer Genomic Atlas (TCGA), 218 patients with GBM from the Chinese 
Glioma Genomic Atlas (CGGA) of China and 50 patients from Gene Expression Omnibus (GEO) were included in the 
study. R software (V4.2.1) and bioinformatics statistical methods were used to develop prognostic models and study 
immune infiltration and mutation characteristics.

Results  Thirteen genes were screened out and used to establish the prognostic model finally, and the risk scores of 
the prognostic model was an independent factor (P < 0.001), which indicated a good prediction ability. In addition, 
there are significant differences in immune infiltration and mutation characteristics between the two groups with 
high and low risk scores.

Conclusion  The prognostic model of GBM patients based on ARGs can predict the prognosis of GBM patients. How-
ever, this signature requires further investigation and validation in larger cohort studies.
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Introduction
Glioblastoma (GBM) is the most common malignant 
brain tumor in adults, accounting for 47.7% of all malig-
nant tumors in the central nervous system [1]. The 

prognosis for GBM is poor, with a median survival of 
only 12  months after standard surgical resection and 
radiotherapy. Unfortunately, the addition of concomitant 
temozolomide-based chemotherapy has only improved 
the median survival to 14.6  months [2], suggesting that 
GBM has a high mortality rate. The age at diagnosis is 
an important risk factor for GBM, with the median age 
being 65  years [3]. Morbidity rate also increases with 
age, peaking at 75–84  years of age as reported [4]. Age 
impacts the prognosis of GBM as well [5, 6]. Researches 
conducted by the French Institute du Cancer (INCa) 
and other laboratories have demonstrated that the over-
all survival of patients with GBM decreases with the 
increase of age class of patients [5, 7]. These findings 
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highlight the need for early detection and intervention 
in older patients. GBM with IDH-wild type is classified 
by the World Health Organization (WHO) as Grade IV 
malignancy due to its high invasiveness [8], which pre-
sents a significant threat to public health and emphasizes 
the importance of identifying specific targets related 
to GBM. Therefore, active search for new and effective 
treatments for GBM is urgently needed.

Although the correlation between age and the prog-
nosis of glioblastoma has been established [5], the effect 
of age on the progression of glioma still remains unclear. 
Aging is characterized by senescence, which refers to the 
degeneration of the declined function of organs and tis-
sues over time. Furthermore, senescence operates at both 
the molecular and cellular levels [9]. Cellular senescence 
describes the process in which cells stop proliferating 
irreversibly after a limited number of divisions [10]. This 
process has been shown to play a crucial role in cancer, 
where it may be initiated as a protective mechanism to 
suppress the uncontrolled growth of cancer cells [11, 12]. 
Aging-related genes (ARGs) regulate the process of cel-
lular senescence and are highly associated with the devel-
opment of various cancers [13, 14]. As for glioma, the 
role of cellular senescence in tumorigenesis is known to 
be dual, while its mechanism remains complex and not 
yet fully understood so far. Previous studies have indi-
cated that glioblastoma in which EGFR signaling pathway 
is activated may inhibit cellular senescence by increas-
ing the expression of VEGFR2 and hence maintains its 
own invasiveness [15]. Another important factor is the 
senescence-associated secretory phenotype (SASP). For 
instance, astrocyte senescence and SASP induced by ion-
izing radiation (IR) facilitate the growth and migration 
of cancer cells through the secretion of SASP-associated 
factor HGF [16]. However, sodium butyrate-induced cel-
lular senescence has been shown to occur with the inhibi-
tion of glioma cell invasion concurrently [17], suggesting 
that cellular senescence may also play a suppressive role 
in tumor development in certain cases. Similar results 
have been reported in skin tumors [18], pulmonary 
tumors [19], and breast tumors [20]. Therefore, aging-
related genes may affect the occurrence and development 
of glioblastoma through complex signaling pathways. The 
function of aging-related genes needs to be better eluci-
dated, as a fully understanding of it could provide a basis 
for developing new targets and approaches to clinical 
treatment of patients with GBM.

