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Abstract
Background Polycystic ovary syndrome (PCOS) is the most common endocrinopathy in women. This study was 
designed to investigate the associations of vitamin D receptor (VDR) gene variants with PCOS risk and the severity of 
the disease phenotype among Egyptian women.

Methods In this study, 185 women with PCOS and 207 fertile women as controls were recruited. Cases were divided 
into phenotype groups based on their clinical and paraclinical features. Clinical and laboratory data were measured 
in the patient and control groups. All individuals were genotyped for nine single-nucleotide polymorphisms (SNPs) 
located across the VDR gene using TaqMan allelic discrimination real-time polymerase chain reaction.

Results Women with PCOS were significantly (P ≤ 0.001) higher body mass index (BMI) (22.77 ± 2.5) than 
controls (21.68 ± 1.85 kg/m2). Women with PCOS had significantly higher anti-Mullerian hormone, prolactin, 
luteinizing hormone (LH), LH/follicle-stimulating hormone (FSH), free testosterone, total testosterone, and 
dehydroepiandrosterone sulfate levels than the control group (P ≤ 0.001). The level of FSH was significantly lower 
in women with PCOS than in the control group (P ≤ 0.001). Analysis of the VDR rs4516035, rs2107301, rs1544410 
(BsmI), and rs731236 (TaqI) SNPs showed a significant association with PCOS phenotype A. Furthermore, rs2228570 
(FokI), rs3782905, rs7975232 (ApaI), and rs739837 SNPs showed a significant association with PCOS phenotype C. 
Furthermore, rs11568820 SNP showed a significant association with PCOS phenotype D (P < 0.05).

Conclusions The findings of this study indicate that variations in the VDR gene were associated with an increased 
risk of PCOS in Egyptian women.
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Introduction
Polycystic ovary syndrome (PCOS) is a prevalent endo-
crine disorder that affects 6-12% of women of reproduc-
tive age worldwide [1]. The syndrome is a complicated 
and diverse disorder with a variety of clinical symptoms, 
the most common of which are hyperandrogenism and/
or hyperandrogenemia (HA), oligo/anovulation (OA), 
and polycystic ovary morphology (PCOM) [2, 3]. PCOS 
women are divided into four phenotypes: phenotype A 
(HA, OA, and PCOM), phenotype B (HA and OA), phe-
notype C (HA and PCOM), and phenotype D (OA and 
PCOM) [4].

A significant potential gene for PCOS is the vitamin 
D receptor (VDR) gene, also known as the calcitriol 
receptor or NR1I1 [5]. It is a ligand-activated transcrip-
tion factor that mediates the genomic effects of vitamin 
D and controls a number of endocrine and cellular pro-
cesses, such as bone metabolism and calcium-phosphate 
homeostasis [6]. Several tissues, including the skeletal, 
parathyroid, and reproductive systems, express it, and 
several target genes are modulated to induce a range 
of biological consequences. The VDR gene has a chro-
mosomal location of 12q12–14 containing a promoter 
region that is pre-extensive and able to produce many 
transcripts that are tissue-specific. Research has been 
done on several VDR polymorphisms to determine their 
functional importance and possible impacts on disease 
susceptibility to complicated diseases such as osteoar-
thritis (OA), diabetes, cancer, high myopia, cardiovascu-
lar disease, and tuberculosis [7–12]. A few studies have 
also looked at the role of the VDR gene in endocrine dis-
eases such as PCOS [6, 13, 14].

Approximately, 200 single-nucleotide polymorphisms 
(SNPs) of the VDR gene were found to be involved [15]. 
Vitamin D and VDR variations, including Cdx2, Fok1, 
Apa1, and Taq1, have been linked to the endocrine, met-
abolic, and genetic components of PCOS, demonstrating 
their critical functional involvement [6, 14, 16].

