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Abstract

Background TSC22D domain family genes, including TSC22D1-4, play a principal role in cancer progression. How-
ever, their expression profiles and prognostic significance in adult acute myeloid leukemia (AML) remain unknown.

Methods The online databases, including HPA, CCLE, EMBL-EBI, GEPIA2, BloodSpot, GENT2, UCSCXenaShiny,
GSCALite, cBioportal, and GenomicScape, utilized the data of TCGA and GEO to investigate gene expression, mutation,
copy number variation (CNV), and prognostic significance of the TSC22D domain family in adult AML. Computational
analysis of resistance (CARE) was used to explore the effect of TSC22D3 expression on drug response. Functional
enrichment analysis of TSC22D3 was performed in the TRRUST Version 2 database. The STRING, Pathway Commons,
and AnimalTFDB3.0 databases were used to investigate the protein—protein interaction (PPI) network of TSC22D3.
Harmonizome was used to predict target genes and kinases regulated by TSC22D3. The StarBase v2.0 and CancermiR-
Nome databases were used to predict miRNAs regulated by TSC22D3. UCSCXenaShiny was used to investigate the
correlation between TSC22D3 expression and immune infiltration.

Results Compared with normal adult hematopoietic stem cells (HSCs), the expression of TSC22D3 and TSC22D4

in adult AML tissues was markedly up-regulated, whereas TSC22D1 expression was markedly down-regulated. The
expression of TSC22D1 and TSC22D3 was significantly increased in adult AML tissues compared to normal adult
tissues. High TSC22D3 expression was significantly associated with poor overall survival (OS) and event-free survival
(EFS) in adult AML patients. Univariate and multivariate Cox analysis showed that overexpression of TSC22D3 was
independently associated with adverse OS of adult AML patients. High TSC22D3 expression had a adverse impact on
OS and EFS of adult AML patients in the chemotherapy group. TSC22D3 expression correlated with drug resistance to
BCL2 inhibitors. Functional enrichment analysis indicated that TSC22D3 might promote AML progression. MIR143-3p
sponging TSC22D3 might have anti-leukemia effect in adult AML.
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Conclusions A significant increase in TSC22D3 expression was observed in adult AML tissues compared to normal
adult HSCs and tissues. The prognosis of adult AML patients with high TSC22D3 expression was unfavorable, which
could severe as a new prognostic biomarker and potential target for adult AML.

Keywords Acute myeloid leukemia, Prognostic biomarker, Drug response, Tumor infiltration

Introduction

Acute myeloid leukemia (AML) is an aggressive hemat-
opoietic malignancy with high biological and clinical het-
erogeneity [1]. Despite advances made in the diagnosis
and treatment of AML, the increased risk of relapse and
low 5-year survival rate after diagnosis remain significant
challenges [2]. Authentication of new AML biomarkers
can help to clarify the pathogenesis of the disease and
guide the diagnosis, treatment, and prognosis evalua-
tion of AML [3]. TSC22D domain family genes have been
extensively reported to play an essential role in tumors
[4-7]. Nonetheless, their expression profiles and progno-
sis in adult AML remain unclear. Herein, we conducted
an integrated analysis of the expression and prognostic
value of TSC22D domain family genes in adult AML by
using data from the Cancer Genome Atlas (TCGA) and
Gene Expression Omnibus (GEO) databases. The flow
chart of our study was shown in Fig. 1.

Materials and methods

Data retrieval and processing

Gene expression analysis

Gene expression of the TSC22D domain family
in AML cell lines Human Protein Atlas (HPA, https://
www.proteinatlas.org) [8] is a comprehensive database of
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Fig. 1 Flow chart of the present study

proteomics, transcriptomics, and systems biology data.
The expression of the TSC22D domain family genes in
88 leukemia cell lines (including 38 AML cell lines) was
determined and visualized using “HPA”.

Cancer Cell Line Encyclopedia (CCLE, https://www.
broadinstitute.org/ccle) [9] is a multiomics online data-
base that provides a large-scale transcriptome sequenc-
ing data for the study of human cancer cell lines. The
expression data of TSC22D domain family genes in 43
AML cell lines was downloaded from the “Expression
22Q4 Public” dataset of the CCLE database and visual-
ized by the cluster heatmap tool.

EMBL’s European Bioinformatics Institute (EMBL-EB],
https://www.ebi.ac.uk) [10] is an integrated bioinformat-
ics research database. The expression of the TSC22D
domain family genes in 16 AML cell lines was deter-
mined and visualized using “EMBL-EBI”.

Gene expression of the TSC22D domain family in adult
AML tissues and CD34 positive hematopoietic stem cells
(HSCs) from normal adult bone marrow tissues BloodS-
pot (http://servers.binf.ku.dk/bloodspot/) [11] is an online
open data analysis platform that provides gene expression
and survival prognosis data from TCGA and GEO data-
bases. Gene expression data of the TSC22D domain fam-
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ily in adult AML tissues and CD34 positive HSCs from
normal adult bone marrow tissues was downloaded from
the “Normal hematopoiesis with AMLs” dataset and the
“Bloodpool: AML samples with normal cells” dataset of
the BloodSpot database.