To gain a better understanding of how the genetic com-
position of cancer affects clinical prognosis, research-
ers have established comprehensive genome-wide 
gene expression sets, such as the Cancer Genome Atlas 
(TCGA), to classify and detect genomic abnormalities in 
large patient cohorts worldwide. Among these datasets, 

studies on aging-related genes and patient prognosis have 
been carried out across a variety of cancers with some 
significant progress having been achieved, including 
breast cancer, gastric cancer, ovarian cancer, and rectal 
cancer [21–24]. Recent bioinformatics-based screening 
has identified CTSC as a potential candidate since knock-
down of CTSC has been found to be able to increase cell 
aging in glioma cell lines [25]. However, to the best of our 
knowledge, there have been few systematic studies on the 
relationship between aging-related genes and glioblas-
toma. Therefore, the establishment of prognosis-related 
models for glioblastoma based on aging-related genes 
could be helpful for better prediction of patient outcomes 
and may also contribute new insights into the pathogen-
esis of GBM.

Materials and methods
Data acquisition
The RNA-seq transcriptome data and clinical informa-
tion for GBM patients were sourced from the Cancer 
Genomic Map TCGA database (https://​portal.​gdc.​can-
cer.​gov/) (n = 143), CGGA database (https://​www.​cgga.​
org.​cn/) (n = 218) [26], and GEO database (https://​www.​
ncbi.​nlm.​nih.​gov/​geo/) (GSE83300, n = 50). We obtained 
a list of 307 aging-related genes from the Human Ageing 
Genomic Resources [HAGR, Human Ageing Genomic 
Resources (senescence.info)] [27] (Additional file  1: 
Table  S1). Patient data were subject to exclusion if any 
relevant information was missing to ensure the reliability 
and stability of the analysis. The remaining relevant data 
were processed using R software (v4.2.1).

Cox regression analysis
To identify the aging-related genes (ARGs) most closely 
associated with overall survival of GBM patients, dif-
ferential analysis of ARGs constructed by R package 
"DEseq2" was used to analyze differential gene expression 
between tumor and normal tissues in GBM patients. Dif-
ferentially expressed genes (DEGs) were identified with 
the threshold determined to be |logFC|> 1 and P < 0.05. 
116 ARGs obtained from TCGA data set. Results were 
displayed using forest plots created with the R packages 
"forestplot" and "survival". To explore potential protein–
protein interactions, we utilized the STRING database 
[28] and Cytoscape software (v3.7.2) [29]. Data acquisi-
tion was performed using STRING, while data display 
was carried out using Cytoscape.

Analysis of pathways and cellular functions of ARGs in GBM 
patients
We explored the enriched molecular mechanisms and 
cellular functions of the differentially expressed ARGs 
identified through differential analysis with Gene 
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Ontology (GO) [30], Kyoto Encyclopedia of Genes and 
Genomics (KEGG) pathway analysis [31], and Gene Set 
Enrichment Analysis (GSEA) [32]. R package "Clus-
terProfiler" was applied to visualize the results of our 
analysis.

Tumor mutation burden analysis
Somatic mutations presented in VarScan file format were 
downloaded from https://​portal.​gdc.​cancer.​gov/​repos​
itory, while copy number variation files were curated 
from UCSC Xena online. For analysis of the tumor 
mutational burden (TMB), we employed the R package 
"maftools" [33], and the result was displayed using water-
fall diagrams.

Immune infiltration
To explore and quantify immune cell infiltration, we 
utilized the "CIBERSORT" package of R software. This 
package employs a validated deconvolution algorithm 
to characterize cell composition based on a white blood 
cell characteristic matrix (LM22) [34], which includes 
characterization of various immune cells, such as mac-
rophages (M1 macrophages, M2 macrophages, and M0 
macrophages), T cells (T follicular helper cells, resting 
memory CD4 T cells, activated memory CD4 T cells, γδ 
T cells, CD8 T cells, Tregs, and naïve CD4 T cells), rest-
ing natural killer (NK) cells, activated NK cells, resting 
mast cells, activated mast cells, memory B cells, resting 
dendritic cells (DC), activated DC, naïve B cells, mono-
cytes, plasma cells, neutrophils, and eosinophils. We 
used CIBERSORT to quantify immunocyte infiltration 
in each sample and compared the results between differ-
ent groups. Additionally, we calculated the stromal score, 
immune score, estimate score and tumor purity using 
gene expression data with the R package "estimate".

