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Abstract 

Background TSC22D domain family genes, including TSC22D1-4, play a principal role in cancer progression. How-
ever, their expression profiles and prognostic significance in adult acute myeloid leukemia (AML) remain unknown.

Methods The online databases, including HPA, CCLE, EMBL-EBI, GEPIA2, BloodSpot, GENT2, UCSCXenaShiny, 
GSCALite, cBioportal, and GenomicScape, utilized the data of TCGA and GEO to investigate gene expression, mutation, 
copy number variation (CNV), and prognostic significance of the TSC22D domain family in adult AML. Computational 
analysis of resistance (CARE) was used to explore the effect of TSC22D3 expression on drug response. Functional 
enrichment analysis of TSC22D3 was performed in the TRRUST Version 2 database. The STRING, Pathway Commons, 
and AnimalTFDB3.0 databases were used to investigate the protein–protein interaction (PPI) network of TSC22D3. 
Harmonizome was used to predict target genes and kinases regulated by TSC22D3. The StarBase v2.0 and CancermiR-
Nome databases were used to predict miRNAs regulated by TSC22D3. UCSCXenaShiny was used to investigate the 
correlation between TSC22D3 expression and immune infiltration.

Results Compared with normal adult hematopoietic stem cells (HSCs), the expression of TSC22D3 and TSC22D4 
in adult AML tissues was markedly up-regulated, whereas TSC22D1 expression was markedly down-regulated. The 
expression of TSC22D1 and TSC22D3 was significantly increased in adult AML tissues compared to normal adult 
tissues. High TSC22D3 expression was significantly associated with poor overall survival (OS) and event-free survival 
(EFS) in adult AML patients. Univariate and multivariate Cox analysis showed that overexpression of TSC22D3 was 
independently associated with adverse OS of adult AML patients. High TSC22D3 expression had a adverse impact on 
OS and EFS of adult AML patients in the chemotherapy group. TSC22D3 expression correlated with drug resistance to 
BCL2 inhibitors. Functional enrichment analysis indicated that TSC22D3 might promote AML progression. MIR143-3p 
sponging TSC22D3 might have anti-leukemia effect in adult AML.
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Conclusions A significant increase in TSC22D3 expression was observed in adult AML tissues compared to normal 
adult HSCs and tissues. The prognosis of adult AML patients with high TSC22D3 expression was unfavorable, which 
could severe as a new prognostic biomarker and potential target for adult AML.

Keywords Acute myeloid leukemia, Prognostic biomarker, Drug response, Tumor infiltration

Introduction
Acute myeloid leukemia (AML) is an aggressive hemat-
opoietic malignancy with high biological and clinical het-
erogeneity [1]. Despite advances made in the diagnosis 
and treatment of AML, the increased risk of relapse and 
low 5-year survival rate after diagnosis remain significant 
challenges [2]. Authentication of new AML biomarkers 
can help to clarify the pathogenesis of the disease and 
guide the diagnosis, treatment, and prognosis evalua-
tion of AML [3]. TSC22D domain family genes have been 
extensively reported to play an essential role in tumors 
[4–7]. Nonetheless, their expression profiles and progno-
sis in adult AML remain unclear. Herein, we conducted 
an integrated analysis of the expression and prognostic 
value of TSC22D domain family genes in adult AML by 
using data from the Cancer Genome Atlas (TCGA) and 
Gene Expression Omnibus (GEO) databases. The flow 
chart of our study was shown in Fig. 1.

Materials and methods
Data retrieval and processing
Gene expression analysis
Gene expression of  the  TSC22D domain family 
in  AML  cell  lines Human Protein Atlas (HPA, https:// 
www. prote inatl as. org) [8] is a comprehensive database of 

proteomics, transcriptomics, and systems biology data. 
The expression of the TSC22D domain family genes in 
88 leukemia cell lines (including 38 AML cell lines) was 
determined and visualized using “HPA”.

Cancer Cell Line Encyclopedia (CCLE, https:// www. 
broad insti tute. org/ ccle) [9] is a multiomics online data-
base that provides a large-scale transcriptome sequenc-
ing data for the study of human cancer cell lines. The 
expression data of TSC22D domain family genes in 43 
AML cell lines was downloaded from the “Expression 
22Q4 Public” dataset of the CCLE database and visual-
ized by the cluster heatmap tool.

EMBL’s European Bioinformatics Institute (EMBL-EBI, 
https:// www. ebi. ac. uk) [10] is an integrated bioinformat-
ics research database. The expression of the TSC22D 
domain family genes in 16 AML cell lines was deter-
mined and visualized using “EMBL-EBI”.

Gene expression of  the  TSC22D domain family in  adult 
AML tissues and CD34 positive hematopoietic stem cells 
(HSCs) from normal adult bone marrow tissues BloodS-
pot (http:// serve rs. binf. ku. dk/ blood spot/) [11] is an online 
open data analysis platform that provides gene expression 
and survival prognosis data from TCGA and GEO data-
bases. Gene expression data of the TSC22D domain fam-

Fig. 1 Flow chart of the present study

https://www.proteinatlas.org
https://www.proteinatlas.org
https://www.broadinstitute.org/ccle
https://www.broadinstitute.org/ccle
https://www.ebi.ac.uk
http://servers.binf.ku.dk/bloodspot/
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ily in adult AML  tissues  and CD34 positive HSCs from 
normal adult bone marrow tissues was downloaded from 
the “Normal hematopoiesis with AMLs” dataset and the 
“Bloodpool: AML samples with normal cells” dataset of 
the BloodSpot database.

Gene Expression database of Normal and Tumor tis-
sues 2 (GENT2, http:// gent2. appex. kr) [12] integrates 
publicly available expression profile microarray data from 
the GEO database to compare and analyze gene expres-
sion in normal and cancer patient tissues. Gene expres-
sion data of the TSC22D domain family in 2802 adult 
AML  tissues and 17 CD34 positive HSCs from normal 
adult bone marrow tissues was downloaded from the “ 
GPL570 platform (HG-U133_Plus_2)” of the GENT2 
database (See excel sheet 1 in the Additional file 1).

