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Abstract 

Objective To identify the genetic mechanisms underlying lipid metabolism-mediated tumor immunity in head and 
neck squamous carcinoma (HNSC).

Materials and methods RNA sequencing data and clinical characteristics of HNSC patients were procured from The 
Cancer Genome Atlas (TCGA) database. Lipid metabolism-related genes were collected from KEGG and MSigDB data-
bases. Immune cells and immune-related genes were obtained from the TISIDB database. The differentially expressed 
genes (DEGs) in HNSC were identified and weighted correlation network analysis (WGCNA) was performed to identify 
the significant gene modules. Lasso regression analysis was performed to identify hub genes. The differential gene 
expression pattern, diagnostic values, relationships with clinical features, prognostic values, relationships with tumor 
mutation burden (TMB), and signaling pathways involved, were each investigated.

Results One thousand six hundred sixty-eight DEGs were identified as dysregulated between HNSC tumor samples 
and healthy control head and neck samples. WGCNA analysis and Lasso regression analysis identified 8 hub genes, 
including 3 immune-related genes (PLA2G2D, TNFAIP8L2 and CYP27A1) and 5 lipid metabolism-related genes (FOXP3, 
IL21R, ITGAL, TRAF1 and WIPF1). Except CYP27A1, the other hub genes were upregulated in HNSC as compared with 
healthy control samples, and a low expression of these hub genes indicated a higher risk of death in HNSC. Except 
PLA2G2D, all other hub genes were significantly and negatively related with TMB in HNSC. The hub genes were impli-
cated in several immune-related signaling pathways including T cell receptor signaling, Th17 cell differentiation, and 
natural killer (NK) cell mediated cytotoxicity.

Conclusion Three immune genes (PLA2G2D, TNFAIP8L2, and CYP27A1) and immune-related pathways (T cell recep-
tor signaling, Th17 cell differentiation, and natural killer (NK) cell mediated cytotoxicity) were predicted to play signifi-
cant roles in the lipid metabolism-mediated tumor immunity in HNSC.
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Introduction
Imbalance in lipid metabolism homeostasis is an impor-
tant metabolic hallmark of cancer [1, 2]. Water-insoluble 
molecules, e.g., triacylglycerides, phosphoglycerides, 
sterols and sphingolipids, formed by lipids are princi-
pal components of biological membranes, and critical 
building blocks used for energy storage. In cancer cells, 
lipid metabolism and related processes are critical for 
energy generation along with the maintenance of mem-
brane components and signaling molecules necessary for 
various cancer cell processes such as cell proliferation, 
survival, invasion, metastasis [1, 2]. The impairment of 
lipid metabolic homeostasis not only influences the cel-
lular processes of cancer cells, but also play critical roles 
in regulating anti-tumor immunity [3]. By secreting 
lipid-derived signaling molecules in the tumor micro-
environment (TME), tumor cells can alter the metabolic 
programming of immune cells toward fatty acid oxi-
dation, which is associated with pro-tumorigenic and 
immune-suppressive phenotypes of immune cells [4].

Head and neck squamous cell carcinoma (HNSCC) 
accounts for more than 90% of all head and neck can-
cers worldwide, ranking sixth in the world [5]. A recent 
reported that 23 genes associated with lipid metabolism 
showed significant prognostic values in HNSCC, where 
11 genes (ARSI, CYP27B1, CYP2D6, DGKG, DHCR7, 
LPIN1, PHYH, PIP5K1B, PLA2G2D, RDH16, and TRIB3) 
were associated with clinicopathological features (stage, 
gender, and pathological stage) [6]. However, this study 
[6] did not investigate the underlying genetic and immu-
nological mechanisms involved in lipid metabolism-
mediated regulation of tumor immunity in HNSC. Recent 
work has demonstrated that HNSC tumor cell-derived 
fatty acids can mediate the maturation of macrophages 
into a M2 phenotype which plays anti-inflammatory and 
pro-tumor role [7]. Another recent study found that lipid 
nanoparticle-based targeted delivery led to a decrease 
in the adenosine A2A receptor, which in turn increased 
chemotaxis and T cell infiltration [8]. Considering the 
emerging evidence regarding a pivotal role of lipid 
metabolism in regulating tumor immunity in HNSC, an 
improved understanding of the molecular mechanisms 
involved could provide basis for novel therapeutic strate-
gies to overcome tumor-induced immunosuppression in 
HNSC.

The advances in computational biology approaches 
have resulted in several analytical approaches that could 
generate insights into molecular processes involved 
in lipid metabolism-mediated regulation of tumor 
immunity in HNSC. In the present study, we lever-
aged weighted gene co-expression network analysis 
(WGCNA), Lasso regression analysis, survival analysis, 
nomogram plot analysis, tumor mutation burden (TMB) 

analysis, and gene-pathway interaction analysis for this 
purpose. By comprehensively applying these analyses, 
the current study aimed to investigate the most signifi-
cant mechanisms involved in lipid metabolism-mediated 
tumor immunity in HNSC.

Materials and methods
Procurement of HNSC datasets
We downloaded RNA-seq data of HNSC samples from 
TCGA-GDC (https:// portal. gdc. cancer. gov/) [9], and the 
extracted gene expression values as a TPM (Transcripts 
Per Million) dataset. We selected the samples with sam-
ple numbers beginning with 01 and 11 for analysis, which 
was based on the sample type codes in the TCGA code 
table (URL: https:// gdc. cancer. gov/ resou rces- tcga- users/ 
tcga- code- tables/ sample- type- codes). The samples with 
sample numbers starting with 01 comprised the Tumor 
group (such as TCGA-BA-5151-01A), and those with 
sample numbers starting with 11 comprised the Normal 
group (such as TCGA-CV-7406-11A). We also down-
loaded the relevant clinical information data and the 
SNV (simple nucleotide variation) dataset [10], where 
the data type of the SNV dataset was ‘Masked Somatic 
Mutation’.

Procurement of lipid metabolism‑associated genes 
and immune‑related gene set
The lipid metabolism-related feature gene set was gath-
ered from KEGG (Kyoto Encyclopedia of Genes and 
Genomes, http:// www. kegg. jp/ blast koala/) [11] and 
MSigDB (Molecular Signatures Database v7.5.1, https:// 
www. gsea- msigdb. org/ gsea/ msigdb/ index. jsp) [12] using 
the following keywords; fatty acyls, glycerolipids, glyc-
erophospholipids, sphingolipids, sterol lipids, prenol 
lipids, saccharolipids, and polyketides. We thus obtained 
21 pathways related to lipid metabolism from the KEGG 
database, and 6 gene sets related to lipid metabolism 
from MSigDB database. After integrating the data from 
the two databases, a total of 1079 lipid metabolism-
related genes and 27 pathways were finally obtained. 
We downloaded immune cells and related genes from 
the TISDB database (http:// cis. hku. hk/ TISIDB/ downl 
oad. php) [13], and obtained 28 immune cells and 782 
immune-related genes.

Data preprocessing
We selected tumor samples that contained clinical infor-
mation, and then used the selected tumor samples and 
normal samples to form an expression matrix for subse-
quent analysis. We de-duplicated the duplicate genes in 
the expression matrix according to the mean, deleted the 
genes whose expression values were 0 in more than 50% 

https://portal.gdc.cancer.gov/
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/sample-type-codes
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/sample-type-codes
http://www.kegg.jp/blastkoala/
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://cis.hku.hk/TISIDB/download.php
http://cis.hku.hk/TISIDB/download.php
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of the samples, and performed log2 scaling on the gene 
expression values.

Gene set variation analysis
Gene set variation analysis (GSVA) is a non-parametric 
and unsupervised method for identifying patterns in 
gene expression profiles that correlate with biological 
pathways [14]. We first downloaded datasets of path-
ways and genes from the MSigDB database [12]. We then 
merged the lipid metabolism-related genes and immune-
related genes, extracted their expression values in HNSC 
samples. And performed GSVA enrichment analysis on 
the gene expression matrix to obtain the enrichment 
scores of pathways in each sample. Next, we applied the 
“limma” package [15] in R to perform differential expres-
sion analysis [16] for Tumor vs Normal sample groups. 
The thresholds used included |logFC|> 0.25 and P.
adjust < 0.05, where log2FC > 0.25 indicated differentially 
up-regulated pathways, and log2FC < 0.25 indicated dif-
ferentially down-regulated pathways.