Prognostic risk model and validation of aging‑related 
genes
To further identify prognostic genes, we used Least 
Absolute Shrinkage and Selection Operator (LASSO) 
regression analysis via the R packages "glmnet" to identify 
the prognostic genes. The risk score for each patient was 
calculated using the following formula:

Coef(i) represents the coefficient and Expr(i) represents 
the expression level of a particular gene. We utilized the 
"predict" function in the R package "glmnet" to calculate 
the risk score of individual patients. According to the 
median risk score, patients with GBM were then divided 
into high-risk and low-risk groups. At the same time, R 
software is used for model construction and verification. 

Risk Score = Coef (i)× Expr(i)

The train and test sets included 79 and 90 GBM patients, 
respectively, both sourced from the CGGA database after 
data processing. Subsequently, we utilized the R package 
"timeROC" to generate receiver operating characteristic 
(ROC) curves and plotted Kaplan–Meier (K-M) survival 
curves with package "survival" to demonstrate the results.

Drug sensitivity analysis
To select potential drugs for the treatment of GBM 
patients, we utilized expression data and drug data 
downloaded from the CellMiner database (https://​disco​
ver.​nci.​nih.​gov/​cellm​iner/​home.​do) [35] for drug sensi-
tivity analyses. The National Cancer Institute (NCI) 60 
data is a dataset with a total of 60 cancers and its cell 
lines were derived from nine different cancers. Valid data 
were screened out first and missing values were excluded 
from the expression data. Only FDA-approved drug data 
were selected for further analysis. Meanwhile, specific 
genes were selected for drug sensitivity prediction analy-
sis after data filtering. To predict drug sensitivity based 
on specific genes, Pearson’s correlation analysis was used 
to evaluate the relationship between the expression levels 
of these genes and drug response.

Statistical analysis
All statistical analysis was conducted in the R statisti-
cal software (v4.2.1) using established procedures. Cox 
regression analysis was employed to identify prognostic 
genes, while Kaplan–Meier method was used to conduct 
survival analysis. The correlation between two continu-
ous variables was examined by Spearman’s correlation 
analysis. AUC was calculated to describe patient survival 
at 1–5  years and used to assess the predictive power of 
risk score. Significant differences in each LM22 fraction 
were compared by the Mann–Whitney U test. Addition-
ally, all statistical tests were two-tailed, unless otherwise 
specified. Statistical significance was set at P < 0.05.

Results
Identification of differentially expressed ARGs
The workflow of this study is shown in Fig.  1. In this 
study, differentially expressed genes were analyzed using 
the “DESeq2” package of R software. Specifically, gene 
expression profiles and clinical information from 143 
GBM patients, which were statistically significant accord-
ing to the TCGA database, were utilized for the analysis. 
The results revealed that there was a significant difference 
in the expression of 116 genes out of 307 ARGs (Fig. 2A). 
Among them, 33 ARGs were down-regulated and 83 
genes were up-regulated. Furthermore, univariate Cox 
regression analysis was performed on these 116 ARGs 
to examine the relationship between their expression 
and prognosis (Fig.  2B). The top 20 genes with optimal 
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statistical significance were selected for further analy-
sis. To further explore the relationships among these 
genes, a correlation network consisting of 15 genes was 
established using the STRING database and Cytoscape 
(Fig.  2C). Additionally, Kaplan–Meier survival curves 
were plotted for these 15 genes to examine their rela-
tionship with prognosis (Fig.  3). Moreover, the immune 
infiltrates for the five most significant genes were plotted 
using the Timer database (Fig. 4).