Gene expression of  the  TSC22D domain family in  adult 
AML tissues and normal adult tissues Gene Expression 
Profling Interactive Analysis 2 (GEPIA2, http:// gepia2. 
cancer- pku. cn/) [13] is an updated and enhanced online 
publicly accessible database based on TCGA and Geno-
type-Tissue Expression (GTEx) databases for tumor and 
normal samples for gene expression analysis. The expres-
sion of the TSC22D domain family genes in 173 TCGA-
LAML tissues and 70 GTEx-Normal tissues was com-
pared and visualized using “GEPIA2”.

Gene expression data of the TSC22D domain family in 
542 adult AML  tissues and 73 normal  adult.bone  mar-
row tissues was downloaded from the “ Leukemia MILE 
Study” dataset (GSE13159) of the BloodSpot database.

Gene expression data of the TSC22D domain family in 
2802 adult AML tissues and 134 normal adult bone mar-
row tissues was downloaded from the “ GPL570 platform 
(HG-U133_Plus_2)” of the GENT2 database (See excel 
sheet 1 in the Additional file 1).

Survival analysis
We retrieved and analyzed the RNAseq gene expres-
sion data of the TSC22D domain family and the cor-
responding clinical prognostic data in the GEPIA2, 
Bloodspot, GSCALite ( http:// bioin fo. life.hust.edu.cn/
web/GSCALite/) [14], UCSCXenaShiny (https:// shiny. 
hiplot- acade mic. com/ ucsc- xena- shiny) [15], cBioportal 
(https:// www. cbiop ortal. org) [16], and GenomicScape 
(http:// genom icsca pe. com/) [17] databases. Furthermore, 
RNASeq (RNA-seq V2 RSEM) gene expression data of 
TSC22D3 and the corresponding clinical prognostic data 
was downloaded from the “ TCGA-LAML, NEJM 2013” 
[18] dataset of the cBioPortal database (See excel sheet 2 
in the Additional file  2). Then adult patients with AML 
were stratified into a low expression group and a high 
expression group based on TSC22D3 mRNA median 
expression. We explored the relationship between 

TSC22D3 expression and clinical parameters and per-
formed the analyses of OS, EFS, and univariate and mul-
tivariate Cox OS.

Effect of TSC22D3 expression on drug response
Computational analysis of resistance [19] (CARE, http:// 
care. dfci. harva rd. edu/) is used to identify genomes and 
biomarkers of response to targeted therapies. A positive 
CARE score indicated that gene expression was asso-
ciated with drug sensitivity, whereas a negative CARE 
score indicated drug resistance.

Data of the correlation between TSC22D3 expression 
and drug response was downloaded from the “Cancer 
Genome Project (CGP)” dataset and the “Cancer Thera-
peutics Response Portal (CTRP)” dataset of the CARE 
database and visualized by the arc link tool.

Gene mutation and copy number variation (CNV) analysis 
of TSC22D3
Gene mutation data and the corresponding survival data 
of of TSC22D3 in adult AML from the “ TCGA-LAML, 
PanCancer Atlas” dataset was analyzed and visualize 
using “cBioPortal”. And CNV data and the correspond-
ing survival data of TSC22D3 in adult AML was analyzed 
and visualized using “GSCALite”.

Functional enrichment analysis of TSC22D3
Transcriptional Regulatory Relationships Unraveled by 
Sentence-based Text mining Version 2 (TRRUST Ver-
sion 2, http:// www. grnpe dia. org/ trrust/) [20] is an online, 
open database of human and mouse transcriptional regu-
latory networks. Gene ontology (GO) biological process, 
disease ontology (DO), and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway data associated with 
human TSC22D3 transcription factor (TF) was down-
loaded from “TRRUST Version 2” and then visualized by 
the bar with a color gredient tool.

Protein–protein interaction (PPI) analysis of TSC22D3
STRING (https:// string- db. org) [21] is an online open 
database aimed at providing customized protein–protein 
networks.

Pathway Commons (http:// www. pathw aycom mons. 
org) [22] is an integrated platform of multiple database 
for predicting protein–protein interactions.

AnimalTFDB3.0 (http:// bioin fo. life. hust. edu. cn/ Anima 
lTFDB/) [23] is an online database aimed at providing the 
most comprehensive and accurate information for animal 
(including human) TFs and cofactors.

The relationship between TSC22D3 and other pro-
teins was predicted and visualized using “String,” “Path-
way Commons,” and “AnimalTFDB3.0.” The expression 
of potential protein in 173 TCGA-LAML tissues and 

http://gent2.appex.kr
http://gepia2.cancer-pku.cn/
http://gepia2.cancer-pku.cn/
http://bioinfo.life
https://shiny.hiplot-academic.com/ucsc-xena-shiny
https://shiny.hiplot-academic.com/ucsc-xena-shiny
https://www.cbioportal.org
http://genomicscape.com/
http://care.dfci.harvard.edu/
http://care.dfci.harvard.edu/
http://www.grnpedia.org/trrust/
https://string-db.org
http://www.pathwaycommons.org
http://www.pathwaycommons.org
http://bioinfo.life.hust.edu.cn/AnimalTFDB/
http://bioinfo.life.hust.edu.cn/AnimalTFDB/
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70 GTEx-Normal tissues was analyzed using “UCSCX-
enaShiny”. The correlation between TSC22D3 protein 
and potential protein was analyzed and visualized using 
“UCSCXenaShiny”. The effect of potential protein on OS 
of adult AML patients was analyzed and visualized using 
“GenomicScape”.