This study was designed to examine the associa-
tion of the nine functionally most relevant VDR SNPs 
rs11568820 (C/T), rs4516035 (C/T), rs3782905 (C/G), 
rs2228570 (FokI) (C/T), rs2107301 (C/T), rs1544410 
(BsmI) (G/A), rs7975232 (ApaI) (A/C), rs731236 (TaqI) 
(T/C), and rs739837 (T/G) with PCOS risk and the sever-
ity of the disease phenotype among Egyptian women.

Patient and method
Study population
This case-control study included a convenience sam-
ple of 392 women (207 healthy controls and 185 cases 
of PCOS) recruited at the Obstetrics and Gynecology 
Department, Mansoura University Hospital, Egypt. Lab-
oratory workup was performed at the Molecular Genetic 
Unit in Endemic Hepatogastroenterology and Infectious 

Diseases, Faculty of Medicine, Mansoura University, dur-
ing the period from January 2014 to November 2016.

The subjects were classified according to the Rotterdam 
consensus (Rotterdam ESHRE/ASRM Sponsored PCOS 
consensus workshop group, 2004). PCOS was diagnosed 
according to the Rotterdam criteria [4]. The first group 
consisting of 207 healthy fertile women without any 
PCOS features and who have regular menstrual cycles 
(26–35 days) was enrolled as the control group. The sec-
ond group comprised 185 women with PCOS, including 
88 with phenotype A PCOS (OD + HA + PCOM), 41 with 
phenotype C PCOS (HA + PCOM), and 56 with pheno-
type D PCOS (OH + PCOM).

All participants were females of reproductive age who 
had not been pregnant and had not received hormone 
treatment for at least three months prior to the study. 
Age and body mass index (BMI), which is determined 
by dividing weight (kg) by height2 (m2), were reported 
to exclude obese women. Follicle-stimulating hormone 
(FSH), luteinizing hormone (LH), total testosterone 
(TT), and free testosterone (FT) were detected by che-
miluminescence immunization (Beckman Access Health 
Company, Chaska, MN, USA) with intra- and inter-assay 
variation coefficients of 10% during the early follicular 
phase of the cycle. Several recognized causes of androgen 
excess and ovulatory dysfunction were excluded. Serum 
cholesterol and triglycerides (TG) were evaluated in the 
fasting blood samples using precipitation and enzymatic 
methods.

Genomic DNA extraction from peripheral blood
All individuals had their genomic DNA extracted from 
peripheral blood using a commercial Qiagen DNA isola-
tion kit (QIAmp DNA Mini kit; Qiagen, Hilden’s, Ger-
many), following the manufacturer’s instructions. A 2% 
ethidium bromide-stained agarose gel was used to deter-
mine the integrity of the DNA using a NanoDrop spec-
trophotometer (NanoDropTM2000/2000c, Thermo-Fisher 
Scientific, CA, USA).

Detection of VDR polymorphisms
Nine SNPs located in the entire VDR gene were selected 
for the current study (Fig.  1). These SNPs include two 
SNPs namely, 1- rs11568820 (C/T) and 2- rs4516035 
(C/T) in the promoter region flanking to transcriptional 
region. Six SNPs located in the transcriptional region; 3- 
rs2228570 (FokI) (C/T), 4- rs3782905 (C/G), 5- rs2107301 
(C/T), 6- rs1544410 (BsmI) (G/A), 7- rs7975232 (ApaI) 
(A/C), 8- rs731236 (TaqI) (T/C), and 9- rs739837 (T/G) 
located in untranslated region (UTR). TaqMan allelic dis-
crimination SNP primers were made. Fluorescent dyes 
were used to mark the probes that were particular to each 
allele (VIC and FAM). Probes are used in a real-time PCR 
reaction on a device (Applied Biosystems, model 7500) 
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to type each DNA sample’s allele. Fluorescein-amidite-
labeled SNP primers and probes that are already pro-
duced for use in real-time PCR (purchased from Applied 
Biosystems).