Analysis of tumor mutation burden of differentially 
expressed ARGs
To further investigate the genetic alterations of the 116 
genes identified in our study, we conducted a tumor 
mutation burden analysis using the R package “maftools”. 
Our analysis revealed that missense mutations were the 
most common mutation classification and SNP was the 
most common mutation type (Fig.  5). Interestingly, the 
mononucleotide variation mainly occurred in the form of 
C > T.

Fig. 1  Flow of chart
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Analysis of functional enrichment
To elucidate the biological functions of the differentially 
expressed ARGs, we performed functional enrichment 

analysis using the GO and KEGG databases. GO enrich-
ment analysis revealed that the differentially expressed 
ARGs were primarily enriched in five biological processes 

Fig. 2  Analysis of DEGs. A Volcano map of DEG. B Forest map of differentially expressed ARGs using univariate Cox regression analysis. C Interaction 
network of ARGs from the STRING database
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(Fig. 6A) and five cellular components (Fig. 6C), includ-
ing regulation of apoptotic signaling pathways, intrin-
sic apoptotic signaling pathways, response to oxidative 
stress, response to radiation, regulation of DNA meta-
bolic process, chromosomal region, and transcription 
regulator complex. Furthermore, KEGG enrichment 
analysis demonstrated that both upregulated and down-
regulated DEGs were involved in Neurotrophin signal-
ing pathways as well as disease pathways such as Human 
cytomegalovirus infection, Human T-cell leukemia 
virus 1 infection, and Prostate cancer (Fig.  6B). To fur-
ther investigate the functional roles of the differentially 
expressed ARGs, we performed gene set enrichment 
analysis (GSEA). Our results showed that the differen-
tially up-regulated genes were mainly enriched in DNA 
binding transcription and Embryo organogenesis, while 
the differentially down-regulated genes were mainly 
enriched in Cation channel activity and Cation channel 
complex (Fig. 7).

Immune infiltration
The differential infiltration of immune cells in tumor 
tissues will help researchers understand the mechanism 
of tumor immune monitoring better. To investigate the 
immune infiltration level differences between high-risk 
and low-risk GBM patients, we utilized the “CIBER-
SORT” package to obtain immune cell profiles from 218 
patients in the CGGA database (Fig. 8A, B). We further 
analyzed the correlation between 22 immune cells and 
identified VEGFA as positively correlated with Mac-
rophages M0 (r = 0.53) and STAT3 as negatively corre-
lated with NK cells activated (r =  − 0.52). The “Stromal 
Score”, “Immune Score” and “Estimate Score" for 143 
GBM patients were calculated using the “estimate” 
package, and the relationship between the three scores 
and the clinical information of patients was shown by a 
heat map (Fig. 8C). In addition, the circular histogram 
illustrated the tumor purity (Fig. 8D).

Fig. 3  Kaplan–Meier survival curves of the first 9 genes most significantly correlated with prognosis
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Construction of the prognostic model with ARGs
To identify modules relevant to clinical features, we uti-
lized the data of 218 GBM patients from the CGGA 
database as the train set, while the data of 143 GBM 
patients from TCGA and 50 GBM patients from GEO as 
test set. By analyzing the differentially expressed genes 
(DEGs) between GBM tissues and normal tissues, we 
identified 209 DEGs that significantly correlated with 
age. We then intersected them with the 116 differen-
tially expressed ARGs obtained previously, resulting 
in 98 candidate ARGs for the construction of the prog-
nostic model (Fig. 9A, B). LASSO analysis further iden-
tified 13 crucial ARGs for constructing the prognostic 
model (Fig. 9C, D). Of these, STAT3, EGF, VCP, HSPA1A, 
HSPA1B, SP1, TFAP2A, and CLU showed positive corre-
lations with the risk score, while ERCC2, PPARA, PON1, 
FOXO4, and MAPT displayed negative correlations with 
the risk score. The coefficients of the calculation formula 
for the risk score are presented in a table (Additional 
file 2: Table S2). The correlation between these prognos-
tic genes and patients’ age in both the train and test sets 