Analysis of TSC22D3 regulated target genes and kinases
Harmonizome (http:// amp. pharm. mssm. edu/ Harmo 
nizome) [24] integrates many publicly available online 
databases to predict the functions of genes or proteins.

Data of TSC22D3 regulated target genes was down-
loaded from the “CHEA Transcription Factor Targets” 
dataset, the “ENCODE Transcription Factor Targets” 
dataset, and the “JASPAR Predicted Transcription Factor 
Targets” dataset of the Harmonizome database and visu-
alized using the jvenn tool.

The expression of potential target gene in 173 TCGA-
LAML tissues and 70 GTEx-Normal tissues was analyzed 
and visualized using “UCSCXenaShiny”. The correlation 
between TSC22D3 and potential target gene was ana-
lyzed and visualized using “UCSCXenaShiny”. The effect 
of potential target gene on OS of adult AML patients was 
analyzed and visualized using “GenomicScape”.

Data of the top 20 predicted kinases with a high Z 
score regulated by TSC22D3 was downloaded from the 
Harmonizome database and visualized using the circular 
heatmap tool. The expression of predicted kinases in 173 
TCGA-LAML tissues and 70 GTEx-Normal tissues was 
analyzed and visualized using “UCSCXenaShiny”. The 
correlation between TSC22D3 and predicted kinases was 
analyzed and visualized using “UCSCXenaShiny”. The 
effect of predicted kinases on OS of adult AML patients 
was analyzed and visualized using “UCSCXenaShiny”.

Analysis of TSC22D3 regulated miRNAs
StarBase v2.0 ( https:// starb ase. sysu. edu. cn/) [25] inte-
grates multiple online microRNA (miRNA) databases to 
explore miRNA interactions.

CancerMIRNome ( http:// bioin fo. jialab- ucr. org/ Cance 
rMIRN ome) [26] is an online database for interactive 
analysis and visualization of the miRNome spectrum in 
human cancer.

Data of the predicted miRNAs regulated by TSC22D3 
was downloaded from the “PITA” dataset, the “microT” 
dataset, the “miRmap”dataset, the “miRanda”dataset, 
the “PicTar”dataset, and the “TargetScan” dataset of the 
StarBase v2.0 database and visualized using the jvenn 
tool. The correlation between the TSC22D3 expres-
sion and potential miRNA was analyzed and visualized 
using “StarBase v2.0” and “UCSCXenaShiny”. The effect 
of potential miRNA on OS of adult AML patients was 
analyzed and visualized using “UCSCXenaShiny” and 

“CancerMIRNome”. DO and KEGG pathway analysis of 
potential miRNA was performed and visualized using 
“CancerMIRNome”.

Immune infiltration analysis of TSC22D3
Data of the correlation between the TSC22D3 expression 
and immune cell infiltration in adult AML by using the 
“CIBERSORT” algorithm, the “QUANTISEQ” algorithm, 
the “MCPCOUNTER” algorithm, the “EPIC” algorithm, 
and the “XCELL” algorithm was downloaded from the 
UCSCXenaShiny database and visualized using the cor-
relation analysis tool.

Data analysis and visualization
Wilcoxon rank-sum test was used for comparative analy-
sis of gene expression. Kaplan Meier survival analysis 
(including OS and EFS) was performed using the log-
rank test. Univariate and multivariate Cox’s survival 
analysis was performed using SPSS software version 21.0. 
Graph Pad Prism version 8 was used for chi-square test 
analysis. P value < 0.05 indicated a significance level.

Data visualization was performed using the cluster 
heatmap tool, the circular heatmap tool, box tool, KM 
survival curve tool, jvenn tool, bar with color gredient 
tool, arc link tool, and correlation analysis tool from the 
website (http:// www. bioin forma tics. com. cn).

Results
Analysis of the expression of the TSC22D domain family 
genes in AML cell lines, normal adult HSCs, adult AML 
tissues and normal adult tissues
Three different databases, including “HPA”, “CCLE”, and 
EMBL-EBI”, demonstrated that TSC22D domain family 
genes were abnormally expressed in AML cell lines at dif-
ferent levels (Fig. 2A–C).

Then we explored the expression of the TSC22D 
domain family genes in adult AML tissues and normal 
adult HSCs using TCGA and GEO data from the BloodS-
pot and GENT2 databases. These results showed that the 
expression of TSC22D3 and TSC22D4 was significantly 
upregulated in adult AML tissues relative to normal adult 
HSCs, whereas the expression trend of TSC22D1 was the 
opposite (P < 0.05) (Fig. 3A–C).

We subsequently investigated gene expression of the 
TSC22D domain family in adult AML tissues and nor-
mal adult tissues utilizing TCGA data from the GEPIA2 
database, and GEO data from the BloodSpot and GENT2 
databases. The results revealed that the expression of 
TSC22D1 and TSC22D3 was markedly increased in 
adult AML tissues compared with normal adult tissues 
(P < 0.05) (Fig. 4A–C).

http://amp.pharm.mssm.edu/Harmonizome
http://amp.pharm.mssm.edu/Harmonizome
https://starbase.sysu.edu.cn/
http://bioinfo.jialab-ucr.org/CancerMIRNome
http://bioinfo.jialab-ucr.org/CancerMIRNome
http://www.bioinformatics.com.cn
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Survival analysis according to the expression 
of the TSC22D domain family genes in adult AML
Survival analysis was performed using TCGA data 
from the GEPIA2, Bloodspot, GSCALite, UCSCX-
enaShiny, and cBioportal databases and GEO data from 
the GenomicScape database. Amusingly, only TSC22D3 

expression was of survival prognostic significance in 
adult AML. However, other members of the TSC22D 
family genes had little effect on OS of adult AML patients 
(See Table 1).