Gene Expression database of Normal and Tumor tis-
sues 2 (GENT?2, http://gent2.appex.kr) [12] integrates
publicly available expression profile microarray data from
the GEO database to compare and analyze gene expres-
sion in normal and cancer patient tissues. Gene expres-
sion data of the TSC22D domain family in 2802 adult
AML tissues and 17 CD34 positive HSCs from normal
adult bone marrow tissues was downloaded from the “
GPL570 platform (HG-U133_Plus_2)” of the GENT2
database (See excel sheet 1 in the Additional file 1).

Gene expression of the TSC22D domain family in adult
AML tissues and normal adult tissues Gene Expression
Profling Interactive Analysis 2 (GEPIA2, http://gepia2.
cancer-pku.cn/) [13] is an updated and enhanced online
publicly accessible database based on TCGA and Geno-
type-Tissue Expression (GTEx) databases for tumor and
normal samples for gene expression analysis. The expres-
sion of the TSC22D domain family genes in 173 TCGA-
LAML tissues and 70 GTEx-Normal tissues was com-
pared and visualized using “GEPIA2”.

Gene expression data of the TSC22D domain family in
542 adult AML tissues and 73 normal adult.bone mar-
row tissues was downloaded from the “ Leukemia MILE
Study” dataset (GSE13159) of the BloodSpot database.

Gene expression data of the TSC22D domain family in
2802 adult AML tissues and 134 normal adult bone mar-
row tissues was downloaded from the “ GPL570 platform
(HG-U133_Plus_2)” of the GENT2 database (See excel
sheet 1 in the Additional file 1).

Survival analysis

We retrieved and analyzed the RNAseq gene expres-
sion data of the TSC22D domain family and the cor-
responding clinical prognostic data in the GEPIA2,
Bloodspot, GSCALite ( http://bioinfo.life.hust.edu.cn/
web/GSCALite/) [14], UCSCXenaShiny (https://shiny.
hiplot-academic.com/ucsc-xena-shiny) [15], cBioportal
(https://www.cbioportal.org) [16], and GenomicScape
(http://genomicscape.com/) [17] databases. Furthermore,
RNASeq (RNA-seq V2 RSEM) gene expression data of
TSC22D3 and the corresponding clinical prognostic data
was downloaded from the “ TCGA-LAML, NEJM 2013”
[18] dataset of the cBioPortal database (See excel sheet 2
in the Additional file 2). Then adult patients with AML
were stratified into a low expression group and a high
expression group based on TSC22D3 mRNA median
expression. We explored the relationship between
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TSC22D3 expression and clinical parameters and per-
formed the analyses of OS, EFS, and univariate and mul-
tivariate Cox OS.

Effect of TSC22D3 expression on drug response
Computational analysis of resistance [19] (CARE, http://
care.dfci.harvard.edu/) is used to identify genomes and
biomarkers of response to targeted therapies. A positive
CARE score indicated that gene expression was asso-
ciated with drug sensitivity, whereas a negative CARE
score indicated drug resistance.

Data of the correlation between TSC22D3 expression
and drug response was downloaded from the “Cancer
Genome Project (CGP)” dataset and the “Cancer Thera-
peutics Response Portal (CTRP)” dataset of the CARE
database and visualized by the arc link tool.

Gene mutation and copy number variation (CNV) analysis

of TSC22D3

Gene mutation data and the corresponding survival data
of of TSC22D3 in adult AML from the “ TCGA-LAML,
PanCancer Atlas” dataset was analyzed and visualize
using “cBioPortal” And CNV data and the correspond-
ing survival data of TSC22D3 in adult AML was analyzed
and visualized using “GSCALite”.

Functional enrichment analysis of TSC22D3

Transcriptional Regulatory Relationships Unraveled by
Sentence-based Text mining Version 2 (TRRUST Ver-
sion 2, http://www.grnpedia.org/trrust/) [20] is an online,
open database of human and mouse transcriptional regu-
latory networks. Gene ontology (GO) biological process,
disease ontology (DO), and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway data associated with
human TSC22D3 transcription factor (TF) was down-
loaded from “TRRUST Version 2” and then visualized by
the bar with a color gredient tool.

Protein—-protein interaction (PPI) analysis of TSC22D3
STRING (https://string-db.org) [21] is an online open
database aimed at providing customized protein—protein
networks.

Pathway Commons (http://www.pathwaycommons.
org) [22] is an integrated platform of multiple database
for predicting protein—protein interactions.

AnimalTFDB3.0 (http://bioinfo.life.hust.edu.cn/Anima
ITFDB/) [23] is an online database aimed at providing the
most comprehensive and accurate information for animal
(including human) TFs and cofactors.

The relationship between TSC22D3 and other pro-
teins was predicted and visualized using “String,” “Path-
way Commons,” and “AnimalTFDB3.0” The expression
of potential protein in 173 TCGA-LAML tissues and
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70 GTEx-Normal tissues was analyzed using “UCSCX-
enaShiny” The correlation between TSC22D3 protein
and potential protein was analyzed and visualized using
“UCSCXenaShiny”. The effect of potential protein on OS
of adult AML patients was analyzed and visualized using
“GenomicScape”

Analysis of TSC22D3 regulated target genes and kinases
Harmonizome (http://amp.pharm.mssm.edu/Harmo
nizome) [24] integrates many publicly available online
databases to predict the functions of genes or proteins.