The following 20 µL were used for the reaction: 10.0 µL 
Universal Master Mix II by TaqMan (2×), 1.0 µL Assay 
Mix for SNP Genotyping (20×), 1.0 µL template for DNA, 
and 8.0 µL of RNase free water. A thermal cycler was 
used to carry out real-time PCR genotyping (Applied 
Biosystems, 7500 Real-Time PCR system). The subse-
quent cycles were utilized: the first step in denaturation 
at 95ºC for 10  min, then the denaturation stage for 40 
cycles at 95ºC for 15 s, and the stage of annealing/exten-
sion at 60ºC for 1  min. TaqMan plate well fluorescence 
intensities were measured. Applied Biosystems, Foster 
City, California, USA’s automated allele-calling software 
(SDS 2.4) was used to evaluate the fluorescence data files 
from each plate [17]. To confirm the quality of the study, 
duplicate genotypes were performed on 10% of all sam-
ples. For statistical analysis, SPSS software was used to 
export all genotyping data.

Statistical analyses
Statistical analysis was performed on the data using the 
SPSS software program (IBM Corp. Released 2012, Ver-
sion 21.0. IBM SPSS Statistics for Windows; Armonk, 
NY, USA). Numbers and percentages were used to con-
vey categorical data The categorical data were compared 
using the chi-square or Monte Carlo test if required. The 
Shapiro test was used to determine whether quantitative 
data were normal. The mean and SD were utilized as vari-
ables with a normal distribution. More than two groups 
were compared using one-way ANOVA with Bonfer-
roni post hoc multiple comparisons. The non-parametric 
variables were described using the median and interquar-
tile ranges. In contrast to the Mann-Whitney test, which 

was used to compare just two groups, the Kruskal-Wallis 
test was used to compare several groups. Each allele’s 
total genotyping was scored and totaled in each group. 
Allele carriage is the proportion of people who carry at 
least one variation of a certain allele. A given allele’s odds 
ratio (OR) and 95% confidence interval (CI) were com-
puted, compared to the case in which the target allele is 
not carried, using the program Med Calc (Med Calc sta-
tistical software version 16.4.3). Each SNP’s allele carriage 
variables were compared using chi-square and Fisher’s 
exact tests. The difference was thought to be significant 
if P < 0.05.

Results
The clinical characteristics of the PCOS and fertile 
groups and the PCOS phenotype groups, including 
PCOS phenotype, age, pre-pregnancy BMI, gravity, par-
ity, and primary and secondary infertility data, are shown 
in Table  1. Women with PCOS were significantly older 
(24.09 ± 3.84 years vs. 21.57 ± 3.63 years) and had higher 
BMI (22.77 ± 2.5  kg/m2 vs. 21.68 ± 1.85  kg/m2) than the 
control group.

Laboratory data of the fertile and PCOS groups and 
the PCOS phenotype groups, including anti-Mullerian 
hormone (AMH), prolactin, LH, FSH, LH/FSH, FT, TT, 
dehydroepiandrosterone sulfate (DHEA-s), cholesterol, 
TG, and HbA1c levels, are shown in Table  2. Women 
with PCOS had significantly higher AMH, prolactin, 
LH, LH/FSH, FT, TT, and DHEA-s levels than the fertile 
group (P ≤ 0.001). Furthermore, women with PCOS had 
significantly higher levels of cholesterol, TG, and HbA1c 
than the controls (P ≤ 0.001). The level of FSH was signifi-
cantly lower in women with PCOS than in the controls 
(P ≤ 0.001).

The different genotypes of PCOS phenotypes and the 
fertile group of the VDR gene SNPs are shown in Table 3. 

Fig. 1 Arrangement of proposed restriction sites within the VDR’s genetic region. The exons of the VDR gene are shown by the black boxes. Arrows are 
used to indicate where possible polymorphisms are located
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In this study, two SNPs located in the promoter region, 
namely, rs11568820 and rs4516035, were genotyped. 
The minor allele frequencies were 0.15 and 0.16 in the 
fertile group compared with those (0.47 and 0.28) in the 
PCOS group, respectively. Furthermore, six SNPs located 
in the transcriptional region, namely, rs2228570 (FokI), 
rs3782905, rs2107301, rs1544410 (BsmI), rs7975232 
(ApaI), and rs731236 (TaqI), were genotyped. The 
minor allele frequency of rs2228570 (FokI) initial codon 
was 0.16 in the fertile group, whereas that in the PCOS 
groups was 0.28. Meanwhile, the minor allele frequencies 
of rs3782905 and rs2107301 in introns 3 and 4 were 0.14 

and 0.11 in the fertile group, whereas those in the PCOS 
group were 0.29 and 0.26, respectively.