was shown (Fig. 9E, F). Based on the risk score calcula-
tion formula, we obtained the corresponding risk scores 
of GBM patients. The overall survival (OS) of patients 
with low-risk scores was significantly better than those 
with high-risk scores (Fig. 10A). Furthermore, the model 
demonstrated significant differences in prognosis and 
risk scores of patients with GBM (Fig. 10B). We assessed 
the fitting effect of the model in the train set using a ROC 
curve (Fig.  10C) and the results showed that the AUC 
values over five years were 0.622, 0.731, 0.717, 0.808, and 
0.814, respectively (Fig. 10D). To further validate the per-
formance of the ARG signature in predicting prognosis, 
we calculated the risk scores of the validation set and 
grouped them according to the score level using the same 
formula. The ROC curve showed the model’s prediction 
effect in the test set (Fig. 10E, F).

Characteristics of high‑risk group and low‑risk group
To further examine the characteristics of the high-risk 
and low-risk groups, we analyzed the Kaplan–Meier 
(K-M) curve and risk score distribution of different 

Fig. 4  Correlation between the top 5 most significant ARGs and immunocyte infiltration
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survival outcomes. Significant differences were observed 
between these groups (Fig. 10G, H). In addition, the mul-
berry map displayed the relationship between the risk 
score subgroups and the clinical data of GBM patients 

(Fig. 11A, B). Our forest plots showed that the risk score 
was the most significant factor associated with patient’s 
overall survival (Fig. 11C, D). However, it was inconsist-
ent with the results of survival analysis, and we suspected 

Fig. 5  Overall results and waterfall plot of TMB of ARGs in GBM patients
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Fig. 6  Results of enrichment analysis. A Biological processes enrichment of differential genes of GO. B Enrichment result of KEGG. C Cellular 
components enrichment of differential genes of GO
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that it was related to the amount of data. Moreover, 
comparisons between the high-risk and low-risk groups 
revealed that the high-risk population had significantly 
higher distributions of NK cells resting and neutrophils 
and significantly lower distributions of NK cells acti-
vated, monocytes, and T cells CD4 naïve (Fig. 11E).

Correlation between risk score and drug sensitivity 
to chemotherapy
To further examine the correlation between the char-
acteristics of the NCI-60 cell line and drug susceptibil-
ity, Pearson’s correlation analysis was conducted. Our 
analysis utilized risk scores and data from the Cellminer 
database, which allowed us to investigate the relationship 
between risk scores and drug susceptibility. We found a 
significant negative correlation between risk scores and 
Nelarabine, Methylprednisolone, Zalcitabine, Ribavirin, 
Chelerythrine, and Fluphenazine (P < 0.001). Moreo-
ver, we also analyzed the correlation between ARGs 

and drugs. Our results revealed a positive correlation 
between CH25H and Caffeic acid, as well as a negative 
correlation between RAB37 and Nelarabine, Methylpred-
nisolone, Zalcitabine, and Ribavirin (Fig. 12).

Discussion
Cellular senescence is a crucial process in which the body 
eliminates unwanted cells and mediates tissue remod-
eling. This process is summarized by researchers as the 
senescence-clearing-regeneration model, which aims to 
promote cell metabolism initially [36]. However, in cer-
tain circumstances, aging cells may gradually accumulate 
and won’t be replaced completely by new cells over time, 
potentially contributing to disease resulting from cellular 
senescence. It is widely acknowledged that cellular senes-
cence plays a dual role in cancer development, either pro-
moting or inhibiting cancer progression under specific 
conditions [37, 38]. Additionally, most studies on GBM 
have revealed that cellular senescence may contribute 

Fig. 7  GSEA enrichment analysis. A GSEA enrichment result of up-regulated differential genes. B GSEA enrichment result of down-regulated 
differential genes
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to its development [39–41], and may ultimately impact 
the process of tumor recurrence after radiotherapy and 
chemotherapy [16, 42]. Therefore, cellular senescence 
may act as a therapeutic resistance factor in GBM. In 
summary, understanding the role of cellular senescence 
in health and disease is essential for developing effective 
interventions and treatments.