Data of TSC22D3 regulated target genes was down-
loaded from the “CHEA Transcription Factor Targets”
dataset, the “ENCODE Transcription Factor Targets”
dataset, and the “JASPAR Predicted Transcription Factor
Targets” dataset of the Harmonizome database and visu-
alized using the jvenn tool.

The expression of potential target gene in 173 TCGA-
LAML tissues and 70 GTEx-Normal tissues was analyzed
and visualized using “UCSCXenaShiny” The correlation
between TSC22D3 and potential target gene was ana-
lyzed and visualized using “UCSCXenaShiny”. The effect
of potential target gene on OS of adult AML patients was
analyzed and visualized using “GenomicScape”.

Data of the top 20 predicted kinases with a high Z
score regulated by TSC22D3 was downloaded from the
Harmonizome database and visualized using the circular
heatmap tool. The expression of predicted kinases in 173
TCGA-LAML tissues and 70 GTEx-Normal tissues was
analyzed and visualized using “UCSCXenaShiny” The
correlation between TSC22D3 and predicted kinases was
analyzed and visualized using “UCSCXenaShiny” The
effect of predicted kinases on OS of adult AML patients
was analyzed and visualized using “UCSCXenaShiny”.

Analysis of TSC22D3 regulated miRNAs

StarBase v2.0 ( https://starbase.sysu.edu.cn/) [25] inte-
grates multiple online microRNA (miRNA) databases to
explore miRNA interactions.

CancerMIRNome ( http://bioinfo.jialab-ucr.org/Cance
rMIRNome) [26] is an online database for interactive
analysis and visualization of the miRNome spectrum in
human cancer.

Data of the predicted miRNAs regulated by TSC22D3
was downloaded from the “PITA” dataset, the “microT”
dataset, the “miRmap”dataset, the “miRanda’dataset,
the “PicTar"dataset, and the “TargetScan” dataset of the
StarBase v2.0 database and visualized using the jvenn
tool. The correlation between the TSC22D3 expres-
sion and potential miRNA was analyzed and visualized
using “StarBase v2.0” and “UCSCXenaShiny”. The effect
of potential miRNA on OS of adult AML patients was
analyzed and visualized using “UCSCXenaShiny” and
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“CancerMIRNome” DO and KEGG pathway analysis of
potential miRNA was performed and visualized using
“CancerMIRNome”.

Immune infiltration analysis of TSC22D3

Data of the correlation between the TSC22D3 expression
and immune cell infiltration in adult AML by using the
“CIBERSORT” algorithm, the “QUANTISEQ” algorithm,
the “MICPCOUNTER” algorithm, the “EPIC” algorithm,
and the “XCELL” algorithm was downloaded from the
UCSCXenaShiny database and visualized using the cor-
relation analysis tool.

Data analysis and visualization

Wilcoxon rank-sum test was used for comparative analy-
sis of gene expression. Kaplan Meier survival analysis
(including OS and EFS) was performed using the log-
rank test. Univariate and multivariate Cox’s survival
analysis was performed using SPSS software version 21.0.
Graph Pad Prism version 8 was used for chi-square test
analysis. P value <0.05 indicated a significance level.

Data visualization was performed using the cluster
heatmap tool, the circular heatmap tool, box tool, KM
survival curve tool, jvenn tool, bar with color gredient
tool, arc link tool, and correlation analysis tool from the
website (http://www.bioinformatics.com.cn).

Results

Analysis of the expression of the TSC22D domain family
genes in AML cell lines, normal adult HSCs, adult AML
tissues and normal adult tissues

Three different databases, including “HPA’, “CCLE’, and
EMBL-EBI’, demonstrated that TSC22D domain family
genes were abnormally expressed in AML cell lines at dif-
ferent levels (Fig. 2A-C).

Then we explored the expression of the TSC22D
domain family genes in adult AML tissues and normal
adult HSCs using TCGA and GEO data from the BloodS-
pot and GENT2 databases. These results showed that the
expression of TSC22D3 and TSC22D4 was significantly
upregulated in adult AML tissues relative to normal adult
HSCs, whereas the expression trend of TSC22D1 was the
opposite (P<0.05) (Fig. 3A-C).