Furthermore, the minor allele frequencies of rs1544410 
(BsmI) and rs7975232 (ApaI) located in intron 9 were 
0.15 and 0.21 in the fertile group, whereas those in the 
PCOS group were 0.30 and 0.32, respectively. Meanwhile, 
the minor allele frequency of rs731236 (TaqI) located 
in exon 10 was 0.12 in the fertile group, whereas that in 
the PCOS group was 0.32. Finally, rs739837 SNP located 
in the UTR region was genotyped. The minor allele fre-
quency was 0.13 in the fertile group, whereas that in the 
PCOS group was 0.28. The differences in minor allele 
carriage of different SNPs were analyzed in the PCOS 

Table 1 Clinical characteristics of the fertile and PCOS groups
Fertile (207)
Mean ± SD

PCOS (185)
Mean ± SD

PCOS phenotypes
A (88)
Mean ± SD

C (41)
Mean ± SD

D (56)
Mean ± SD

Age (Years) 21.57 ± 3.63 24.09 ± 3.84*** 23.22 ± 3.67*** 24.93 ± 3.64*** 24.84 ± 4.0***

Pre-pregnancy BMI (kg/m2) 21.68 ± 1.85 22.77 ± 2.5*** 22.6 ± 2.23*** 22.8 ± 2.8*** 23.0 ± 2.71***

Gravity, n(%)
 1 103(49.76) 98(52.97) 45(51.14) 24(58.54) 29(51.79)

 2 65(31.4) 62(33.51) 27(30.68) 14(34.15) 21(37.5)

 3 30(14.49) 19(10.27) 15(17.05) 1(2.44) 3(5.36)

 4 8(3.86) 6(3.24) 1(1.14) 2(4.88) 3(5.36)

 5 1(0.48) 0 0 0 0

Parity, n(%)
 0 15(7.25) 128(69.19) 63(71.59) 28(68.29) 37(66.07)

 1 114(55.07) 45(24.32) 17(19.32) 12(29.27) 16(28.57)

 2 57(27.54) 12(6.49) 8(9.09) 1(2.44) 3(5.36)

 3 18(8.7) 0 0 0 0

 4 3(1.45) 0 0 0 0

Infertility, n(%)
Primary 0 98(52.97) 45(51.14) 24(58.54) 29(51.79)

Secondary 0 87(47.03) 43(48.86) 17(41.46) 27(48.21)
PCO, polycystic ovary; SD, standard deviation; BMI, body mass index, **, *** significant difference compared with the fertile group at P ≤ 0.01 and P ≤ 0.001, respectively, 
using the t-test.

Table 2 Laboratory data of the fertile and PCOS groups and the PCOS phenotype groups
Fertile (207)
Mean ± SD

PCOS (185)
Mean ± SD

PCOS phenotypes
A (88)
Mean ± SD

C (41)
Mean ± SD

D (56)
Mean ± SD

AMH (ng/ml) 5.1 ± 0.78 9.77 ± 1.8*** 9.44 ± 1.29*** 8.58 ± 1.19*** 11.16 ± 1.98***

Prolactin (ng/dl) 9.75 ± 2.75 15.54 ± 5.49*** 16.06 ± 5.88*** 15.93 ± 5.1*** 14.43 ± 5.05***