Univariate analysis to screen survival‑related genes
We merged lipid metabolism-related genes and immune-
related genes, and then extracted the gene expression 
values for the combined gene set in the Tumor group. 
The ‘survival’ package [17] in R was used to build a Cox 
proportional hazards regression model (Cox-PH) [18] for 
each gene. The genes identified by the Cox-PH univari-
ate analysis with P-value < 0.05 were regarded as survival-
related genes and included in the subsequent analysis.

WGCNA for the significant module
The expression values of the survival-related genes in the 
tumor case group were obtained. The WGCNA package 
[19] in R was applied to establish a scale-free weight net-
work for these genes and samples, and the consistency 
module was extracted. An appropriate adjacency matrix 
weight parameter β value was selected by setting the β 
value from 1 to 30, and then calculating the correspond-
ing correlation coefficient and gene adjacency function 
mean of the dataset. The higher the correlation coeffi-
cient  (R2) (maximum = 1), the closer the network is to a 
no network scale distribution. At the same time it is also 
necessary to ensure a certain degree of gene connectivity.

Based on the correlation coefficient and gene con-
nectivity, we selected the β value, and then applied the 
TOMsimilarity method [20] to establish a given adja-
cency matrix based on the expression matrix. Next, we 
used the ‘dynamic cut tree’ algorithm to cut the given 
adjacency matrix and perform module mining and 
thereafter used the ‘mergeCloseModules’ method to 
merge modules with correlation coefficients greater than 
0.8. We then obtained the P value of the genes in the 

univariate analysis and looked at the significance of each 
module. Among the modules obtained by WGCNA, the 
grey module comprised an unassigned genes module and 
was not included in the subsequent analysis. We counted 
the number of genes in other significant modules, and 
selected modules with both lipid metabolism-related 
genes and immune-related genes for the subsequent 
analysis.

Hub gene screening in significant modules
Through WGCNA analysis, we obtained significant 
modules related to lipid metabolism genes and immune 
genes. We then extracted the expression values of these 
genes in the module in tumor and normal samples and 
performed differential expression analysis using limma in 
R [15] with the comparison method as Tumor vs Normal. 
The resultant genes with |logFC|> 0.5 and P.adjust < 0.01 
were considered as the significant differently expressed 
genes (DEGs). Next, we used LASSO (Least absolute 
shrinkage and selection operator) logistic regression 
analysis [21] to further screen the DEGs. Pearson’s cor-
relation coefficient analysis was applied to investigate the 
correlation between the lipid metabolism-related genes 
and immune-related genes. If a lipid metabolism-related 
gene was highly correlated with all immune-related 
genes, then we extracted this gene and recorded it as a 
‘Hub’ gene. We extracted the expression levels of the Hub 
genes in tumor and normal samples and applied the Wil-
coxon test to the Hub genes in different groups. Next, we 
applied ROC analysis [22] to test the prognostic values of 
the hub genes.

DNA methylation analysis of immune‑related hub genes
DNA methylation is currently the most studied epi-
genetic modification and is essential for promoting 
important biological processes such as embryonic devel-
opment, genomic imprinting and X chromosome inacti-
vation. MethSurv (URL: https:// biit. cs. ut. ee/ meths urv/) 
is an intuitive web-based tool for multivariable survival 
analysis based on CpG methylation patterns [23]. The 
MethSurv tool was used to analyze methylation level 
differences in the immune-related hub genes between 
groups of samples with different clinical characteristics. 
Using the common regions of the immune-related hub 
genes, the relationship between these genes’ methylation 
level and sample clinical characteristics was analyzed. In 
this analysis, DNA methylation values were represented 
using beta values (ranging from 0 to 1) [24]. The parame-
ters used in the methylation analysis are listed in Table 1. 
In addition, MethSurv was also used to analyze the influ-
ence of immune-related hub genes’ DNA methylation on 
the survival prognosis of TCGA-HNSC [25].

https://biit.cs.ut.ee/methsurv/
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Immune cell infiltration analysis for immune‑related hub 
genes
The expression values of the immune-related hub genes 
in HNSC tumor samples were collected and immune 

infiltration analysis was performed using Tumor Immune 
Estimation Resource (TIMER, URL: http:// timer. cistr 
ome. org/) database [26]. TIMER analyzes the enrich-
ment scores of immune cells in different samples using 
6 computational methods (e.g., CIBERSORT, CIBER-
SORT-ABS, EPIC, MCPCOUNTER, QUANTISEQ, and 
TIMER) [26–28]. The scores of the immune cells using 
the different methods were obtained, and then their rela-
tionship with immune cells was analyzed using Pearson’s 
correlation coefficient analysis [29]. An absolute r value 
between 0 and 0.3 indicated a weak linear relationship, 
that between 0.3 and 0.7 indicated a moderate relation-
ship, and that between 0.7 and 1.0 indicated a strong rela-
tionship [29].

Prediction of targeted small molecule drugs
The significant module associated with survival identi-
fied by the WGCNA analysis was used and a connectiv-
ity Map (CMap, URL: https:// clue. io/) [30] was used to 
discover small molecule targets and functionally anno-
tate genetic variants of disease genes [31]. Both upregu-
lated genes (n ≥ 10) and downregulated genes (n ≥ 10) 
were uploaded to the CMap database to predict potential 
small molecular drug targets for the genes in the signifi-
cant module. The top 10 drugs/molecules with positive 
normalized WTCS (weighted connectivity score) value 
and the top 10 drugs/molecules with negative normalized 
WTCS value were obtained using CMap [32].

Multivariate analysis of hub genes
In order to investigate the relationship between the hub 
genes and survival outcomes of HNSC, we extracted the 
expression values of hub genes in tumor samples, and a 
Cox-PH model was built to predict OS and OS_Event 
using multivariate analysis. Thus, the risk scores for the 
hub genes were obtained. The samples were divided into 
high-risk and low-risk groups on based on the median 
risk scores and we examined whether low-risk survival 

Table 1 The parameters used in the methylation analysis

Gene Cancer Relation to island Genomic region CpG site Split by

PLA2G2D HNSC TCGA March 2017 Open_Sea Body Cg14321743 Median

TNFAIP8L2 HNSC TCGA March 2017 Open_Sea Body Cg11825431 Median

CYP27A1 HNSC TCGA March 2017 Open_Sea Body Cg12806497 Median

Table 2 Statistical summarize of clinical characteristics of HNSC

Characteristic Category Sample size

Overall survival(OS) Within 3 years 368

Within 5 years 449

Within 10 years 490

All 501

OS_event Alive 283

Dead 218

Gender Female 133

Male 368

Age Old (Age > = 60) 279

Young (Age < 60) 222

Clinical stages Stage I 19

Stage II 95

Stage III 102

Stage IV 271

Total (Stage I–Stage IV) 487

Stages_T T1 33

T2 144

T3 130

T4 179

Total (T1–T4) 486

Stages_M M0 471

M1 5

Total (M0–M1) 476

Stages_N N0 329

N1 80

N2 153

N3 7

Total (N0–N3) 479

Fig. 1 Functional analysis of the regulation of lipid metabolism-related genes and immune-related genes. A A Venn diagram depicting the overlap 
between lipid metabolism-related genes, immune-related genes, and DEGs dysregulated in HNSC. The circles with different colors represent the 
different groups of genes. 43 genes were found overlapping between lipid metabolism-related genes, immune-related genes, and HNSC-DEGs. B 
The functions of lipid metabolism- and immune-related genes revealed by functional enrichment analysis. Rose represents HNSC tumor samples, 
and fluorescent green represents healthy control samples; red represents up-regulated pathways and blue-purple represents down-regulated 
pathways. A darker color represents the greater significance

(See figure on next page.)

http://timer.cistrome.org/
http://timer.cistrome.org/
https://clue.io/
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Fig. 1 (See legend on previous page.)
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differed at different time periods (3  years, 5  years, and 
10 years). Next, we extracted the expression values of the 
hub genes in different risk groups and performed Wilcox-
on’s test for different risk groups.