We subsequently investigated gene expression of the
TSC22D domain family in adult AML tissues and nor-
mal adult tissues utilizing TCGA data from the GEPIA2
database, and GEO data from the BloodSpot and GENT?2
databases. The results revealed that the expression of
TSC22D1 and TSC22D3 was markedly increased in
adult AML tissues compared with normal adult tissues
(P<0.05) (Fig. 4A-C).
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Fig. 2 Gene expression of the TSC22D domain family in AML cell lines. A Bar graphs of the expression of the TSC22D domain family genes in

88 leukemia cell lines (including 38 AML cell lines) in the HPA database. The height of the bar charts represented the level of gene expression. B
Heatmap of the expression of the TSC22D domain family genes in 43 AML cell lines in the CCLE database. The color of the Heatmap represented the
level of gene expression. C Bar chart of the expression of the TSC22D domain family genes in 16 AML cell lines in the EMBL-EBI database. The shade

of color in the bar graphs indicated the level of gene expression

Survival analysis according to the expression

of the TSC22D domain family genes in adult AML

Survival analysis was performed using TCGA data
from the GEPIA2, Bloodspot, GSCALite, UCSCX-
enaShiny, and cBioportal databases and GEO data from
the GenomicScape database. Amusingly, only TSC22D3

expression was of survival prognostic significance in
adult AML. However, other members of the TSC22D
family genes had little effect on OS of adult AML patients
(See Table 1).

Morever, we found that high TSC22D3 expres-
sion was significantly correlated with white blood cell
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Fig. 3 Gene expression of the TSC22D domain family in AML tissues and CD34 positive HSCs from normal adult bone marrow tissues was
measured and compared using the Wilcoxon rank-sum test (*P < 0.05,*P < 0.01,***P < 0.001,****P < 0.0001, ns means no statistical significance). A
The expression of TSC22D family genes in 252 AML tissues and 6 CD34 positive HSCs from normal adult bone marrow tissues was measured using
the” Normal hematopoiesis with AMLs" dataset of the Bloodspot database. B The expression of TSC22D family genes in 1825 AML tissues and 6
CD34 positive HSCs from normal adult bone marrow tissues was measured using the “ BloodPool: AML samples with normal cells” dataset of the
Bloodspot database. C The expression of TSC22D family genes in 2802 AML tissues and 17 CD34 positive HSCs from normal adult bone marrow
tissues was measured using the GPL570 platform (HG-U133_Plus_2) of the GENT2 database

(WBC) counts (>20%x1079/L), bone marrow (BM)
blasts (>70%), FAB M1 subtype, FAB M5 subtype, and
positive NPM1 mutation (P<0.05). Low TSC22D3
expression was significantly correlated with the FAB
M2 subtype and the FAB M3 subtype (P<0.05) (See
Table 2).

We found that high TSC22D3 expression significantly
affected OS and EFS of adult AML patients (P<0.05)
(Fig. 5A, D). Both univariate and multivariate COX
regression analysis showed that the increased mor-
tality in adult AML patients was significantly associ-
ated with over 60 years old, cytogenetics, DNMT3A
positive mutation, TP53 positive mutation, treatment
type (chemotherapy), and high TSC22D3 expression
(P<0.05) (See Table 3). High TSC22D3 expression

had a detrimental effect on OS and EFS of adult AML
patients in the chemotherapy group (P<0.05) (Fig. 5B,
E). However, high TSC22D3 expression had no effect
on OS and EFS of adult AML patients in the transplan-
tation group (P> 0.05) (Fig. 5C, F).

Analysis of the effect of TSC22D3 expression on drug
response

Analysis of the effect of TSC22D3 expression on drug
response using the “CGP” dataset and the “CTRP”
dataset demonstrated that TSC22D3 expression was
significantly associated with drug resistance to BCL2
inhibitors (Fig. 5G, H).
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Fig. 4 The expression of the TSC22D domain family genes in adult AML tissues and normal adult tissues was measured and compared using the
Wilcoxon rank-sum test (*P < 0.05**P<0.01,***P<0.001,****P < 0.0001, ns means no statistical significance). A The expression of the TSC22D domain
family genes in 173 TCGA-LAML tissues and 70 GTEx-normal tissues using the GEPIA2 database. B The expression of the TSC22D domain family
genes in 542 adult AML tissues and 73 normal adult bone marrow tissues using the Leukemia MILE study dataset of the Bloodspot database. C The
expression of the TSC22D domain family genes in 2802 adult AML tissues and 134 normal adult bone marrow tissues using the GENT2 database

Gene mutation and CNV analysis of TSC22D3

Gene mutation rate of TSC22D3 was 8%, and TSC22D3
gene mutation did not affect the OS of adult AML
patients (Fig. 6A, C). An the incidence of CNV of
TSC22D3 was low in adult AML and did not affect the
OS of adult AML patients (Fig. 6B, D).

Functional enrichment analysis of TSC22D3

The results showed that TSC22D3 has many biological
functions, including response to DNA damage stimu-
lus, G1 phase of mitotic cell cycle, regulation of cell
proliferation, cell cycle arrest, and response to drug,
etc. (Fig. 7A). DO analysis revealed that TSC22D3
was involved in tumors, including myeloid leukemia

(Fig. 7A). Furthermore, KEGG pathway analysis indi-
cated that TSC22D3 was involved in the regulation of
multiple signaling pathways (Fig. 7A).