LH (IU/L) 6.73 ± 2.48 11.16 ± 4.45*** 13.02 ± 4.38*** 10.88 ± 4.34*** 8.45 ± 3.03***

FSH (IU/L) 7.32 ± 2.68 4.15 ± 1.44*** 4.55 ± 1.43*** 4.35 ± 1.53*** 3.39 ± 1.07***

LH/FSH 0.92 ± 0.16 2.67 ± 0.53*** 2.86 ± 0.43*** 2.49 ± 0.51*** 2.51 ± 0.59***

Free testosterone (ng/dl) 0.21 ± 0.12 0.85 ± 0.27*** 0.89 ± 0.29*** 0.9 ± 0.24*** 0.75 ± 0.23***

Total testosterone (ng/dl) 46.04 ± 26.45 184.19 ± 58.22*** 192.82 ± 62.17*** 194.72 ± 52.67*** 162.92 ± 50.47***

DHEA-s (µg/ml) 1.75 ± 0.47 3.1 ± 0.75*** 3.32 ± 0.77*** 3.33 ± 0.717*** 2.59 ± 0.41***

Cholesterol (mg/dl) 159.26 ± 15.17 190.95 ± 14.74*** 196.85 ± 13.77 *** 185.51 ± 14.65*** 185.64 ± 12.83***

TG (mg/dl) 105.15 ± 22.43 115.68 ± 14.74*** 117.58 ± 28.15*** 113.27 ± 19.12*** 114.46 ± 14.64***

HbA1c 5.44 ± 0.5 5.66 ± 0.53*** 5.64 ± 0.52** 5.71 ± 0.56** 5.66 ± 0.52**

PCO, polycystic ovary; SD, standard deviation; AMH, anti-Mullerian hormone; LH, luteinizing hormone; FSH, follicle-stimulating hormone; DHEA-s, 
dehydroepiandrosterone sulfate; TG, triglycerides; HbA1c, hemoglobin A1C. **, *** significant difference compared with the fertile group at P ≤ 0.01 & P ≤ 0.001, 
respectively, using the t-test.
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and PCOS phenotype groups and compared with those 
in the fertile group using the autosomal dominant model. 
The total minor allele frequency ranged from 0.18 to 0.30, 
and the global minor allele frequency ranged from 0.18 
to 0.49. The distribution of allele carriages was tested for 
equilibrium using the Hardy–Weinberg equation. The 
allele carriages of all SNPs in all groups were balanced 
(P > 0.05). The allele carriages and frequencies of the sub-
phenotypes of PCOS are also shown in Table 3. No signif-
icant difference was observed between the allele carriage 
of primary infertility and that of secondary infertility.

The risk of minor allele carriage of different SNPs was 
compared in different phenotypes and compared with 
that in the fertile group using a dominant model, which 
means that at least one copy of a minor allele is associated 
with the disease (Table 4). The carriage of the T allele of 
rs11568820 SNP located in the promoter region had the 
highest association in the PCOS group compared with 
that of the control group (OR, 6.93; 95% CI, 4.58–10.48; 
P < 0.0001) (Fig.  2). The same results were obtained for 
the PCOS phenotype groups as a highly significant risk 
association was observed between phenotypes A, C, and 
D compared with that in the control group (P < 0.0001). 
The association of the T allele carriage of rs4516035 
located in the promoter region was also higher among 
the PCOS group and phenotypes A and C than that in 
the control group.

Along the transcriptional region, a significant associa-
tion of the T allele carriage of rs2228570 (FokI) located 
in the initial codon was observed among the PCOS group 
and phenotypes C and D compared with that in the con-
trol group. Furthermore, there was a significant associa-
tion between the G allele carriage of rs3782905, which is 
located in intron 3, and the T allele carriage of rs2107301, 
which is located in intron 4, among the PCOS group and 
all PCOS phenotype groups. In intron 9, there was a sig-
nificant association of the A allele carriage of rs1544410 
(BsmI) among the PCOS group and all PCOS pheno-
type groups and the C allele carriage of rs7975232 (ApaI) 
among the PCOS group and phenotypes C and D only. 
Furthermore, there was a significant association between 
the C allele carriage of rs731236 (TaqI) located in exon 10 
among the PCOS group and all PCOS phenotype groups. 
Finally, there was a significant association between the 
G allele carriage of rs739837 located in the UTR region 
among the PCOS group and all PCOS phenotype groups.