Morever, we found that high TSC22D3 expres-
sion was significantly correlated with white blood cell 

Fig. 2 Gene expression of the TSC22D domain family in AML cell lines. A Bar graphs of the expression of the TSC22D domain family genes in 
88 leukemia cell lines (including 38 AML cell lines) in the HPA database. The height of the bar charts represented the level of gene expression. B 
Heatmap of the expression of the TSC22D domain family genes in 43 AML cell lines in the CCLE database. The color of the Heatmap represented the 
level of gene expression. C Bar chart of the expression of the TSC22D domain family genes in 16 AML cell lines in the EMBL-EBI database. The shade 
of color in the bar graphs indicated the level of gene expression
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(WBC) counts (> 20 × 10^9/L), bone marrow (BM) 
blasts (> 70%), FAB M1 subtype, FAB M5 subtype, and 
positive NPM1 mutation (P < 0.05). Low TSC22D3 
expression was significantly correlated with the FAB 
M2 subtype and the FAB M3 subtype (P < 0.05) (See 
Table 2).

We found that high TSC22D3 expression significantly 
affected OS and EFS of adult AML patients (P < 0.05) 
(Fig.  5A, D). Both univariate and multivariate COX 
regression analysis showed that the increased mor-
tality in adult AML patients was significantly associ-
ated with over 60  years old, cytogenetics, DNMT3A 
positive mutation, TP53 positive mutation, treatment 
type (chemotherapy), and high TSC22D3 expression 
(P < 0.05) (See Table  3). High TSC22D3 expression 

had a detrimental effect on OS and EFS of adult AML 
patients in the chemotherapy group (P < 0.05) (Fig. 5B, 
E). However, high TSC22D3 expression had no effect 
on OS and EFS of adult AML patients in the transplan-
tation group (P > 0.05) (Fig. 5C, F).

Analysis of the effect of TSC22D3 expression on drug 
response
Analysis of the effect of TSC22D3 expression on drug 
response using the “CGP” dataset and the “CTRP” 
dataset demonstrated that TSC22D3 expression was 
significantly associated with drug resistance to BCL2 
inhibitors (Fig. 5G, H).

Fig. 3 Gene expression of the TSC22D domain family in AML tissues and CD34 positive HSCs from normal adult bone marrow tissues was 
measured and compared using the Wilcoxon rank-sum test (*P < 0.05,**P < 0.01,***P < 0.001,****P < 0.0001, ns means no statistical significance). A 
The expression of TSC22D family genes in 252 AML tissues and 6 CD34 positive HSCs from normal adult bone marrow tissues was measured using 
the “ Normal hematopoiesis with AMLs” dataset of the Bloodspot database. B The expression of TSC22D family genes in 1825 AML tissues and 6 
CD34 positive HSCs from normal adult bone marrow tissues was measured using the “ BloodPool: AML samples with normal cells” dataset of the 
Bloodspot database. C The expression of TSC22D family genes in 2802 AML tissues and 17 CD34 positive HSCs from normal adult bone marrow 
tissues was measured using the GPL570 platform (HG-U133_Plus_2) of the GENT2 database
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Gene mutation and CNV analysis of TSC22D3
Gene mutation rate of TSC22D3 was 8%, and TSC22D3 
gene mutation did not affect the OS of adult AML 
patients (Fig.  6A, C). An the incidence of CNV of 
TSC22D3 was low in adult AML and did not affect the 
OS of adult AML patients (Fig. 6B, D).

Functional enrichment analysis of TSC22D3
The results showed that TSC22D3 has many biological 
functions, including response to DNA damage stimu-
lus, G1 phase of mitotic cell cycle, regulation of cell 
proliferation, cell cycle arrest, and response to drug, 
etc. (Fig.  7A). DO analysis revealed that TSC22D3 
was involved in tumors, including myeloid leukemia 

(Fig.  7A). Furthermore, KEGG pathway analysis indi-
cated that TSC22D3 was involved in the regulation of 
multiple signaling pathways (Fig. 7A).

PPI analysis of TSC22D3
The consistent analysis of the STRING, Pathway Com-
mons, and AnimalTFDB3.0 databases indicated that 
TSC22D3 interacted with FOS and SCNN1B (Fig.  7B–
D). And FOS has been extensively reported in tumor 
progression. Then the analysis of gene expression, cor-
relation, and survival prognosis of FOS in adult AML 
was performed in TCGA and GEO datasets. The results 
revealed that FOS was significantly increased in adult 
AML (P < 0.05) (Fig. 7E). TSC22D3 was positively corre-
lated with FOS (P < 0.05) (Fig. 7F). High FOS expression 

Fig. 4 The expression of the TSC22D domain family genes in adult AML tissues and normal adult tissues was measured and compared using the 
Wilcoxon rank-sum test (*P < 0.05,**P < 0.01,***P < 0.001,****P < 0.0001, ns means no statistical significance). A The expression of the TSC22D domain 
family genes in 173 TCGA-LAML tissues and 70 GTEx-normal tissues using the GEPIA2 database. B The expression of the TSC22D domain family 
genes in 542 adult AML tissues and 73 normal adult bone marrow tissues using the Leukemia MILE study dataset of the Bloodspot database. C The 
expression of the TSC22D domain family genes in 2802 adult AML tissues and 134 normal adult bone marrow tissues using the GENT2 database
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was associated with unfavorable OS of 78 adult AML 
patients (P < 0.05) (Fig. 7G).

Analysis of TSC22D3 regulated target genes and kinases
The results showed that TSC22D3 might regulate 
CREB1 (Fig. 8A). Gene expression analysis indicated that 
CREB1 was significantly elevated in adult AML (P < 0.05) 
(Fig. 8B). Unexpectedly, TSC22D3 had statistical no cor-
relation with CREB1 (P > 0.05) (Fig.  8C). However, high 

CREB1 expression had an adverse impact on OS of 162 
adult AML patients (P < 0.05) (Fig. 8D).