In our study, gene expression data of GBM tissues 
and normal tissues acquired from the database were 
used to screen differential genes, and the obtained 
DEGs and ARGs were combined to get the differential 
expression genes of ARG. Univariate Cox regression 

analysis was performed using clinical data from the 
same database to identify the most prognostic differen-
tially expressed ARGs. Bioinformatics statistical meth-
ods such as immune infiltration, Gene Set Enrichment 
Analysis (GSEA), Tumor Mutation Burden (TMB), and 
co-expressed genes were employed to demonstrate the 
biological function of these ARGs. To further validate the 
role of the identified ARGs in predicting the prognosis 
of patients with GBM, a risk scoring signature was con-
structed based on gene expression LASSO analysis. This 
approach helped in analyzing and confirming the role 
of the risk scoring model in predicting the prognosis of 

Fig. 8  Analysis of immune infiltration in patients with GBM based on TCGA database. A Heat map of the correlation between 22 immune cells and 
ARGs. B The proportion of immune cell infiltration in 143 GBM patients. C Heatmap of the 3 immune scores and risk scores. D Circular histogram of 
purity score
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patients with GBM. Additionally, we also analyzed poten-
tial anticancer drug targets in patients with GBM.

We established a 13-aging-related-gene risk signa-
ture to predict the prognosis of glioblastoma (GBM) 
patients. Our results showed that patients classified as 
low-risk had a higher five-year survival rate of GBM, 
while those identified as high-risk had a poor prognosis. 
The risk signature included STAT3, EGF, VCP, HSPA1A, 
HSPA1B, SP1, TFAP2A, CLU, ERCC2, PPARA, PON1, 
FOXO4, and MAPT. The first eight genes were related 
to high risk while the latter five indicated low-risk. 
STAT3 is a cytoplasmic transcription factor whose 
involved gene network plays a critical role in the pro-
gression and epithelial-mesenchymal transition (EMT) 
of GBM cells [43, 44]. Furthermore, EGF increases the 
expression of Netrin-4 in the U251MG cell line and 
prevents tumor cell senescence induced by DNA dam-
age in GBM, hence it is regarded as a protective fac-
tor [45]. Researchers have also found that high levels 
of HDAC6 and low levels of p97/VCP may be respon-
sible for resistance to TMZ treatment and endoplas-
mic reticulum (ER) stress in GBM cells [46]. HSPA1A, 
which is regulated by lncRNA NONHSAT079852.2, 
overexpresses in primary GBM cells, and is associated 
with the progression and recurrence of GBM [47, 48]. 
Moreover, studies have shown that HSPA1B inhib-
its apoptosis via the JNK pathway and is linked to the 
sensitivity of GBM cells to erlotinib [49]. SP1 acts as 

an activator of DLEU1 transcription and promotes 
the proliferation of GBM [50]. However, the roles of 
TFAP2A and CLU in GBM are yet to be fully elucidated. 
TFAP2A is the upstream transcription factor of ITPKA, 
which promotes the occurrence and development of 
lung adenocarcinoma (LUAD) by interacting with Dre-
brin1 [51]. Furthermore, clusterin expressed by CLU is 
a highly evolved and conserved glycoprotein that asso-
ciates with the development of prostate, breast, pan-
creatic and many other cancers as reported [52]. The 
latter five genes were associated with a low-risk score. 
ERCC2 is involved in nucleotide excision repair (NER), 
which may be related to the repair of DNA damage in 
glioma cells [53]. Researchers found that the odds ratio 
(OR) for glioma increases significantly in the popula-
tion carrying homozygous variants of ERCC2 K751Q 
(QQ) [54]. In addition, PPARA​ is overexpressed in pri-
mary GBM and is associated with a favorable prognosis 
[55]. Studies have found that the serum level of PON1 
in glioma patients is lower than that of normal people 
[56]. Moreover, the PON enzyme coded by PON1 could 
detoxify liquid peroxidation, suggesting that PON1 may 
be the resistance factor of glioma [57]. FOXO4 is down-
regulated in GBM while its overexpression promotes 
apoptosis and inhibits the migration and invasion of 
cancer cells [58]. A study revealed that the MAPT 
gene-expressed Tau is a microtubule-associated protein 
and its restrained expression suppresses the growth 

Fig. 9  Construct prognosis model with candidate. A Circular histogram of P-value from Pearson correlation analysis. B Selection of candidate genes. 
G1:116 DE-ARGs. G2: 209 DEGs that significantly correlated with age. C LASSO coefficients of the 13 ARGs. D Identification of genes for construction 
of prognostic risk score model. E–F Correlation between Prognostic Genes and Age
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and proliferation of GBM cells [59]. All 13 ARGs were 
involved in the pathogenesis of the disease. In conclu-
sion, these results indicated that the 13 markers had 
potential clinical application in the future.