PPl analysis of TSC22D3

The consistent analysis of the STRING, Pathway Com-
mons, and AnimalTFDB3.0 databases indicated that
TSC22D3 interacted with FOS and SCNN1B (Fig. 7B-
D). And FOS has been extensively reported in tumor
progression. Then the analysis of gene expression, cor-
relation, and survival prognosis of FOS in adult AML
was performed in TCGA and GEO datasets. The results
revealed that FOS was significantly increased in adult
AML (P<0.05) (Fig. 7E). TSC22D3 was positively corre-
lated with FOS (P<0.05) (Fig. 7F). High FOS expression
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Table 1 The effect of the expression of the TSC22D domain family genes on OS of adult AML patients
Database Adult AML  Group TSC22D1 TSC22D2 TSC22D3 TSC22D4
samples (N)
GEPIA2 106 Cutoff high value 0.50 0.50 0.50 0.50
Logrank P-value 0.1 0.30 0.047 0.87
Prognostic outcome NS NS Adverse NS
Bloodspot 172 Cutoff high value 0.50 * (probe ID: 049 * (probe ID: 0.51 * (probe ID: 049 * (probe ID:
215111_s_at) 210953_at) 208763_s_at) 208104 _s_at)
Logrank P-value 0.353 0.085 4.27E-03 0.68
Prognostic outcome NS NS Adverse NS
GSCALite 163 Cutoff high value 0.50 0.50 0.50 0.50
Logrank P-value 0.66 0.61 1.8E-03 0.77
Prognostic outcome NS NS Adverse NS
UCSCXenaShiny 161 Cutoff high value 0.50 0.50 0.50 0.50
Logrank P-value 0.31 0.14 1.7E-02 0.64
Prognostic outcome NS NS Adverse NS
UCSCXenaShiny 167 Cutoff high value 049 0.51 0.50 0.50
Logrank P-value 0.26 0.11 2.3E-03 048
Prognostic outcome NS NS Adverse NS
cBioportal: Firehose 169 Cutoff high value 0.50 0.50 0.50 0.50
Legacy
Logrank P-value 0.155 0.139 3.0E-03 0.534
Prognostic outcome NS NS Adverse NS
cBioportal: TCGA- 173 Cutoff high value 0.50 0.50 0.50 0.50
NEJM2013
Logrank P-value 0.855 0.326 0.041 0323
Prognostic outcome NS NS Adverse NS
cBioportal: TCGA 161 Cutoff high value 0.50 0.50 0.50 0.50
PanCancer Atlas
Logrank P-value 0.563 0478 8.0E-03 0.759
Prognostic outcome NS NS Adverse NS
GenomicScape 78 Cutoff high value 0.10 (probe ID: 0.91 4(probe ID: 0.74 &(probe D: 0.91 &probe ID:
243133_at) 210954_s_at) 235364_at) 208104_s_at)
Logrank P-value 0.11 0.072 0.025 0.20
Prognostic outcome NS NS Adverse NS
GenomicScape: 162 Cutoff high value 0.83 &(probe ID: 0.86 &(probe ID: 0.20 &(probe ID: 0.47 &(probe ID:
243133_at) 210954 _s_at) 235364_at) 208104_s_at)
Logrank P-value 0.089 0.18 0.035 0.044
Prognostic outcome NS NS Adverse Favorable

NS no significance

" Analysis of the effect of the TSC22D domain family genes on OS of adult AML patients was performed in the corresponding probe set of the Bloodspot database

& Analysis of the effect of the TSC22D domain family genes on OS of adult AML patients was performed in the corresponding probe set of the GenomicScape database

was associated with unfavorable OS of 78 adult AML

patients (P<0.05) (Fig. 7G).

Analysis of TSC22D3 regulated target genes and kinases

The results showed that TSC22D3 might regulate
CREBI (Fig. 8A). Gene expression analysis indicated that
CREBI1 was significantly elevated in adult AML (P<0.05)
(Fig. 8B). Unexpectedly, TSC22D3 had statistical no cor-
relation with CREB1 (P>0.05) (Fig. 8C). However, high

CREBI expression had an adverse impact on OS of 162
adult AML patients (P <0.05) (Fig. 8D).

We investigated the top 20 kinases with high Z score
regulated by TSC22D3 (Fig. 8E) and analyzed their
expression, as well as the correlation of TSC22D3, and
survival prognosis in adult TCGA-LAML (Additional
file 3: See Table S1). The results revealed that the expres-
sion of MAP4K1, MAP2K3, TYK2, and STK10 was
markedly up-regulated in adult AML and significantly
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Table 2 The relationship between TSC22D3 expression and clinical parameters in 173 adult AML data from the “TCGA-AML NEJM
2013" dataset of the cBioportal database