We investigated the top 20 kinases with high Z score 
regulated by TSC22D3 (Fig.  8E) and analyzed their 
expression, as well as the correlation of TSC22D3, and 
survival prognosis in adult TCGA-LAML (Additional 
file 3: See Table S1). The results revealed that the expres-
sion of MAP4K1, MAP2K3, TYK2, and STK10 was 
markedly up-regulated in adult AML and significantly 

Table 1 The effect of the expression of the TSC22D domain family genes on OS of adult AML patients

NS no significance
* Analysis of the effect of the TSC22D domain family genes on OS of adult AML patients was performed in the corresponding probe set of the Bloodspot database
& Analysis of the effect of the TSC22D domain family genes on OS of adult AML patients was performed in the corresponding probe set of the GenomicScape database

Database Adult AML 
samples (N)

Group TSC22D1 TSC22D2 TSC22D3 TSC22D4

GEPIA2 106 Cutoff high value 0.50 0.50 0.50 0.50

Logrank P-value 0.11 0.30 0.047 0.87

Prognostic outcome NS NS Adverse NS

Bloodspot 172 Cutoff high value 0.50 * (probe ID: 
215111_s_at)

0.49 * (probe ID: 
210953_at)

0.51 * (probe ID: 
208763_s_at)

0.49 * (probe ID: 
208104_s_at)

Logrank P-value 0.353 0.085 4.27E-03 0.68

Prognostic outcome NS NS Adverse NS

GSCALite 163 Cutoff high value 0.50 0.50 0.50 0.50

Logrank P-value 0.66 0.61 1.8E-03 0.77

Prognostic outcome NS NS Adverse NS

UCSCXenaShiny 161 Cutoff high value 0.50 0.50 0.50 0.50

Logrank P-value 0.31 0.14 1.7E-02 0.64

Prognostic outcome NS NS Adverse NS

UCSCXenaShiny 167 Cutoff high value 0.49 0.51 0.50 0.50

Logrank P-value 0.26 0.11 2.3E-03 0.48

Prognostic outcome NS NS Adverse NS

cBioportal: Firehose 
Legacy

169 Cutoff high value 0.50 0.50 0.50 0.50

Logrank P-value 0.155 0.139 3.0E-03 0.534

Prognostic outcome NS NS Adverse NS

cBioportal: TCGA-
NEJM2013

173 Cutoff high value 0.50 0.50 0.50 0.50

Logrank P-value 0.855 0.326 0.041 0.323

Prognostic outcome NS NS Adverse NS

cBioportal: TCGA 
PanCancer Atlas

161 Cutoff high value 0.50 0.50 0.50 0.50

Logrank P-value 0.563 0.478 8.0E-03 0.759

Prognostic outcome NS NS Adverse NS

GenomicScape 78 Cutoff high value 0.10 &(probe ID: 
243133_at)

0.91 &(probe ID: 
210954_s_at)

0.74 &(probe ID: 
235364_at)

0.91 &(probe ID: 
208104_s_at)

Logrank P-value 0.11 0.072 0.025 0.20

Prognostic outcome NS NS Adverse NS

GenomicScape: 162 Cutoff high value 0.83 &(probe ID: 
243133_at)

0.86 &(probe ID: 
210954_s_at)

0.20 &(probe ID: 
235364_at)

0.47 &(probe ID: 
208104_s_at)

Logrank P-value 0.089 0.18 0.035 0.044

Prognostic outcome NS NS Adverse Favorable
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Table 2 The relationship between TSC22D3 expression and clinical parameters in 173 adult AML data from the “TCGA-AML NEJM 
2013” dataset of the cBioportal database

Characteristics Low expression of 
TSC22D3

High expression of 
TSC22D3

P-value Statistical approach

n 86 87

Sex, n (%) 0.9354 Chi-square test

 Male 46 (26.59%) 46 (26.59%)

 Female 40 (23.12%) 41(23.70%)

Race, n (%) 0.6837 Chi-square with Yates’ 
correction test

 White 66 (48.53%) 62 (45.59%)

 Black 3 (2.20%) 5 (3.68%)

Age, n (%) 0.1430 Chi-square test

  ≤ 60 53 (30.64%) 44(25.43%)

  > 60 33 (19.08%) 43 (24.85%)

WBC count(× 10^9/L), n (%)  < 0.0001 Chi-square test

  ≤ 20 59 (34.10%) 32 (18.50%)

  > 20 27 (15.61%) 55 (31.79%)

PB blasts(%), n (%) 0.1458 Chi-square test

  < 20 40 (23.12%) 31 (17.92%)

  ≥ 20 46 (26.59%) 56(32.37%)

BM blasts(%), n(%) 0.0272 Chi-square test

  ≤ 70 46 (26.59%) 32 (18.50%)

  > 70 40 (23.12%) 55 (31.79%)

FAB classifications, n (%) 0.0356 Chi-square test

 M0 9 (5.26%) 7 (4.10%)

 M1 16 (9.36%) 28 (16.37%)

 M2 25 (14.62%) 13 (7.60%)

 M3 11 (6.43%) 5 (2.92%)

 M4 15 (8.77%) 19 (11.11%)

 M5 6 (3.51%) 12 (7.02%)

 M6 1 (0.59%) 1 (0.59%)

 M7 3 (1.75%) 0 (0%)

Cytogenetics, n (%) 0.3945 Chi-square test

 Normal 37(21.64%) 43 (25.15%)

 Complex 7 (4.09%) 15(8.77%)

 t(15;17) 10 (5.85%) 5 (2.92%)

 t(8;21) 5 (2.92%) 2 (1.17%)

 t(9;22) 2 (1.17%) 1 (0.59%)

 inv(16) 4 (2.34%) 6 (3.51%)

 11q23 2 (1.17%) 2 (1.17%)

  + 8 5 (2.92%) 3 (1.75%)

  − 7 1 (0.59%) 3 (1.75%)

  + 21 2 (1.17%) 1 (0.59%)

 Other 10 (5.85%) 5 (2.92%)

FLT3 mutation, n (%) 0.2570 Chi-square test

 Negative 65 (37.57%) 59 (34.10%)

 Positive 21 (12.14%) 28 (16.19%)

NPM1 mutation, n (%) 0.0465 Chi-square test

 Negative 68 (39.31%) 57 (32.95%)

 Positive 18(10.40%) 30 (17.34%)

DNMT3A mutation, n (%) 0.5053 Chi-square test
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positively correlated with TSC22D3 (P < 0.05) (Fig.  8F, 
G). And These kinases had an unfavorable effect on OS of 
161 adult AML patients (P < 0.05) (Fig. 8H).