To analyze the relationship between clinical character-
istics and high- and low- risk groups, the clinical charac-
teristics and sample risk scores were integrated. We then 
constructed a nomogram plot by utilizing the nomogram 
method in the “rms” package [33] in R. The Wilcoxon’s 
test was applied to analyze whether there were signifi-
cant differences in risk scores between different groups of 
clinical characteristics.

Somatic mutation analysis of hub gene
Based on SNV data, we analyzed the mutation infor-
mation regarding hub genes in the tumor samples and 

calculated the TMB score [34] of the tumor samples. We 
extracted the expression values of hub genes in HNSC 
samples and used the TMB scores for Pearson correla-
tion coefficient analysis [29] to analyze the relationship 
between hub genes and TMB.

Pathway analysis of hub genes
We obtained the genes related to all pathways from 
the KEGG database [11], and then extracted the path-
ways where the hub genes were represented. Next, 
we extracted all the genes under these pathways, and 
selected survival-related lipid metabolism genes and 
immune genes. Thereafter, we used Cytoscape (version 
3.9.1) software [35] to construct a hub genes-pathways-
survival genes interaction network.

Fig. 2 Volcano plot depicting the differential expression of survival-related genes. The x-axis represents the hazard ratio (HR), y-axis represents the 
negative log of the p value (usually base 10). The points with different colors represent different categories of genes including immune genes, lipid 
metabolism and immune-related genes, lipid metabolism-related genes, and non-significant genes. Circular points represent HR < 1 for the gene, 
while triangular points represent HR > 1 for the gene

Fig. 3 Weighted gene co-expression network analysis of lipid metabolism- and immune-related genes. A Determination of soft-threshold power 
in WGCNA. The scale-free topology index and the mean connectivity for each power value between 1 and 30 were shown. The appropriate 
soft-thresholding power was picked for network construction. B Validation of the optimal soft threshold power by the high scale-free topology  R2 
between  log10(k) and  log10(p(k)). k represents the connectivity between genes; and p(k) represents the probability of connectivity. C Hierarchical 
clustering tree based on WGCNA module eigengenes. Five modules were identified including grey, yellow, brown, blue, and turquoise modules. 
D The hierarchical clustering dendrogram of the eigengenes based on hierarchical clustering under optimal soft-thresholding power. Dynamic 
tree cut represents module divided according to clustering results; and merged dynamic represents module divided according to similarity of the 
module. E Bar plot of mean gene significance across various modules. F The bar plot showing the gene counts in different modules. The pink bar 
represents the immune-related genes; the emerald green bar represents the lipid metabolism-related genes; and the blue bar represents genes 
related to both immune and lipid metabolism

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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Results
HNSC dataset
We obtained the HNSC dataset from TCGA and 
obtained 501 tumor samples and 44 normal samples. 
Table 2 summarizes the clinical features of the 501 HNSC 
tumor samples.

Gene set variation analysis
Fourty three common genes (Fig. 1A) were found over-
lapped between 1079 lipid metabolism-related genes, 
782 immune-related genes, and 1688 HNSC-DEGs. 
These 1688 HNSC-DEGs regulated the T cell recep-
tor signaling pathway, cytosolic dna sensing pathway, 
ecm receptor interaction, nod like receptor signal-
ing pathway, toll like receptor signaling pathway, and 

metabolism of xenobiotics by cytochrome p450 among 
others (Fig. 1B).

Screening of functional genes associated with survival 
by univariate analysis
Three hundred seventy-nine genes related to sur-
vival, including 192 immune-related genes and 181 
lipid metabolism-related genes and 6 common genes 
(Fig. 2).

Mining modules highly related to lipid metabolism‑ 
and immune‑related genes
In the process of WGCNA, we set the β value from 1 to 
30, and then calculated the corresponding correlation 

Fig. 4 Screening hub genes by performing the LASSO analysis. A The LASSO coefficient profile plot of 34 DEGs. The x-axis represents the logλ, 
and the y-axis represents the coefficients. Every single-colored line in the plot corresponds to a predictor. B Cross-validation to select the optimal 
parameter (λ). The red dotted vertical line crosses over the optimal log λ, which corresponds to the minimum value for multivariate Cox modeling. 
The two dotted lines represent one standard deviation from the minimum value. C The correlation between 3 immune-related genes and 16 lipid 
metabolism-related genes
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coefficient and gene adjacency function mean. At a β 
of 24, the established network was found closest to the 
scale-free network (Fig.  3A–B). By using this β value 
as the network construction parameter, we built the 
WCGNA model. Using the dynamic cut tree algorithm 
to mine modules, we set at least 5 genes in each module, 
and the maximum connection height was 0.99 (minMod-
uleSize = 5, cutHeight = 0.95). As a result, 5 modules were 
obtained including the grey, yellow, brown, blue, and tur-
quoise modules (Fig. 3C).

After obtaining the modules, we merged the mod-
ules with correlation coefficients greater than 0.8, and 
obtained 4 modules, among which the brown module 
had the highest significance (Fig. 3D). We extracted the 
genes in the modules and the P values for univariate 
analysis of these genes, based on the ’mean (P value)’ sta-
tistical module significance (Fig.  3E). Then, we counted 
the gene groupings in brown, blue, and yellow modules 
(Fig. 3F), and found that the blue module contained genes 
related to lipid metabolism and immunity, while other 
modules only contained lipid metabolism-related genes. 

Therefore, the blue module was regarded as the module 
of interest and used for the subsequent analyses.

Hub gene screening in significant modules
Based on the thresholds of P.adjust < 0.01 and 
|logFC|> 0.5 for significantly differentially expressed 
genes, a total of 34 DEGs were obtained. The LASSO 
regression analysis was used to remove redundant genes 
from the 34 DEGs (Fig. 4A–B) and obtained 19 differen-
tially expressed genes (Table  3). The 19 genes included 
16 lipid metabolism-related genes, 2 immune-related 
genes (PLA2G2D and TNFAIP8L2) and one common 
gene (CYP27A1). Figure  4C shows that 3 immune-
related genes (PLA2G2D, TNFAIP8L2 and CYP27A1) 
were highly correlated with FOXP3, IL21R, ITGAL, 
TRAF1 and WIPF1 (cor > 0.5) (Fig. 4C). Therefore, these 
3 immune-related genes (PLA2G2D, TNFAIP8L2 and 
CYP27A1) and 5 highly related lipid metabolism-related 
genes (FOXP3, IL21R, ITGAL, TRAF1 and WIPF1) were 
considered as hub genes.

The relationship between the methylation levels of the 3 
immune‑related genes and clinical characteristics of HNSC
The methylation levels of CYP27A1 were higher than 
that of TNFAIP8L2 and CYP27A1, irrespective of clini-
cal feature analyzed. Figure 5A shows that the methyla-
tion level of CYP27A1 in patients younger than 61 years 
old was higher compared to that in patients older than 
61  years and the lowest methylation level of CYP27A1 
was observed in patients older than 69 years. The meth-
ylation level of PLA2G2D in patients older than 69 years 
was higher compared with that among patients with the 
age ranges 65–61 years and 61–69 years. The methylation 
expression level of TNFAIP8L2 in patients older than 
61 years was lower compared to that of patients younger 
than 61 years old and the lowest methylation expression 
level of TNFAIP8L2 was observed in patients older than 
69 years (Fig. 5).

The methylation level of CYP27A1 in African Ameri-
can patients was lower compared to that in Asian 
patients and White patients. The methylation level of 
PLA2G2D in White patients was higher than that in 
Asian and African American patients. The methylation 
level of TNFAIP8L2 in Asian patients was higher com-
pared to that for African American patients and White 
patients (Fig. 5B).