Characteristics Low expression of High expression of P-value Statistical approach
TSC22D3 TSC22D3
n 86 87
Sex, n (%) 0.9354 Chi-square test
Male 46 (26.59%) 46 (26.59%)
Female 40 (23.12%) 41(23.70%)
Race, n (%) 0.6837 Chi-square with Yates'
correction test
White 66 (48.53%) 62 (45.59%)
Black 3(2.20%) 5 (3.68%)
Age, n (%) 0.1430 Chi-square test
<60 53 (30.64%) 44(25.43%)
>60 33 (19.08%) 43 (24.85%)
WBC count(x 1019/L), n (%) <0.0001 Chi-square test
<20 59 (34.10%) 32 (18.50%)
>20 27 (15.61%) 55 (31.79%)
PB blasts(%), n (%) 0.1458 Chi-square test
<20 40 (23.12%) 31 (17.92%)
>20 46 (26.59%) 56(32.37%)
BM blasts(%), n(%) 0.0272 Chi-square test
<70 46 (26.59%) 32 (18.50%)
>70 40 (23.12%) 55 (31.79%)
FAB classifications, n (%) 0.0356 Chi-square test
MO 9 (5.26%) 7 (4.10%)
M1 16 (9.36%) 28 (16.37%)
M2 25 (14.62%) 13 (7.60%)
M3 11 (6.43%) 5(2.92%)
M4 15 (8.77%) 19 (11.11%)
M5 6(3.51%) 12 (7.02%)
M6 1(0.59%) 1(0.59%)
M7 3(1.75%) 0 (0%)
Cytogenetics, n (%) 0.3945 Chi-square test
Normal 37(21.64%) 43 (25.15%)
Complex 7 (4.09%) 15(8.77%)
t(15;17) 10 (5.85%) 5(2.92%)
(8;21) 5(2.92%) 2 (1.17%)
1(9;22) 2 (1.17%) 1(0.59%)
inv(16) 4(2.34%) 6(3.51%)
11923 2 (1.17%) 2 (1.17%)
+8 5 (2.92%) 3(1.75%)
-7 1(0.59%) 3(1.75%)
+21 2 (1.17%) 1 (0.59%)
Other 10 (5.85%) 5(2.92%)
FLT3 mutation, n (%) 0.2570 Chi-square test
Negative 65 (37.57%) 59 (34.10%)
Positive 21 (12.14%) 28 (16.19%)
NPM1 mutation, n (%) 0.0465 Chi-square test
Negative 68 (39.31%) 57 (32.95%)
Positive 18(10.40%) 30 (17.34%)

DNMT3A mutation, n (%) 0.5053 Chi-square test
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Characteristics Low expression of High expression of P-value Statistical approach
TSC22D3 TSC22D3

Negative 67 (38.73%) 64(36.99%)
Positive 19 (10.98%) 23 (13.30%)

IDH1 mutation, n (%) 0.1211 Chi-square test
Negative 81 (46.82%) 76 (43.93%)
Positive 5 (2.89%) 11 (6.36%)

IDH2 mutation, n (%) 0.0779 Chi-square test
Negative 81 (46.82%) 75 (43.35%)
Positive 5(2.89%) 12 (6.94%)

TET2 mutation, n (%) 0.7691 Chi-square test
Negative 78 (45.09%) 80 (46.24%)
Positive 8(4.62%) 7 (4.05%)

TP53 mutation, n (%) 0.5926 Chi-square test
Negative 80 (46.24%) 79 (45.67%)
Positive 6 (3.47%) 8 (4.62%)

CEBPA mutation, n (%) 0.7565 Chi-square test
Negative 79 (45.66%) 81 (46.82%)
Positive 7(4.05%) 6 (3.47%)

Treatment type, n (%) 0.2532 Chi-square test
Chemotherapy 46 (26.59%) 54 (31.21%)
Transplant 40 (23.12%) 33(19.08%)

positively correlated with TSC22D3 (P<0.05) (Fig. 8F,
Q). And These kinases had an unfavorable effect on OS of
161 adult AML patients (P<0.05) (Fig. 8H).

Analysis of miRNAs regulated by TSC22D3

Analysis of six different miRNA datasets revealed that
TSC22D3 might be a possible target gene of MIR143-
3p (Fig. 9A). TSC22D3 was negatively correlated with
MIR143-3p (P<0.05) (Fig. 9B, C). High expression of
MIR143-3p was a favorable prognostic factor for OS of
adult AML patients (P<0.05) (Fig. 9D, E). DO and KEGG
analysis indicated that MIR143-3p was involved in bone
marrow cancer, including myeloid leukemia (Fig. 9F, G).

Immune infiltration analysis of TSC22D3

Analysis of the correlation of TSC22D3 expression and
immune cell infiltration in adult AML by using five dif-
ferent algorithms showed that TSC22D3 expression was
significantly associated with monocyte/macrophage
(P<0.05) (Fig. L0A-E).

Discussion

TSC22D domain family genes, including TSC22D1-4,
belong to the leucine zipper TF family and have been
reported to be involved in regulating cell proliferation
and differentiation [27]. TSC22D1, also called transform-
ing growth factor-p-stimulated clone-22, was reported to