In our study, we observed that the differentially 
expressed genes were mainly enriched in apoptotic 
signaling pathways, oxidative stress response, and DNA 
metabolism based on GO enrichment analysis. Apop-
tosis is a key concept in tumor treatment, and studies 
have indicated that andrographolide can participate in 
the inhibition of the DBTRG-05MG cell line through 
the apoptotic signaling pathway [60], demonstrating its 
potential therapeutic effect on this disease. Furthermore, 

the inhibition of apoptotic pathways can significantly 
reduce the efficacy of anti-tumor therapy. For instance, in 
ovarian cancer, the inhibitory effect of inositol‐required 
enzyme 1α (IRE1α) on the apoptotic pathway resulted in 
poor clinical efficacy of AZD1775 [61]. Besides, malig-
nant cells are known to have higher levels of intrin-
sic reactive oxygen species (ROS) compared to normal 
cells [62]. To maintain redox balance and survival, these 
cells activate their antioxidant defense systems and fight 
against the intrinsic oxidative stress [63]. Combination 
of AF and cold plasma has been reported to enhance the 
oxidative stress process to achieve the purpose of GBM 
treatment [64]. However, there is a scarcity of research 

Fig. 10  Performance of the prognosis model in the train set and test set. A Survival state distribution in train set. B Risk score distribution in train 
set. C ROC curve of OS in train set. D ROC curve of OS for 5 years in train set. E–F ROC curve of OS for 5 years in test set. G Box plot of risk scores for 
different prognoses. H Kaplan–Meier survival curve of high-risk group and low-risk group
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Fig. 11  Mulberry figure of association between Clinical phenotype and forest plot for Cox regression. A Train set. B Test set. C Univariate Cox 
regression. D Multivariate Cox regression. E Comparison of immune cell infiltration between high-risk and low-risk group
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on DNA metabolism and its role in the pathogenesis of 
GBM. Therefore, further research is needed to investigate 
the role of DNA metabolism and to verify its contribu-
tion to the pathogenesis of GBM.

The tumor microenvironment (TME) is known to be 
complex and diverse in its immune state [65]. There-
fore, predicting response to immune checkpoint inhibi-
tors (ICI) based on TME cell infiltration is an important 
procedure for improving the current efficacy of ICI and 
developing new immunotherapeutic regimens [66]. In 
our study, we analyzed immune infiltration and found 
significant differences in five immune cell infiltration 
degrees between high-risk and low-risk GBM patients, 
including NK cells resting, neutrophils, NK cells acti-
vated, monocytes, and T cells CD4 naïve. Several studies 
have reported treatment of GBM based on these immune 
checkpoints. For instance, the calcipotriol/TSLP/
CD4 + T axis has been shown to activate CD8 + T and 
NK cells as a novel therapeutic modality [67]. Therefore, 
screening patients with GBM who have a high-risk score 
can help select an appropriate treatment strategy based 
on immune checkpoint inhibitors.