Table 3 Differential expression analysis results of 19 module 
genes obtained by LASSO analysis

Gene Type logFC P.value P.adj

ACAP1 Immune gene 0.71694 1.15E−08 1.07E−07

CCL5 Immune gene 1.712164 2.35E−11 3.96E−10

CD3D Immune gene 0.710035 0.001712 0.003596

CLEC10A Immune gene − 1.02433 4.69E−08 3.28E−07

CYP27A1 Lipid gene & Immune 
gene

− 0.86826 0.00031 0.000868

FOXP3 Immune gene 1.42025 2.37E−15 1.99E−13

HLA-DOB Immune gene 0.895276 6.30E−11 8.83E−10

IL21R Immune gene 0.897813 5.16E−09 5.41E−08

ITGAL Immune gene 0.548786 0.00202 0.004099

LAIR2 Immune gene 0.876033 5.80E−15 2.44E−13

MMP25 Immune gene 0.680843 2.30E−08 1.93E−07

NCF1 Immune gene 0.597943 7.89E−06 3.68E−05

PDCD1 Immune gene 0.582185 0.001117 0.00254

PLA2G2D Lipid gene 0.615365 0.003624 0.006349

SELP Immune gene − 0.769 0.00019 0.000614

TIGIT Immune gene 1.138603 6.02E−12 1.67E−10

TNFAIP8L2 Lipid gene 0.610135 0.000215 0.000644

TRAF1 Immune gene 1.110312 7.94E−12 1.67E−10

WIPF1 Immune gene 0.994727 2.30E−09 2.76E−08

Fig. 5 Results of DNA methylation analyses. A Differences in methylation levels of CYP27A1, PLA2G2D, and TNFAIP8L2 in different groups of 
patients divided by age. B Differences in methylation levels of CYP27A1, PLA2G2D, and TNFAIP8L2 in different groups of patients divided by 
race. C Differences in methylation levels of CYP27A1, PLA2G2D, and TNFAIP8L2 in different groups of patients divided by gender. D Differences 
in methylation levels of CYP27A1, PLA2G2D, and TNFAIP8L2 in different groups of patients divided clinical stage. E The survival curves for 
CYP27A1-CpG cg14321743, PLA2G2D-CpG cg11825431, and TNFAIP8L2-CpG cg12806497 in HNSC

(See figure on next page.)
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No significant differences in the methylation level 
of CYP27A1 and TNFAIP8L2 were noted between 
female and male patients, while the methylation level of 
PLA2G2D in male patients was lower than that in female 
patients (Fig. 5C).

The highest methylation level of CYP27A1 was seen 
in patients with clinical stage I; while the lowest meth-
ylation expression of CYP27A1 was seen in patients 

with clinical stage III. The highest methylation level of 
PLA2G2D was seen in patients with clinical stage I; while 
the lowest methylation level of PLA2G2D was seen in 
patients of clinical stage IV. The highest methylation level 
of TNFAIP8L2 was seen in patients of clinical stage III, 
while the lowest methylation expression of TNFAIP8L2 
was seen in patients of clinical stage II (Fig. 5D).

Fig. 6 Correlation between the 3 immune-related hub genes (CYP27A1, PLA2G2D, and TNFAIP8L2) and tumor infiltrating immune cells in HNSC. 
Circles with red color represent a positive correlation, while circles with violet color represent a negative correlation
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Kaplan–Meier (Fig. 5E) revealed that methylation lev-
els of CYP27A1 (P = 0.43), TNFAIP8L2 (P = 0.71), and 
CYP27A1 (P = 0.53) were not significantly associated 
with the prognosis of HNSC patients.

Correlation between 3 immune‑related hub genes 
and TIICs
A negative correlation with the highest |r| value was 
observed between TNFAIP8L2 and Macrophage M1 
(r = −  0.51, P = 1.56E−34), identified by the CIBER-
SORT method. A positive correlation with the highest 
|r| value was observed between TNFAIP8L2 and Mye-
loid dendritic cell_TIMER (r = 0.85, P = 2.361–138). 
The lowest P value for correlation was also observed 
between TNFAIP8L2 and Myeloid dendritic cell_
TIMER (r = 0.85, P = 2.361–138) (Fig. 6, Table 4).

The targeting relationship between immune‑related hub 
genes and small molecule drugs
Table 5 shows the top 10 positive and negative scoring 
small molecules with normalized WTCS (Weighted 
Connectivity Score) values selected as the predicted 
target small molecules. The small molecule drug tar-
geted by PLA2G2D was mepacrine. No small molecule 
drug was predicted for the other two immune-related 
hub genes (TNFAIP8L2 and CYP27A1).

The expression pattern of hub genes
A heatmap was used to show the expression values of the 
eight hub genes in the HNSC tumor and normal samples. 
CYP27A1 was downregulated in HNSC tumor samples, 
while the other genes were upregulated in HNSC tumor 
samples (Fig. 7A) A heatmap (Fig. 7B) depicted the expres-
sion levels related to different clinical features.

The hub genes were significantly dysregulated between 
tumor and healthy control samples (Fig.  8A). The over-
all expression level of CYP27A1 was higher than that of 
the other hub genes. The ROC analysis showed five lipid 
metabolism-related hub genes (FOXP3, IL21R, ITGAL, 
TRAF1 and WIPF1) had higher predictive values than 
three immune-related hub genes (PLA2G2D, TNFAIP8L2 
and CYP27A1) (Fig. 8B).

Grouping tumor samples of HNSC based on multivariate 
analysis
We extracted the expression values of the hub genes 
in the tumor case samples, and established a Cox-PH 
model based on the clinical characteristics of OS and 
OS_Event for multivariate analysis. The results showed 
that the expression patterns of 8 hub genes were sig-
nificantly related with the overall survival outcomes of 
HNSC patients (Fig. 9A). The samples were divided into 
high-risk and low-risk groups based on the median of 
their risk scores. The number of non-surviving samples 
in the high-risk group was higher than that in the low-
risk group (Fig. 9B). The survival probability of high-risk 
and low-risk groups within 3 years was not significantly 
different (P = 0.37) (Fig.  10A). However, there were sig-
nificant differences between the high-risk group and the 
low-risk group in the other three time periods (i.e., 5 year 
(P = 0.017), 10 year (P = 0.0078), and 20 year (P = 0.0035), 
showing that the survival rate of the high-risk group 
was significantly lower than that of the low-risk group 
(Fig.  10B–D). These findings indicated that as the sur-
vival time of HNSC patients increases, lipid metabolism-
related genes and immune-related genes have a greater 
impact on survival. The 8 hub genes were expressed dif-
ferentially between high- and low-risk groups, with the 
high-risk group expressing each hub gene at a lower level 
compared with the low-risk group (Fig. 11).

Table 4 The correlation between 3 immune-related hub genes and TIICs identified by TIMER web tool

Pairs with a strong significant correlation (|r|> 0.7) are listed in this table

***P < 0.001

Immune cell type_computational method Gene r value P value Significance

Myeloid dendritic cell_TIMER TNFAIP8L2 0.845943402 2.36E−138 ***

B cell_TIMER PLA2G2D 0.823188557 9.29E−125 ***

T cell_MCPCOUNTER TNFAIP8L2 0.802599364 4.83E−114 ***

Macrophage M0_CIBERSORT-ABS CYP27A1 0.784330732 1.52E−105 ***

B cell_MCPCOUNTER PLA2G2D 0.774289056 3.21E−101 ***

T cell CD8+ _TIMER TNFAIP8L2 0.767609412 1.83E−98 ***

Myeloid dendritic cell_MCPCOUNTER TNFAIP8L2 0.735400667 2.25E−86 ***

Myeloid dendritic cell_TIMER PLA2G2D 0.730683202 9.42E−85 ***

T cell_MCPCOUNTER PLA2G2D 0.71933634 5.49E−81 ***

B cell_EPIC PLA2G2D 0.706689138 5.29E−77 ***
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Association of clinical characteristics and risk groups 
with survival
A nomogram of 467 samples was plotted to demon-
strate the effect of different clinical characteristics and 
risk scores on survival (Fig. 12). Figure 13 shows the dif-
ferences in risk scores among subjects grouped by clini-
cal characteristics. Figure  14 shows that the patients 

with clinical characteristics age < 60, gender = male, 
stage = (IV, T3, N0, N2)) showed significant differences 
in terms of overall survival outcomes between high- 
and low- risk groups, and the survival probability of 
patients in the high risk group was lower than that in 
the low risk group.