SNP, single-nucleotide polymorphism; PCOS, polycys-
tic ovary syndrome; OR, odds ratio; CI, confidence inter-
val; P, probability < 0.05. The highlighted cells indicate the 
highest significant risk.

Discussion
A popular genetic approach for examining relationships 
between candidate genes and dichotomous disease fea-
tures is the unrelated case-control design. The probed 
SNP may be in high linkage disequilibrium with a causal 
variant or the SNP itself may be a common variant that 
significantly affects the trait if the association is signifi-
cant. Population stratification within unrelated case-con-
trol populations, however, is a potential issue that should 
be taken into account in studies that integrate data. A 
family-based case-control design is an alternate strategy 
to prevent spurious association [18, 19]. However, the 
availability of a nuclear family with an index case and 
one fertile case is very difficult. Alternatively, genotyping 
adjacent markers may help eliminate spurious association 
in an unrelated case-control study [20]. In this study, nine 
markers spanning ~ 65.0  kb on the VDR gene, includ-
ing promoter, exons, introns, and UTR regions, were 
detected.

Patients with PCOS present with alterations in sex 
hormone production and cholesterol and TG levels. The 
results showed a significant association of PCOS with 
BMI, AMH, prolactin, LH, FSH, FT, TT, and DHEA-s 
levels. When the hormone levels were compared, the 
level of LH was significantly higher in the PCOS group 
than in the control group, whereas FSH levels were sig-
nificantly lower. However, the LH/FSH ratio was sig-
nificantly higher in the PCOS group than in the control 
group. These results agree with those of many studies [21, 
22].

PCOS is a multigenic disease with several causes, where 
several genes interact with one another as well as with 
environmental conditions, impacting the syndrome’s 
development and symptoms. Numerous biological sys-
tems rely on vitamin D and It uses VDR to moderate its 
activities. VDR is found in a variety of tissues, including 
pancreatic beta cells, skin, parathyroid, pituitary gland, 
or reproductive tissue, participating in the regulation of 
several endocrines, metabolic or reproductive functions 
[23]. SNPs in the VDR gene have been linked to key met-
abolic and endocrine parameters in PCOS, according to 
genetic association studies [24]. The selected SNPs were 
(rs11568820, rs4516035, rs2228570 (FokI), rs3782905, 
rs2107301, rs1544410 (BsmI), rs7975232 (ApaI), 
rs731236 (TaqI), and rs739837) were examined among 
women with PCOS and in healthy control, fertile women, 
the carriage of minor allele frequency of each SNP was 
tested for their association with the PCOS and its phe-
notypes compared to that of fertility group. Our inter-
est in this research of PCOS patients arose from the fact 
that several studies have demonstrated the vital roles that 
VDR plays in the female reproductive system.

The transcription factor rs11568820 controls the tran-
scription of the VDR gene, mRNA, and protein level 
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[25, 26]. Yamamoto et al. [27] were the first to find an 
effective binding site in the 1a promoter region of the 
VDR gene for the intestinal-specific transcription factor 
rs11568820. the change from C to T, which was investi-
gated in our study, was initially explained by Arai et al. 
[25] and was discovered to alter the VDR gene’s transcrip-
tion in the intestine. The A-allele is more precisely bound 
by the CDX2 protein, which increases the transcrip-
tion of the VDR gene. It should be noted that the VDR 
is a transcription factor and controls the transcription of 

genes important for glucose metabolism and other down-
stream genes in numerous tissues [26, 28]. Dasgupta et al. 
concluded that instances of the rs11568820 GA genotype 
and A allele were substantially more common compared 
to controls and seemed to provide defense against devel-
oping PCOS [29].