Analysis of miRNAs regulated by TSC22D3
Analysis of six different miRNA datasets revealed that 
TSC22D3 might be a possible target gene of MIR143-
3p (Fig.  9A). TSC22D3 was negatively correlated with 
MIR143-3p (P < 0.05) (Fig.  9B, C). High expression of 
MIR143-3p was a favorable prognostic factor for OS of 
adult AML patients (P < 0.05) (Fig. 9D, E). DO and KEGG 
analysis indicated that MIR143-3p was involved in bone 
marrow cancer, including myeloid leukemia (Fig. 9F, G).

Immune infiltration analysis of TSC22D3
Analysis of the correlation of TSC22D3 expression and 
immune cell infiltration in adult AML by using five dif-
ferent algorithms showed that TSC22D3 expression was 
significantly associated with monocyte/macrophage 
(P < 0.05) (Fig. 10A–E).

Discussion
TSC22D domain family genes, including TSC22D1-4, 
belong to the leucine zipper TF family and have been 
reported to be involved in regulating cell proliferation 
and differentiation [27]. TSC22D1, also called transform-
ing growth factor-β-stimulated clone-22, was reported to 

play a tumor suppressor role in tumors [28]. TSC22D2 
depends on the TSC22D2-PKM2-CyclinD1 regulatory 
axis to inhibit tumor cell growth in colorectal cancer 
[29]. TSC22D3, also known as glucocorticoid-induced 
leucine zipper (GILZ), can promote or suppress tumor 
growth, depending on the type of tumor and its micro-
environment. TSC22D3 plays a dual role in tumors: it not 
only exerts a tumor-promoting effect by influencing the 
immune system and tumor microenvironment but also 
inhibits tumor growth by inducing apoptosis or suppress-
ing the proliferation of cancer cells [30]. TSC22D4, also 
known as THG-1, was reported to promote esophageal 
squamous cell carcinoma cell tumorsphere growth [31].

In our study, TCGA and GEO data was used to investi-
gate the expression of TSC22D domain family genes and 
their prognostic significance in adult AML. These results 
showed that the expression of TSC22D1 and TSC22D3 
was markedly increased in adult AML tissues. Stun-
ningly, it was TSC22D3, not other TSC22D family genes, 
that had prognostic significance for OS of adult AML 
patients. Therefore, we focused on the possible role of 
TSC22D3 in adult AML. Our study revealed that adult 
AML patients with high expression of TSC22D3 had 
adverse OS and EFS. And overexpression of TSC22D3 
was an independently survival prognostic factor in 
adult AML patients. Subgroup survival analysis accord-
ing to treatment type also showed that high TSC22D3 

Table 2 (continued)

Characteristics Low expression of 
TSC22D3

High expression of 
TSC22D3

P-value Statistical approach

 Negative 67 (38.73%) 64(36.99%)

 Positive 19 (10.98%) 23 (13.30%)

IDH1 mutation, n (%) 0.1211 Chi-square test

 Negative 81 (46.82%) 76 (43.93%)

 Positive 5 (2.89%) 11 (6.36%)

IDH2 mutation, n (%) 0.0779 Chi-square test

 Negative 81 (46.82%) 75 (43.35%)

 Positive 5 (2.89%) 12 (6.94%)

TET2 mutation, n (%) 0.7691 Chi-square test

 Negative 78 (45.09%) 80 (46.24%)

 Positive 8(4.62%) 7 (4.05%)

TP53 mutation, n (%) 0.5926 Chi-square test

 Negative 80 (46.24%) 79 (45.67%)

 Positive 6 (3.47%) 8 (4.62%)

CEBPA mutation, n (%) 0.7565 Chi-square test

 Negative 79 (45.66%) 81 (46.82%)

 Positive 7(4.05%) 6 (3.47%)

Treatment type, n (%) 0.2532 Chi-square test

 Chemotherapy 46 (26.59%) 54 (31.21%)

 Transplant 40 (23.12%) 33 (19.08%)



Page 11 of 21Xu et al. BMC Medical Genomics          (2023) 16:117  

expression was significantly associated with unfavorable 
OS and EFS in the chemotherapy group. However, we 
found no effect of TSC22D3 expression on OS and EFS 
of adult AML patients in the transplantation group. This 
suggested that transplantation might overcome the dis-
advantages of TSC22D3 expression. Furthermore, we 
found that high TSC22D3 expression was significantly 

associated with high WBC counts, high BM blasts, FAB 
M1 subtype, FAB M5 subtype, and positive mutation 
of NPM1. This partly explained why high expression of 
TSC22D3 was associated with a poor survival prognosis 
in adult AML.