Table 5 The significant module genes-targeted small molecule drugs predicted using the CMap database

Small molecular drugs Cell line Mechanism of action Target gene −  log10 FDR Normalized 
WTCS values

Halcinonide HA1E Glucocorticoid receptor agonist NR3C1 1.7918 1.8832

GSK-1904529A A549 IGF-1 inhibitor IGF1R|INSR 1.6662 1.8579

SEW-2871 VCAP Lysophospholipid receptor agonist S1PR1 1.585 1.8371

SSR-69071 MCF7 Leukocyte elastase inhibitor ELANE 1.4601 1.7966

Fenobam A375 Glutamate receptor antagonist GRM5 1.439 1.7886

BRD-K33583600 HEPG2 Guanylate cyclase activator AKR1B1|HRH2|SIRT1|GABBR1 1.3241 1.7371

CP-55940 HCC515 Cannabinoid receptor agonist CNR1|CNR2|GPR55 1.3225 1.7362

Dipyridamole MDAMB231 Phosphodiesterase inhibitor PDE5A 1.3177 1.7337

Estrone HCC515 Estrogen receptor agonist ESR1|ESR2 1.2876 1.7176

Ixazomib HEPG2 Proteasome inhibitor PSMB1 1.2793 1.7129

I-BET-762 OCILY3 Bromodomain inhibitor BRD2|BRD3|BRD4|APOA1 0.9565 − 1.6703

SB-590885 HCC515 RAF inhibitor BRAF 0.9565 − 1.686

Methylnorlichexanthone HA1E Aurora kinase inhibitor|PIM inhibitor|VEGFR 
inhibitor

AURKB|PIM1 0.9565 − 1.6863

CHIR-99021 HA1E GSK inhibitor CDK1|GSK3A|GSK3B|MAPK1 0.9565 − 1.6981

Enalapril HA1E ACE inhibitor ACE 0.9565 − 1.7012

XMD-1150 OCILY3 LRRK inhibitor LRRK2 0.9565 − 1.7161

Nimesulide HCC515 Cyclooxygenase inhibitor PTGS2|LTF|PLA2G2E|PTGS1 0.9565 − 1.7362

Olopatadine PC3 Histamine receptor antagonist HRH1 0.9565 − 1.7392

Oxalomalic-acid A549 Isocitrate dehydrogenase inhibitor ACO1|IDH1 0.9565 − 1.7631

PTB1 HEPG2 AMPK activator PTPN1 0.9565 − 1.8713

Mepacrine THP1 NFKB inhibitor|Cytokine production inhibitor|p53 
activator

PLA2G2A 0.0953 0.9348

Mepacrine NCIH508 NFKB inhibitor|Cytokine production inhibitor|p53 
activator

PLA2G2A 0.0853 0.9055

Mepacrine HUVEC NFKB inhibitor|Cytokine production inhibitor|p53 
activator

PLA2G2A 0.0114 0.7241

Mepacrine H1299 NFKB inhibitor|Cytokine production inhibitor|p53 
activator

PLA2G2A 0.0058 0.6972

Mepacrine MCF10A NFKB inhibitor|Cytokine production inhibitor|p53 
activator

PLA2G2A 0 0.6437

Mepacrine MDAMB231 NFKB inhibitor|Cytokine production inhibitor|p53 
activator

PLA2G2A 0.0794 − 0.9696

Mepacrine NCIH596 NFKB inhibitor|Cytokine production inhibitor|p53 
activator

PLA2G2A 0.0983 − 1.0372

Mepacrine A375 NFKB inhibitor|Cytokine production inhibitor|p53 
activator

PLA2G2A 0.2388 − 1.259

Mepacrine NCIH2073 NFKB inhibitor|Cytokine production inhibitor|p53 
activator

PLA2G2A 0.2899 − 1.3061

Mepacrine HCC515 NFKB inhibitor|Cytokine production inhibitor|p53 
activator

PLA2G2A 0.4515 − 1.4688
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The somatic mutation of hub genes
ITGAL and WIPF1 were the most mutated in tumor 
samples (Fig.  15A). TNFAIP8L2, CYP27A1, FOXP3, 
IL21R, ITGAL, TRAF1, WIPF1 and TMB were signifi-
cantly correlated; however, PLA2G2D was not signifi-
cantly correlated with TMB (Figs. 15B, 13I).

Pathway network analysis of hub genes
Figure  16 shows that CYP27A1 and CYP27B1 were 
involved in metabolic pathways. Both CYP27A1 and 
CYP27B1 are genes related to lipid metabolism and 
immunity. The lipid metabolism-related genes CYP27A1, 
ACOX3, ADCY1 and ACAA1, are also involved in the 

Fig. 7 Expression levels of hub genes in A HNSC tumor samples and head and neck normal samples; B groups divided by different clinical features 
(T stage, N stage, M stage, clinical stage, age, OS_event, and OS_year). The red color represents upregulation, while the violet color represents 
downregulation. The darker colour represents the larger |logFC| values
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regulatory pathway PPAR signaling pathway. The hub 
genes co-regulate cancer-related pathways by directly or 
indirectly interacting with other lipid metabolism genes 
or immune-related genes.

Discussion
The main findings of the current research identified 3 
immune-related genes (PLA2G2D, TNFAIP8L2, and 
CYP27A1) which are likely to play highly significant roles 
in lipid metabolism-mediated tumor immunity regula-
tion in HNSC. PLA2G2D (Phospholipase A2, Group IID) 
encodes the secreted phospholipase A2 enzyme that lyses 
glycerophospholipids to yield lysophospholipids and free 
fatty acids [36]. PLA2G2A is induced and secreted by 
immune cells including dendritic cells and macrophages 
when stimulated by proinflammatory mediators, and 

also results in augmented production of proinflam-
matory lipid and cytokines by acting on phospholip-
ids [37]. Dendritic cells in lymphoid tissues abundantly 
express PLA2G2D, which regulates the steady-state lev-
els of anti-inflammatory lipids in order to resolve Th1 
immune response [36]. Chronic inflammation induced 
by PLA2G2A could contribute to the promotion of 
carcinogenesis. Miki et  al. found that the overexpres-
sion of PLA2G2D suppressed anti-tumor immunity by 
increasing tumor-promoting M2-like macrophages and 
decreasing tumor-suppressing M1-like macrophages 
and cytotoxic T cells in skin carcinoma [36]. Contrary to 
the findings of the current study, another study reported 
that PLA2G2D expression was positively correlated 
with immune infiltration and indicated better progno-
sis in HNSC patients [6]. The knockdown of PLA2G6 

Fig. 8 Differential expression and diagnostic values of hub genes. A The expression pattern of hub genes (PLA2G2D, TNFAIP8L2, CYP27A1, FOXP3, 
IL21R, ITGAL, TRAF1, and WIPF1) in HNSC tumor samples and healthy control samples. **P < = 0.01, ***P < = 0.001, ****P < = 0.0001. B The ROC curves 
showing the diagnostic values of hub genes (CYP27A1 (AUC = 68.51%), FOXP3 (AUC = 83.95%), IL21R (78.9%), ITGAL (63.65%), PLA2G2D (64.12%), 
TNFAIP8L2 (66.98%), TRAF1 (81.04%), WIPF1 (76.9%)). The x axis represents false positive rate (FPR), and y axis represents true positive rate (TPR)

Fig. 9 A Forest plot with hazard ratio (HR) for the 8 hub genes of the multivariable model. B The gene expression levels of the hub genes 
associated with “survival state” in low risk group and high risk group. The green dots represent the “survival state” to be alive, while the red dots 
represent the “survival state” to be dead
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(Phospholipase A2 Group VI) was found to suppress the 
progression of melanoma by affecting the phenotypes 
of melanoma cells, inhibiting cell proliferation, migra-
tion, and invasion, promoting tumor cell apoptosis [38]. 
To our knowledge, experimental research investigating 
the influence of PLA2G2D on the phenotypes of HNSC 
cells is lacking. Of note, the small molecule drug targeted 
by PLA2G2D mepacrine (also named as quinacrine), 
which was originally used as an anti-malarial drug has 
been recently repurposed as an anticancer agent in treat-
ing ovarian cancer, gynecologic, breast cancer, and colon 
cancer [39, 40]. Mepacrine was also found to inhibit 

cell viability and clonogenic survival, as well as pro-
mote apoptosis of five types of HNSC cell lines (CAL27, 
SCC040, FaDu, SCC47 and VU147) [41]. Mepacrine 
induced TP53 mRNA and protein expression, increased 
TP53 reporter activity and p21 protein expression, and 
induced growth inhibition in the wild-type TP53 HNSC 
cell lines [42].