Statistics from a prior meta-analysis showed that VDR 
ApaI (rs7975232) and VDR BsmI (rs1544410) polymor-
phisms are linked to PCOS susceptibility in the Asian 
population [30]. Mahmoudi and coworkers [31] found 

Table 4 Comparisons of VDR SNPs between the fertile and PCOS groups
SNP Fertile vs. PCOS Fertile vs. phenotype A Fertile vs. phenotype C Fertile vs. phenotype D
rs11568820 OR

95% CI
P

6.93
4.58 to 10.48
< 0.0001

6.84
4.11 to 11.36
< 0.0001

6.85
3.47 to 13.54
< 0.0001

7.15
3.87 to 13.21
< 0.0001

rs4516035 OR
95% CI
P

1.91
1.29 to 2.82
0.0012

2.14
1.33 to 3.45
0.0018

1.97
1.05 to 3.7
0.0355

1.56
0.89 to 2.73
0.1230

rs2228570 (FokI) OR
95% CI
P

1.99
1.34 to 2.95
0.0006

1.61
0.98 to 2.64
0.0581

2.86
1.52 to 5.4
0.0012

2.08
1.18 to 3.66
0.0110

rs3782905 OR
95% CI
P

2.73
1.82 to 4.1
< 0.0001

2.2
1.34 to 3.64
0.0020

3.26
1.72 to 6.17
0.0003

2.55
1.38 to 4.69
0.0027

rs2107301 OR
95% CI
P

3.12
2.04 to 4.77
< 0.0001

3.73
2.24 to 6.21
< 0.0001

2.78
1.4 to 5.51
0.0034

2.54
1.39 to 4.62
0.0024

rs1544410 (BsmI) OR
95% CI
P

2.68
1.8 to 3.99
< 0.0001

3.05
1.87 to 4.98
< 0.0001

2.31
1.22 to 4.37
0.0104

2.43
1.38 to 4.3
0.0022

rs7975232 (ApaI) OR
95% CI
P

1.8
1.23 to 2.63
0.0024

1.42
0.89 to 2.29
0.1438

2.69
1.42 to 5.08
0.0024

1.93
1.11 to 3.36
0.0206

rs731236 (TaqI) OR
95% CI
P

3.95
2.61 to 6.0
< 0.0001

4.66
2.81 to 7.72
< 0.0001

4.01
2.11 to 7.63
< 0.0001

3.03
1.69 to 5.41
0.0002

rs739837 OR
95% CI
P

2.89
1.92 to 4.35
< 0.0001

3.06
1.86 to 5.03
< 0.0001

3.93
2.06 to 7.48
< 0.0001

2.04
1.13 to 3.71 0.0187

Fig. 2 Statistical analyses of the odds ratio of the association of VDR SNPs with PCOS and the location of the candidate SNPS.
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that the ApaI (rs7975232) genotype AA might be used 
as a marker of reduced vulnerability to PCOS, while 
the CC genotype was linked to a higher incidence of 
PCOS. In contrast, Bagheri et al. [32] found no statisti-
cally significant correlation between that finding and 
PCOS risk. Iranian research found a link between the 
VDR TaqI (rs731236) (CC) genotype and blood LH lev-
els [6]. This discovery was supported by Bagheri and 
coworkers [5]. Based on ethnic variety, only a few ele-
vated PCOS risks were seen among Asians with the BsmI 
G/A polymorphism. In addition, TaqI T/C and FokI C/T 
polymorphisms for PCOS risk did not show any signifi-
cant association, except for a few sporadic instances of 
elevated PCOS risk in the first in recessive models. A 
previous meta-analysis suggested that VDR gene poly-
morphisms have a role in the development of PCOS, 
particularly in Asian populations [33]. In the Asian pop-
ulation but not in the Caucasian population, VDR ApaI 
(rs7975232) and VDR BsmI (rs1544410) SNPs were sub-
stantially related with PCOS susceptibility, according to 
the analysis of subgroups by ethnicity. Genetic differ-
ences between the various ethnic groups might be the 
cause of this finding. Different groups may have some 
variances in the functional variants as a result of the pro-
cess of natural selection [30].

In conclusion, this study suggests that VDR gene 
polymorphisms can be a good candidate for PCOS 
development among the Egyptian population. Further 
case-control studies on various ethnic populations with 
a larger sample size are needed to verify the current con-
clusions in the future.
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