Hyperactivation of BCL2 is associated with the devel-
opment, progression, prognosis, and resistance to 

Fig. 5 The effect of TSC22D3 expression on AML. A The effect of TSC22D3 expression on OS of 173 adult AML patients. B The effect of TSC22D3 
expression on OS of 100 adult AML patients in the chemotherapy group. C The effect of TSC22D3 expression on OS of 73 adult AML patients in the 
transplantation group. D The effect of TSC22D3 expression on EFS of 171 adult AML patients. E The effect of TSC22D3 expression on EFS of 98 adult 
AML patients in the chemotherapy group. F The effect of TSC22D3 expression on EFS of 73 adult AML patients in the transplantation group. G The 
effect of TSC22D3 expression on drug response using the CGP dataset of the CARE database. H The effect of TSC22D3 expression on drug response 
using the CTRP dataset of the CARE database
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Table 3 Univariate and multivariate analysis of TSC22D3 expression and clinical parameters on OS of 173 adult AML patients from the 
“TCGA-AML NEJM 2013” dataset of the cBioportal database

Characteristics Total(N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age 173  < 0.001

  ≤ 60 97 Reference Reference

  > 60 76 3.131 (2.147–4.565)  < 0.001 2.047 (1.244–3.368) 0.005

Sex 173 0.770

 Male 92 Reference

 Female 81 1.056 (0.731–1.526) 0.770

Race 136 0.628

 White 128 Reference

 Black 8 0.806 (0.328–1.983) 0.639

WBC count (× 10^9/L) 173 0.291

  ≤ 20 91 Reference

  > 20 82 1.219 (0.844–1.761) 0.290

PB blast percentage 170 0.577

  < 20 68 Reference

  ≥ 20 102 1.112 (0.764–1.620) 0.579

Bone marrow blast percentage 173 0.451

  ≤ 70% 78 Reference

  > 70% 95 1.153 (0.796–1.669) 0.452

FAB 171 0.067

 M0 16 Reference

 M1 44 0.989 (0.495–1.974) 0.975

 M2 38 0.909 (0.447–1.848) 0.792

 M3 16 0.307 (0.106–0.887) 0.029

 M4 34 1.028 (0.506–2.090) 0.939

 M5 18 1.136 (0.501–2.577) 0.760

 M6 2 2.635 (0.578–12.017) 0.211

 M7 3 2.364 (0.654–8.543) 0.189

Cytogenetics 171 0.005 0.019

 Normal 80 Reference

 Complex 22 1.857 (1.088–3.171) 0.023 1.548 (0.716–3.346) 0.266

 t(15;17) 15 0.360 (0.144–0.903) 0.029 0.400 (0.150–1.069) 0.068

 t(8;21) 7 0.485 (0.152–1.553) 0.223 0.626 (0.184–2.130) 0.453

 t(9;22) 3 2.266 (0.547–9.393) 0.259 5.015 (1.117–22.510) 0.035

 inv(16) 10 0.308 (0.096–0.986) 0.047 0.373 (0.114–1.225) 0.104

 t(11q23) 4 1.494 (0.466–4.791) 0.500 2.169 (0.659–7.141) 0.203

  + 8 8 1.231 (0.529–2.866) 0.630 1.303 (0.487–3.486) 0.598

  − 7 4 1.672 (0.522–5.362) 0.387 2.253 (0.692–7.333) 0.177

  + 21 3 1.907(0.594–6.120) 0.278 3.493 (1.053–11.585) 0.041

 Other 15 1.328(0.710–2.483) 0.375 1.920 (1.007–3.660) 0.047

FLT3 mutation 173 0.180

 Negative 124 Reference

 Positive 49 1.325 (0.885–1.984) 0.171

NPM1 mutation 173 0.490

 Negative 125 Reference

 Positive 48 1.155 (0.770–1.732) 0.486

DNMT3A mutation 173 0.038

 Negative 131 Reference Reference
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chemotherapy in AML. BCL2 inhibitors including Vene-
toclax have been applied in the clinical treatment of AML 
[32]. However, with the widespread use of Venetoclax, 
drug resistance has gradually emerged in AML patients, 
especially in the relapsed/refractory AML patients. Pre-
clinical and clinical studies have partially unraveled the 
mechanism of drug resistance to Venetoclax [33]. The 
clinical application of BCL2 inhibitors still faces many 
challenges, which may be relevant to the fact that the 
complex mechanism of drug resistance has not been 
fully unraveled. Fascinatingly, our study showed that 
TSC22D3 expression was significantly correlated with 
resistance to BCL2 inhibitors. This might be one of the 
reasons for drug resistance of BCL2 inhibitors, and it 
was worth further exploring the underlying mechanism 
of drug resistance mediated by TSC22D3.c-Fos has been 
reported to play crucial parts in the maintenance and 
proliferation of AML [34]. Interestingly, our study indi-
cated that TSC22D3 might transcriptionally up-regulate 
the expression of FOS, which might play a certain role in 
AML progression. TSC22D3 promoted tumor cell prolif-
eration by regulating AKT kinase [35]. And hyperactivity 
of the kinases was involved in cancer progression. There-
fore, we analyzed the kinases regulated by TSC22D3. Our 
study indicated that TSC22D3 might transcriptionally 

activate the kinases of MAP4K1, MAP2K3, TYK2, and 
STK10. MAP4K1, as an oncogene, promoted AML pro-
gression by regulating the cell cycle through the MAPK 
pathway [36]. MAP2K3 promoted tumor progression by 
regulating tumor cell migration and invasion through the 
JNK signaling pathway [37]. Dysregulated activation of 
TYK2 in cancers may lead to hyperactive JAK/STATs sig-
nal, which may play an important role in the occurrence 
and development of cancers [38]. The prognosis of AML 
patients with expressing high levels of STK10 was poor, 
which could severe as a new prognostic biomarker for 
AML [39].