TNFAIP8L2 (TNF Alpha Induced Protein 8 Like 2; 
also named as TIPE2) is a lipid transfer protein and can 
inhibit lipid biosynthesis pathways by negatively regu-
lating lipid biosynthesis-related gene signatures [43]. 
TNFAIP8L2 acts as a negative regulator of innate and 

Fig. 10 The difference in survival probability between the high-risk and low-risk groups at the different time periods (3 year (A), 5 year (B), 10 year 
(C), and 20 year (D)). The x axis represents time points (year), and the y axis represents the overall survival
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Fig. 11 Dot plot showing the expression levels of Hub genes in high risk and low risk groups. The red color represents the high risk patients cluster, 
and the green color represents the low risk patients cluster

Fig. 12 Nomogram for prediction of 3-year, 5-year, and 10-year overall survival based on independent risk factors (age_year, gender, stage, T stage, 
N stage, M stage, and risk score) for HNSC patients. The survival probability was estimated by calculating the total points
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adaptive immunity by inhibiting the function of Toll-
like receptor and T-cell receptor [44]. TNFAIP8L2 was 
found to positively regulate and enhance the anti-tumor 
immune response in head and neck cancer [45]. A pre-
vious research comprehensively assessed the expres-
sion and prognosis of TNFAIPs family members in 
head and neck cancer and found a positive correlation 
between TNFAIP8 and tumor infiltrating immune cells 
macrophage, neutrophil, CD8+ T cell, CD4+ T cell, 
and dendritic cell) [45]. In addition, the overexpres-
sion of TNFAIP8L2 predicted improved overall survival 
in head and neck cancer patients [45]. TNFAIP8L2 was 
also found significantly associated with cancer stem cell 
index, indicating its potential role as a novel immune 
checkpoint gene for the immunotherapy of cancers [46]. 
The transfection of TNFAIP8L2 in hepatocellular car-
cinoma (HCC) cell lines markedly inhibited tumor cell 
growth, migration and invasion in vitro [47], but research 
investigating the effects of TNFAIP8L2 upregulation on 
the phenotypes of HNSC cells is lacking.

CYP27A1 (Cytochrome P450 Family 27 Subfamily A 
Member 1) is a key enzyme involved in the process of 
bile acid synthesis and involved in regulating cellular 
cholesterol homeostasis. Mutations in CYP27A1 result 
in reduced bile acid synthesis, increased production of 
cholestanol, and subsequently cholestanol accumula-
tion [48]. The dysregulation of CYP27A1 expression has 
been found to be a prognostic biomarker in breast can-
cer [49], prostate cancer [50], and ovarian cancer [51]. 
CYP27A1 was found to be highly expressed in myeloid 
immune cells and macrophages and played a pro-tumo-
rigenic role in breast cancer by impairing T cell expan-
sion [52]. However, the current research indicated that 
a high expression of CYP27A1 indicated the low risk of 
death in HNSC. In agreement, CYP27A1 was found to 
inhibit proliferation and migration of clear cell renal cell 
carcinoma by activating the LXRs/ABCA1 pathway [53]. 
Experimental research investigating the involvement and 
regulatory roles of CYP27A1 in the phenotypes of HNSC 
tumor cells is warranted.

Fig. 13 Relationship between survival risk and different clinicopathological features (e.g., age, gender, stage, T stage, N stage, and M stage). HNSC 
tumor patients were divided into different groups based on a specific clinicopathological feature, and box plot was drawn to show the difference of 
survival risk between different groups
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The current study showed several immune cell-related 
signaling pathways were involved in lipid metabolism-
mediated tumor immunity in HNSC, including T cell 
receptor signaling, Th17 cell differentiation, and natu-
ral killer (NK) cell mediated cytotoxicity. Several stud-
ies have highlighted these relationships. Modulating 

fatty acid metabolism can enhance CD8 T-cell memory 
generation, thereby further amplifying the anti-tumor 
immunity [54]. A high content of cholesterol in tumors 
inhibits anti-tumor immunity by upregulating immune 
checkpoint genes and further inducing CD8+ T Cell 
exhaustion [55]. The cholesterol esterification enzyme 

Fig. 14 Kaplan–Meier plot showing the relationship between high-risk samples and low-risk samples and survival in different clinical feature 
groups. The red curve represents the HNSC patients with high risk, while the green curve represents the HNSC patients with low risk. The x axis is 
time points (year), and the y axis is the overall survival probability
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acetyl-CoA acetyltransferase (ACAT1) knockout in 
CD8+ T cells was found to downregulate membrane cho-
lesterol and improve T cell receptor clustering and sign-
aling, enhancing CD8+ T cell function and anti-tumor 
immunity in mouse tumor models [56]. Th17 lympho-
cytes express a proinflammatory phenotype by secreting 
cytokines (e.g., IL-10, IL-17, IFN-γ, and IL-22) [57] and 
the Th17/Treg balance relies heavily on fatty acid metab-
olism [58]. Short-chain fatty acids (SCFAs) activate and 

promote the differentiation of Th17 lymphocytes into 
T regulatory (Treg) cells, which play immunosuppres-
sive functions in the tumor microenvironment [57]. The 
innate lymphoid cells-NK cells play a crucial role in pre-
venting tumor metastasis [59]. NK cells in the lipid-rich 
environment are found to be immature and defective in 
the ability to lyse target tumor cells [60]. The cytotoxic-
ity of NK cells is impaired by lipid accumulation in can-
cer patients, which contributes to an immunosuppressive 

Fig. 15 Somatic mutation analysis of Hub genes. A Mutation of hub genes in tumor samples. In the figure, the horizontal axis represents samples, 
and the vertical axis represents genes. The scale value on the right side of the picture refers to the percentage of samples with gene mutation in the 
total sample. The gray square indicates that the sample has not been mutated. Other colors are variant samples. The bar graph above the picture 
depicts the number and variant types of all variant genes in each sample, and the bar graph on the right side of the picture depicts the number of 
mutated samples in the current gene. The bar chart below the picture depicts the changes of the bases in each sample. B–I Scatter plots showed 
the correlation between hub genes and TMB. The x axis represents the  log2TMB, and the y axis represents the expression value of each hub gene. “R” 
indicates the correlation coefficient value, and P value indicates the statistical significance
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tumor microenvironment [60]. Although these immune-
related pathways have been implicated in lipid metabo-
lism-mediated cancer biology, evidence in the context 
of head and neck cancer is lacking and merits future 
investigation.

This study utilized a computational biology approach 
to identify candidate immune-related genes and path-
ways involved in imbalanced lipid metabolic home-
ostasis-mediated tumor immunity in HNSC. Using a 
multi-level approach, the most significant candidates 
were identified, and the findings provide a theoretical 
foundation for future discovery of lipid metabolism-
targeting therapies in HNSC. The candidate genes and 
mechanisms identified in this study need to be validated 
by designing relevant experiments. We suggest that co-
culture environment models of lipid laden-HNSC cells 
and immune cells be established, and the genetic recipro-
cal interactions between HNSC cells and immune cells be 
examined. In vivo experiments could be also designed to 
observe the effects of lipid metabolism alterations on the 
immune function of tumor-bearing animal models. The 
current study was mainly focused on the effects of abnor-
mal lipid metabolism on individual tumor infiltrating 

immune cells, which is far from sufficient as a particular 
lipid metabolic pathway might produce contradictory 
results for different types of immune cells [61]. There-
fore, specific mechanisms underpinning lipid metabolic 
homeostasis imbalance in HNSC tumor immune regula-
tion merit comprehensive research.