play a tumor suppressor role in tumors [28]. TSC22D2
depends on the TSC22D2-PKM2-CyclinD1 regulatory
axis to inhibit tumor cell growth in colorectal cancer
[29]. TSC22D3, also known as glucocorticoid-induced
leucine zipper (GILZ), can promote or suppress tumor
growth, depending on the type of tumor and its micro-
environment. TSC22D3 plays a dual role in tumors: it not
only exerts a tumor-promoting effect by influencing the
immune system and tumor microenvironment but also
inhibits tumor growth by inducing apoptosis or suppress-
ing the proliferation of cancer cells [30]. TSC22D4, also
known as THG-1, was reported to promote esophageal
squamous cell carcinoma cell tumorsphere growth [31].
In our study, TCGA and GEO data was used to investi-
gate the expression of TSC22D domain family genes and
their prognostic significance in adult AML. These results
showed that the expression of TSC22D1 and TSC22D3
was markedly increased in adult AML tissues. Stun-
ningly, it was TSC22D3, not other TSC22D family genes,
that had prognostic significance for OS of adult AML
patients. Therefore, we focused on the possible role of
TSC22D3 in adult AML. Our study revealed that adult
AML patients with high expression of TSC22D3 had
adverse OS and EFS. And overexpression of TSC22D3
was an independently survival prognostic factor in
adult AML patients. Subgroup survival analysis accord-
ing to treatment type also showed that high TSC22D3
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Fig. 5 The effect of TSC22D3 expression on AML. A The effect of TSC22D3 expression on OS of 173 adult AML patients. B The effect of TSC22D3
expression on OS of 100 adult AML patients in the chemotherapy group. C The effect of TSC22D3 expression on OS of 73 adult AML patients in the
transplantation group. D The effect of TSC22D3 expression on EFS of 171 adult AML patients. E The effect of TSC22D3 expression on EFS of 98 adult
AML patients in the chemotherapy group. F The effect of TSC22D3 expression on EFS of 73 adult AML patients in the transplantation group. G The
effect of TSC22D3 expression on drug response using the CGP dataset of the CARE database. H The effect of TSC22D3 expression on drug response
using the CTRP dataset of the CARE database

expression was significantly associated with unfavorable
OS and EFS in the chemotherapy group. However, we
found no effect of TSC22D3 expression on OS and EFS
of adult AML patients in the transplantation group. This
suggested that transplantation might overcome the dis-
advantages of TSC22D3 expression. Furthermore, we
found that high TSC22D3 expression was significantly

associated with high WBC counts, high BM blasts, FAB
M1 subtype, FAB M5 subtype, and positive mutation
of NPM1. This partly explained why high expression of
TSC22D3 was associated with a poor survival prognosis
in adult AML.

Hyperactivation of BCL2 is associated with the devel-
opment, progression, prognosis, and resistance to
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Table 3 Univariate and multivariate analysis of TSC22D3 expression and clinical parameters on OS of 173 adult AML patients from the
“TCGA-AML NEJM 2013" dataset of the cBioportal database

Characteristics Total(N) Univariate analysis Multivariate analysis
Hazard ratio (95% ClI) P value Hazard ratio (95% CI) P value
Age 173 <0.001
<60 97 Reference Reference
>60 76 3.131(2.147-4.565) <0.001 2.047 (1.244-3.368) 0.005
Sex 173 0.770
Male 92 Reference
Female 81 1.056 (0.731-1.526) 0.770
Race 136 0.628
White 128 Reference
Black 8 0.806 (0.328-1.983) 0.639
WBC count (x 1019/L) 173 0.291
<20 91 Reference
>20 82 1.219(0.844-1.761) 0.290
PB blast percentage 170 0577
<20 68 Reference
>20 102 1.112 (0.764-1.620) 0.579
Bone marrow blast percentage 173 0451
<70% 78 Reference
>70% 95 1.153 (0.796-1.669) 0452
FAB 171 0.067
MO 16 Reference
M1 44 0.989 (0.495-1.974) 0.975
M2 38 0.909 (0.447-1.848) 0.792
M3 16 0.307 (0.106— 0887) 0.029
M4 34 1.028 (0.506-2.090) 0.939
M5 18 1.136 (0.501-2.577) 0.760
Mé 2 2.635(0.578-12.017) 0.211
M7 3 2.364 (0.654-8.543) 0.189
Cytogenetics 171 0.005 0.019
Normal 80 Reference
Complex 22 1.857 (1.088-3.171) 0.023 1.548 (0.716-3.346) 0.266
t(15,17) 15 0.360 (0.144-0.903) 0.029 0.400 (0.150-1.069) 0.068
(8;21) 7 0485 (0.152-1.553) 0223 0.626 (0.184-2.130) 0453
1(9,22) 3 2.266 (0.547-9.393) 0.259 5.015(1.117-22.510) 0.035
inv(16) 10 0.308 (0.096-0.986) 0.047 0.373(0.114-1.225) 0.104
t(11g23) 4 1494 (0.466-4.791) 0.500 2.169 (0.659-7.141) 0.203
+8 8 1.231(0.529-2.866) 0.630 1.303 (0.487-3.486) 0.598
-7 4 1.672(0.522-5.362) 0.387 2.253(0.692-7.333) 0.177
+21 3 1.907(0.594-6.120) 0.278 3493 (1.053-11.585) 0.041
Other 15 1.328(0.710-2.483) 0.375 1.920 (1.007-3.660) 0.047
FLT3 mutation 173 0.180
Negative 124 Reference
Positive 49 1.325(0.885-1.984) 0171
NPMT mutation 173 0490
Negative 125 Reference
Positive 48 1.155(0.770-1.732) 0.486
DNMT3A mutation 173 0.038