The analysis of immune infiltration revealed varying 
degrees of infiltration by T cells CD4 naïve, NK cells, 
Macrophages M0, and neutrophils in patients with dif-
ferent risk scores. Notably, CD4 + helper T cells have 
the ability to fully support the potential of CD8 + T cells 
in  vivo [68], and support a lasting tumor-specific cyto-
toxic T cell response by guiding down-regulation of 
co-inhibitory receptors and enhancing CD8 + T cells’ 
ability to infiltrate tumors [69]. Additionally, studies have 
indicated that calmodulin-dependent kinase kinase 2 
(CaMKK2) reduces the amplification of effector CD4 + T 
cells to limit the tumor penetrance of GBM patients [70]. 
NK cells are also essential components of the immune 
system that play crucial roles in controlling microbial 
infection and tumor progression [71]. Furthermore, NK 
cells have been found to control the growth and metas-
tasis of transplantable tumors in mouse models that NK 
cells are depleted through antibodies [72]. Presently, 
immunotherapy based on NK cells has been used to treat 
GBM. For example, FDA approved the use of allogenic 
NK cells derived from human placental hematopoietic 
stem cells for GBM therapy [73]. Additionally, CD73, an 
immune checkpoint found in tumor-infiltrating NK cells, 

Fig. 12  Association between these signatures and estimated IC50 value of drugs
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has been discovered to be able to bind tumor cells, indi-
cating its potential as a therapeutic target [74]. Neutro-
phils also play significant roles in tumor development. 
Tumor matrix infiltration causes tumor cells to undergo 
ferroptosis [75], while, in neuroinflammation, neutro-
phils can infiltrate the central nervous system. There is 
also a correlation between an increase in neutrophils and 
the severity of central nervous system diseases [76]. Our 
study results are consistent with past findings, indicat-
ing that GBM tumor infiltration reduces the enrichment 
of neutrophils [76]. Nevertheless, neutrophils have two 
sides to GBM. A study has shown that neutrophils have 
both anti-tumor effects in the early stages and tumor-
promoting effects in the later stages [77]. Unfortunately, 
targeting neutrophils in GBM therapy remains in its 
infancy, partly due to its small numbers and unknown 
function.

In the drug sensitivity analysis, two ARGs, RAB37 and 
CH25H, were found to be significantly correlated with 
multiple drugs. Specifically, the transcription and transla-
tion of CH25H have been found to increase in response 
to TNFα and IL1β in glioblastoma cell lines. Further-
more, the U87MG and GM133 GBM cell lines upregu-
late the synthesis and secretion of 25-hydroxycholesterol 
(25-OHC) to levels comparable to mouse macrophages 
derived from bone marrow under inflammatory condi-
tions [78]. The anti-cancer activity of the designed CAPE 
analogues on GBM cells also demonstrates the proposed 
compounds’ ability to interact with key residues [79]. 
Moreover, Yang et  al. [80] found that RAB37 mediates 
the secretion of CHI3L1 in immune cells, highlighting 
that nCHI3L1 Abs have the potential to target cancer 
cells and the tumor microenvironment simultaneously. 
Ribavirin, a nucleic acid analogue, has been used as an 
antiviral agent against RNA and DNA viruses. Interest-
ingly, analysis by FACS shows that ribavirin treatment, 
downstream of the p53 pathway, could induce apoptosis, 
indicating that both exogenous and endogenous apopto-
sis in malignant glioma cell lines is activated [81]. With 
no reports currently available on the treatment of GBM 
using other drugs, our findings provide a new direction 
for chemotherapy approaches.

We established a model to predict the prognosis of 
patients with GBM. However, this study has certain 
limitations that must be considered. Firstly, as a bioin-
formatics study, it relies on data from multiple historical 
data sets, and the number of samples included is rela-
tively small. Therefore, in order to develop more reliable 
clinical applications, it is necessary to obtain prospec-
tive data from clinical cohorts to validate the results. 
Secondly, functional research investigations and animal 
experiments are necessary to verify the predictive accu-
racy of risk models and achieve a better understanding 

of the aging-related processes. These studies will help 
to identify possible mechanisms underlying the disease 
and facilitate the development of effective treatment 
strategies.

Conclusion
This study predicts the prognosis of GBM patients using 
13 ARGs. The risk score was found to be significantly 
associated with GBM prognosis, suggesting that this 
prognostic model may serve as an effective tool for pre-
dicting the prognosis of patients with GBM. However, 
further investigation and validation of this model is nec-
essary, particularly in larger cohort studies, to ensure 
its reliability and generalizability to diverse patient 
populations.
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