Conclusion
The current research identified immune genes 
PLA2G2D, TNFAIP8L2, and CYP27A1 and immune 
cells-related pathways T cell receptor signaling, Th17 
cell differentiation, and NK cell mediated cytotoxicity 
as the primary candidates involved in lipid metabolism-
mediated tumor immunity in HNSC. These may com-
prise promising therapeutic biomarkers and targets for 
modulation in the field of cancer immunotherapy for 
head and neck cancer.

Acknowledgements
Nothing to declare.

Author contributions
SL and SW conceptualized the research idea, designed the workflow, carried 
out the computational biology analysis, interpreted the results, and wrote the 
draft of the manuscript. ZW reviewed and edited the manuscript, as well as 
administrated and supervised the whole research project. All authors read and 
approved the final manuscript.

Fig. 16 Hub gene-Pathway-survival genes network. The network contains 241 interacting nodes (7 Hub genes, 39 Pathways, 115 Lipid genes, 77 
Immune genes and 3 Lipid genes & Immune genes) and 463 interacting nodes and edges. The circle nodes represent hub genes, rectangular nodes 
represent pathway. The red arrow nodes represent the lipid metabolism-related genes; the green arrow nodes represent the immune-related genes; 
and the arrow nodes with half green and half red represent the genes related to both lipid metabolism and immune



Page 22 of 23Liu et al. BMC Medical Genomics          (2023) 16:110 

Funding
This research received no specific grant from any funding agency in the pub-
lic, commercial, or not-for-profit sectors.

Availability of data and materials
The data analyzed during the current study are available in the TCGA database 
with the accession numbers TCGA-HNSC. The original contributions presented 
in the study are included in the article, further inquiries can be directed to the 
corresponding author.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Otorhinolaryngology Head and Neck Surgery, Xuanwu 
Hospital Capital Medical University, No. 45 Changchun Street, Xicheng District, 
Beijing 100053, China. 2 Capital Medical University, No.10 Xitou Tiao, You’an 
Menwai, Fengtai District, Beijing 10069, China. 

Received: 10 November 2022   Accepted: 13 May 2023

References
 1. Bian X, Liu R, Meng Y, Xing D, Xu D, Lu Z. Lipid metabolism and cancer. J 

Exp Med. 2021;218:1.
 2. Santos CR, Schulze A. Lipid metabolism in cancer. FEBS J. 

2012;279:2610–23.
 3. Liu X, Zhang P, Xu J, Lv G, Li Y. Lipid metabolism in tumor microenviron-

ment: novel therapeutic targets. Cancer Cell Int. 2022;22:1–13.
 4. Broadfield LA, Pane AA, Talebi A, Swinnen JV, Fendt S-M. Lipid metabo-

lism in cancer: new perspectives and emerging mechanisms. Dev Cell. 
2021;56:1363–93.

 5. Klein JD, Grandis JR. The molecular pathogenesis of head and neck 
cancer. Cancer Biol Ther. 2010;9:1–7.

 6. Xiong Y, Si Y, Feng Y, Zhuo S, Cui B, Zhang Z. Prognostic value of lipid 
metabolism-related genes in head and neck squamous cell carcinoma. 
Immun Inflamm Dis. 2021;9:196–209.

 7. Albakri MM, Huang SC-C, Tashkandi HN, Sieg SF. Fatty acids secreted 
from head and neck cancer induce M2-like macrophages. J Leukoc Biol. 
2022;112:617.

 8. Newton HS, Chimote AA, Arnold MJ, Wise-Draper TM, Conforti L. Targeted 
knockdown of the adenosine A2A receptor by lipid NPs rescues the 
chemotaxis of head and neck cancer memory T cells. Mol Ther-Methods 
Clin Dev. 2021;21:133–43.

 9. Jensen MA, Ferretti V, Grossman RL, Staudt LM. The NCI genomic data 
commons as an engine for precision medicine. Blood J Am Soc Hema-
tol. 2017;130:453–9.

 10. Katsonis P, Koire A, Wilson SJ, Hsu T-K, Lua RC, Wilkins AD, et al. Single 
nucleotide variations: biological impact and theoretical interpretation. 
Protein Sci. 2014;23:1650–66.

 11. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. 
Nucleic Acids Res. 2000;28:27–30.

 12. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, 
Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 
2011;27:1739–40.

 13. Wan J, Qian S-B. TISdb: a database for alternative translation initiation in 
mammalian cells. Nucleic Acids Res. 2014;42:D845–50.

 14. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for 
microarray and RNA-seq data. BMC Bioinf. 2013;14:1–15.

 15. Smyth GK. Limma: linear models for microarray data. In: Bioinformatics 
and computational biology solutions using R and Bioconductor. Springer; 
2005. p. 397–420.

 16. Anders S, Huber W. Differential expression analysis for sequence count 
data. Nat Preced. 2010;1–1.

 17. Therneau TM, Lumley T. Package ‘survival.’ R Top Doc. 2015;128:28–33.
 18. Harrell FE. Cox proportional hazards regression model. In: Regression 

modeling strategies. Springer; 2015. p. 475–519.
 19. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation 

network analysis. BMC Bioinf. 2008;9:1–13.
 20. Shuai M, Chen X. Algorithm optimization for weighted gene co-expres-

sion network analysis: accelerating the calculation of Topology Overlap 
Matrices with OpenMP and SQLite. bioRxiv. 2021.

 21. Weppler S, Schinkel C, Kirkby C, Smith W. Lasso logistic regression to 
derive workflow-specific algorithm performance requirements as dem-
onstrated for head and neck cancer deformable image registration in 
adaptive radiation therapy. Phys Med Biol. 2020;65: 195013.

 22. Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett. 
2006;27:861–74.

 23. Modhukur V, Iljasenko T, Metsalu T, Lokk K, Laisk-Podar T, Vilo J. MethSurv: 
a web tool to perform multivariable survival analysis using DNA methyla-
tion data. Epigenomics. 2018;10:277–88.

 24. Anuraga G, Wang W-J, Phan NN, An Ton NT, Ta HDK, Berenice Prayugo F, 
et al. Potential prognostic biomarkers of NIMA (Never in Mitosis, Gene 
A)-Related Kinase (NEK) family members in breast cancer. J Pers Med. 
2021;11:1089.

 25. Song Y, Ma R. Identifying the potential roles of PBX4 in human cancers 
based on integrative analysis. Biomolecules. 2022;12:822.

 26. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2. 0 for analysis of 
tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48:W509–14.

 27. Kao T-J, Wu C-C, Phan NN, Liu Y-H, Ta HDK, Anuraga G, et al. Prognoses 
and genomic analyses of proteasome 26S subunit, ATPase (PSMC) family 
genes in clinical breast cancer. Aging. 2021;13:17970.

 28. Laham AJ, El-Awady R, Lebrun J-J, Ayad MS. A bioinformatics evaluation 
of the role of dual-specificity tyrosine-regulated kinases in colorectal 
cancer. Cancers. 2022;14:2034.

 29. Benesty J, Chen J, Huang Y, Cohen I. Pearson correlation coefficient. In: 
Noise reduction in speech processing. Springer; 2009. p. 1–4.

 30. Musa A, Ghoraie LS, Zhang S-D, Glazko G, Yli-Harja O, Dehmer M, et al. A 
review of connectivity map and computational approaches in pharma-
cogenomics. Brief Bioinform. 2018;19:506–23.

 31. Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, et al. A 
next generation connectivity map: L1000 platform and the first 1,000,000 
profiles. Cell. 2017;171:1437–52.

 32. Wang C-Y, Chiao C-C, Phan NN, Li C-Y, Sun Z-D, Jiang J-Z, et al. Gene 
signatures and potential therapeutic targets of amino acid metabolism in 
estrogen receptor-positive breast cancer. Am J Cancer Res. 2020;10:95.

 33. Harrell FE Jr, Harrell MFE Jr, Hmisc D. Package ‘rms.’ Vanderbilt Univ. 
2017;229:Q8.

 34. Kristensen K, Nielsen A, Berg CW, Skaug H, Bell B. TMB: automatic differen-
tiation and Laplace approximation. ArXiv Prepr ArXiv150900660. 2015.