MIR143-3p has been reported to function as a tumor 
suppressor [40]. Our study indicated that MIR143-3p 
might exhibit anti-leukemic effect by downregulat-
ing the expression of TSC22D3. TSC22D3 has been 
reported to be involved in the supervision of the cell 
cycle, differentiation, and apoptosis of immune cells 
[41]. TSC22D3 may play an anti-inflammatory and 
immunosuppressive role in tumor development. Acti-
vation of the immunosuppressive TSC22D3 TF in 
dendritic cells can result in treatment failure [42]. 
Overexpression of TSC22D3 subverted therapy-
induced anticancer immuno-surveillance [43]. As a TF, 
TSC22D3 may mediate the immunosuppressive and 

Table 3 (continued)

Characteristics Total(N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

 Positive 42 1.571 (1.040–2.373) 0.032 1.675 (1.060–2.647) 0.027

IDH2 mutation 173 0.915

 Negative 156 Reference

 Positive 17 1.033 (0.567–1.884) 0.915

IDH1 mutation 173 0.304

 Negative 157 Reference

 Positive 16 0.711 (0.360–1.406) 0.327

TET2 mutation 173 0.991

 Negative 158 Reference

 Positive 15 0.996 (0.521–1.907) 0.991

TP53 mutation 173  < 0.001

 Negative 159 Reference Reference

 Positive 14 4.100 (2.291–7.339)  < 0.001 2.691 (1.145–6.323) 0.023

CEBPA mutation 173 0.829

 Negative 160 Reference

 Positive 13 0.928 (0.470–1.834) 0.831

Treatment type 173 0.001

 Chemotherapy 100 Reference Reference

 Transplant 73 0.519 (0.355–0.761) 0.001 0.466 (0.272–0.797) 0.005

TSC22D3 expression 173 0.042

 Low 86 Reference Reference

 High 87 1.466 (1.012–2.122) 0.043 1.546 (1.031–2.320) 0.035
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anti-inflammatory effects of T cells and macrophages 
by inhibiting nuclear factor-κB (NF-κB)-dependent 
transcription [44, 45]. Furthermore, TSC22D3 played 
a significant role in tumor progression by mediat-
ing the increase in cell quantity and activity of Treg 
cells through the TGF-β signaling pathway [46, 47]. 
TSC22D3 could play an indispensable role in the tumor 
microenvironment by influencing all immune system 
cells that infiltrated the tumor microenvironment [30]. 
In addition, TSC22D3 may serve as a pivotal regulator 
of T cell predysfunction [48]. Recent research shows 
that the proliferation, survival, and drug resistance 
of AML cells may be sustained and modulated by the 
bone marrow immunosuppressive microenvironment 

[49]. Our study showed a significantly positive corre-
lation between monocyte/macrophage and TSC22D3 
expression. How did TSC22D3 regulate monocyte/
macrophage needed further study in AML immune 
microenvironment.

To sum up, TSC22D3 might be involved in AML pro-
gression through multiple mechanisms, including the 
regulation of target genes, kinases, signaling pathways, 
drug resistance, and immune cell infiltration. MIR143-
3p sponging TSC22D3 might exhibit anti-leukemic effect 
in adult AML. Our study extended our understanding of 
TSC22D3 as a novel prognostic factor in adult AML and 
its potential role in AML.

Fig. 6 The profiles of gene mutation and CNV of TSC22D3 in adult AML and its effect on OS of adult AML patients. A Gene mutation rate of 
TSC22D3 in 165 adult AML samples using the TCGA PanCancer Atlas dataset of the cBioportal database. B The CNV of TSC22D3 in 179 adult AML 
samples using the GSCALite database. C The effect of gene mutation of TSC22D3 on OS of 165 adult AML patients using the cBioportal database. D 
The effect of CNV of TSC22D3 on OS of 179 adult AML patients using the GSCALite database
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Fig. 7 Functional enrichment analysis and PPI analysis of TSC22D3. A Gene ontology biological process, diseases ontology, and KEGG pathway of 
TSC22D3 using the TRRUST Version 2 database. B PPI analysis of TSC22D3 using the String database. C PPI analysis of TSC22D3 using the Pathway 
Commons database. D PPI analysis of TSC22D3 using the AnimalTFDB3.0 database. E The expression of FOS in 173 TCGA-LAML and 70 GTEx-Normal 
using the UCSCXenaShiny database. F The correlation between TSC22D3 and FOS using the UCSCXenaShiny database. G The effect of FOS 
expression on OS of adult AML patients using the GenomicScape database
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Fig. 8 Predicted target genes and kinases regulated by TSC22D3. A The target genes regulated by TSC22D3 using the Harmonizome database. 
B The expression of CREB1 in 173 TCGA-LAML tissues and 70 GTEx-Normal tissues using the UCSCXenaShiny database. C The correlation 
between TSC22D3 and CREB1 using the UCSCXenaShiny database. D The effect of CREB1 expression on OS of 162 adult AML patients using the 
GenomicScape database. E Top 20 kinases regulated by TSC22D3 using the Harmonizome database. F The expression of predicted kinases in 173 
TCGA-LAML tissues and 70 GTEx-Normal tissues using the UCSCXenaShiny database. G The correlation between TSC22D3 and predicted kinases 
using the UCSCXenaShiny database. H The effect of TSC22D3 regulated kinases on OS of 161 adult AML patients using the UCSCXenaShiny 
database
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Fig. 9 Analysis of miRNAs regulated by TSC22D3. A Predicted miRNAs regulated by TSC22D3 using the StarBase v2.0 database. B The correlation 
between TSC22D3 and MIR143-3p in 83 adult AML samples using the StarBase v2.0 database. C The correlation between TSC22D3 and MIR143-3p 
in 173 adult AML samples using the UCSCXenaShiny database. D The effect of MIR143-3p expression on OS of 161 adult AML patients using the 
UCSCXenaShiny database. E The effect of MIR143-3p expression on OS of 188 adult AML patients using the CancermiRNome database. F Diseases 
ontology of MIR143-3p using the CancermiRNome database. G KEGG pathways of MIR143-3p using the CancermiRNome database



Page 18 of 21Xu et al. BMC Medical Genomics          (2023) 16:117 

Fig. 10 The correlation between TSC22D3 expression and immune cell infiltration in adult AML using the UCSCXenaShiny database. A CIBERSORT 
B QUANTISEQ C MCPCOUNTER D EPIC E XCELL
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