 35. Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T. Cytoscape 2.8: new 
features for data integration and network visualization. Bioinformatics. 
2011;27:431–2.

 36. Miki Y, Kidoguchi Y, Sato M, Taketomi Y, Taya C, Muramatsu K, et al. Dual 
roles of group IID phospholipase A2 in inflammation and cancer. J Biol 
Chem. 2016;291:15588–601.

 37. Murakami M, Yamamoto K, Miki Y, Murase R, Sato H, Taketomi Y. The roles 
of the secreted phospholipase A2 gene family in immunology. Adv 
Immunol. 2016;132:91–134.

 38. Wang Y, Song H, Miao Q, Wang Y, Qi J, Xu X, et al. PLA2G6 silencing 
suppresses melanoma progression and affects ferroptosis revealed by 
quantitative proteomics. Front Oncol. 2022;12.

 39. Oien DB, Pathoulas CL, Ray U, Thirusangu P, Kalogera E, Shridhar V. Repur-
posing quinacrine for treatment-refractory cancer. In: Seminars in Cancer 
Biology. Elsevier; 2021. p. 21–30.

 40. Kumar M, Sarkar A. Repurposing of anti-malarial drug quinacrine for 
cancer treatment: a review. Sci Pharm. 2022;90:12.

 41. Bryant J, Batis N, Franke AC, Clancey G, Hartley M, Ryan G, et al. Repur-
posed quinacrine synergizes with cisplatin, reducing the effective dose 



Page 23 of 23Liu et al. BMC Medical Genomics          (2023) 16:110  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

required for treatment of head and neck squamous cell carcinoma. 
Oncotarget. 2019;10:5229.

 42. Friedman J, Nottingham L, Duggal P, Pernas FG, Yan B, Yang XP, et al. 
Deficient TP53 expression, function, and cisplatin sensitivity are restored 
by quinacrine in head and neck cancer. Clin Cancer Res. 2007;13:6568–78.

 43. Li T, Wang W, Gong S, Sun H, Zhang H, Yang A-G, et al. Genome-wide 
analysis reveals TNFAIP8L2 as an immune checkpoint regulator of inflam-
mation and metabolism. Mol Immunol. 2018;99:154–62.

 44. Sun H, Gong S, Carmody RJ, Hilliard A, Li L, Sun J, et al. TIPE2, a nega-
tive regulator of innate and adaptive immunity that maintains immune 
homeostasis. Cell. 2008;133:415–26.

 45. Lan G, Yu X, Sun X, Li W, Zhao Y, Lan J, et al. Comprehensive analysis of the 
expression and prognosis for TNFAIPs in head and neck cancer. Sci Rep. 
2021;11:1–12.

 46. Bai K-H, Zhang Y-Y, Li X-P, Tian X-P, Pan M-M, Wang D-W, et al. Comprehen-
sive analysis of tumor necrosis factor-α-inducible protein 8-like 2 (TIPE2): 
A potential novel pan-cancer immune checkpoint. Comput Struct 
Biotechnol J. 2022;20:5226.

 47. Cao X, Zhang L, Shi Y, Sun Y, Dai S, Guo C, et al. Human tumor necrosis 
factor (TNF)-alpha-induced protein 8-like 2 suppresses hepatocellular 
carcinoma metastasis through inhibiting Rac1. Mol Cancer. 2013;12:1–10.

 48. Lorbek G, Lewinska M, Rozman D. Cytochrome P450s in the synthesis of 
cholesterol and bile acids–from mouse models to human diseases. FEBS 
J. 2012;279:1516–33.

 49. Kimbung S, Inasu M, Stålhammar T, Nodin B, Elebro K, Tryggvadottir H, 
et al. CYP27A1 expression is associated with risk of late lethal estrogen 
receptor-positive breast cancer in postmenopausal patients. Breast 
Cancer Res. 2020;22:1–13.

 50. Alfaqih MA, Nelson ER, Liu W, Safi R, Jasper JS, Macias E, et al. CYP27A1 
loss dysregulates cholesterol homeostasis in prostate cancer 
CYP27A1 loss is involved in prostate cancer progression. Cancer Res. 
2017;77:1662–73.

 51. He S, Ma L, Baek AE, Vardanyan A, Vembar V, Chen JJ, et al. Host CYP27A1 
expression is essential for ovarian cancer progression. Endocr Relat Can-
cer. 2019;26:659–75.

 52. Ma L, Wang L, Nelson AT, Han C, He S, Henn MA, et al. 27-Hydroxycholes-
terol acts on myeloid immune cells to induce T cell dysfunction, promot-
ing breast cancer progression. Cancer Lett. 2020;493:266–83.

 53. Liang Z, Jiao W, Wang L, Chen Y, Li D, Zhang Z, et al. CYP27A1 inhibits 
proliferation and migration of clear cell renal cell carcinoma via activation 
of LXRs/ABCA1. Exp Cell Res. 2022;419: 113279.

 54. Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang L-S, et al. Enhanc-
ing CD8 T-cell memory by modulating fatty acid metabolism. Nature. 
2009;460:103–7.

 55. Ma X, Bi E, Lu Y, Su P, Huang C, Liu L, et al. Cholesterol induces CD8+ T cell 
exhaustion in the tumor microenvironment. Cell Metab. 2019;30:143–56.

 56. Yang W, Bai Y, Xiong Y, Zhang J, Chen S, Zheng X, et al. Potentiating the 
antitumour response of CD8+ T cells by modulating cholesterol metabo-
lism. Nature. 2016;531:651–5.

 57. Hubler MJ, Kennedy AJ. Role of lipids in the metabolism and activation of 
immune cells. J Nutr Biochem. 2016;34:1–7.

 58. Endo Y, Kanno T, Nakajima T. Fatty acid metabolism in T-cell function and 
differentiation. Int Immunol. 2022;34:579.

 59. Ichise H, Tsukamoto S, Hirashima T, Konishi Y, Oki C, Tsukiji S, et al. Func-
tional visualization of NK cell-mediated killing of metastatic single tumor 
cells. Elife. 2022;11:e76269.

 60. Niavarani SR, Lawson C, Bakos O, Boudaud M, Batenchuk C, Rouleau S, 
et al. Lipid accumulation impairs natural killer cell cytotoxicity and tumor 
control in the postoperative period. BMC Cancer. 2019;19:1–14.

 61. Yu W, Lei Q, Yang L, Qin G, Liu S, Wang D, et al. Contradictory roles of lipid 
metabolism in immune response within the tumor microenvironment. J 
Hematol OncolJ Hematol Oncol. 2021;14:1–19.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Identification of genetic mechanisms underlying lipid metabolism-mediated tumor immunity in head and neck squamous cell carcinoma
	Abstract 
	Objective 
	Materials and methods 
	Results 
	Conclusion 

	Introduction
	Materials and methods
	Procurement of HNSC datasets
	Procurement of lipid metabolism-associated genes and immune-related gene set
	Data preprocessing
	Gene set variation analysis
	Univariate analysis to screen survival-related genes
	WGCNA for the significant module
	Hub gene screening in significant modules
	DNA methylation analysis of immune-related hub genes
	Immune cell infiltration analysis for immune-related hub genes
	Prediction of targeted small molecule drugs
	Multivariate analysis of hub genes
	Somatic mutation analysis of hub gene
	Pathway analysis of hub genes

	Results
	HNSC dataset
	Gene set variation analysis
	Screening of functional genes associated with survival by univariate analysis
	Mining modules highly related to lipid metabolism- and immune-related genes
	Hub gene screening in significant modules
	The relationship between the methylation levels of the 3 immune-related genes and clinical characteristics of HNSC

	Correlation between 3 immune-related hub genes and TIICs
	The targeting relationship between immune-related hub genes and small molecule drugs

	The expression pattern of hub genes
	Grouping tumor samples of HNSC based on multivariate analysis
	Association of clinical characteristics and risk groups with survival
	The somatic mutation of hub genes
	Pathway network analysis of hub genes

	Discussion
	Conclusion
	Acknowledgements
	References