Negative 131 Reference Reference
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Characteristics Total(N) Univariate analysis Multivariate analysis
Hazard ratio (95% ClI) P value Hazard ratio (95% CI) P value

Positive 42 1.571 (1.040-2.373) 0.032 1.675 (1.060-2.647) 0.027
IDH2 mutation 173 0915

Negative 156 Reference

Positive 17 1.033 (0.567-1.884) 0915
IDH1 mutation 173 0.304

Negative 157 Reference

Positive 16 0.711 (0.360-1.406) 0.327
TET2 mutation 173 0.991

Negative 158 Reference

Positive 15 0.996 (0.521-1.907) 0.991
TP53 mutation 173 <0.001

Negative 159 Reference Reference

Positive 14 4.100 (2.291-7.339) <0.001 2691 (1.145-6.323) 0.023
CEBPA mutation 173 0.829

Negative 160 Reference

Positive 13 0.928 (0.470-1.834) 0.831
Treatment type 173 0.001

Chemotherapy 100 Reference Reference

Transplant 73 0.519 (0.355-0.761) 0.001 0466 (0.272-0.797) 0.005
TSC22D3 expression 173 0.042

Low 86 Reference Reference

High 87 1466 (1.012-2.122) 0.043 1.546 (1.031-2.320) 0.035

chemotherapy in AML. BCL2 inhibitors including Vene-
toclax have been applied in the clinical treatment of AML
[32]. However, with the widespread use of Venetoclax,
drug resistance has gradually emerged in AML patients,
especially in the relapsed/refractory AML patients. Pre-
clinical and clinical studies have partially unraveled the
mechanism of drug resistance to Venetoclax [33]. The
clinical application of BCL2 inhibitors still faces many
challenges, which may be relevant to the fact that the
complex mechanism of drug resistance has not been
fully unraveled. Fascinatingly, our study showed that
TSC22D3 expression was significantly correlated with
resistance to BCL2 inhibitors. This might be one of the
reasons for drug resistance of BCL2 inhibitors, and it
was worth further exploring the underlying mechanism
of drug resistance mediated by TSC22D3.c-Fos has been
reported to play crucial parts in the maintenance and
proliferation of AML [34]. Interestingly, our study indi-
cated that TSC22D3 might transcriptionally up-regulate
the expression of FOS, which might play a certain role in
AML progression. TSC22D3 promoted tumor cell prolif-
eration by regulating AKT kinase [35]. And hyperactivity
of the kinases was involved in cancer progression. There-
fore, we analyzed the kinases regulated by TSC22D3. Our
study indicated that TSC22D3 might transcriptionally

activate the kinases of MAP4K1, MAP2K3, TYK2, and
STK10. MAP4K1, as an oncogene, promoted AML pro-
gression by regulating the cell cycle through the MAPK
pathway [36]. MAP2K3 promoted tumor progression by
regulating tumor cell migration and invasion through the
JNK signaling pathway [37]. Dysregulated activation of
TYK2 in cancers may lead to hyperactive JAK/STATSs sig-
nal, which may play an important role in the occurrence
and development of cancers [38]. The prognosis of AML
patients with expressing high levels of STK10 was poor,
which could severe as a new prognostic biomarker for
AML [39].

MIR143-3p has been reported to function as a tumor
suppressor [40]. Our study indicated that MIR143-3p
might exhibit anti-leukemic effect by downregulat-
ing the expression of TSC22D3. TSC22D3 has been
reported to be involved in the supervision of the cell
cycle, differentiation, and apoptosis of immune cells
[41]. TSC22D3 may play an anti-inflammatory and
immunosuppressive role in tumor development. Acti-
vation of the immunosuppressive TSC22D3 TF in
dendritic cells can result in treatment failure [42].
Overexpression of TSC22D3 subverted therapy-
induced anticancer immuno-surveillance [43]. As a TF,
TSC22D3 may mediate the immunosuppressive and
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TSC22D3 CNV percentage in AML
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Fig. 6 The profiles of gene mutation and CNV of TSC22D3 in adult AML and its effect on OS of adult AML patients. A Gene mutation rate of
TSC22D3 in 165 adult AML samples using the TCGA PanCancer Atlas dataset of the cBioportal database. B The CNV of TSC22D3 in 179 adult AML
samples using the GSCALite database. C The effect of gene mutation of TSC22D3 on OS of 165 adult AML patients using the cBioportal database. D
The effect of CNV of TSC22D3 on OS of 179 adult AML patients using the GSCALite database

anti-inflammatory effects of T cells and macrophages
by inhibiting nuclear factor-xB (NF-xB)-dependent
transcription [44, 45]. Furthermore, TSC22D3 played
a significant role in tumor progression by mediat-
ing the increase in cell quantity and activity of Treg
cells through the TGF-B signaling pathway [46, 47].
TSC22D3 could play an indispensable role in the tumor
microenvironment by influencing all immune system
cells that infiltrated the tumor microenvironment [30].
In addition, TSC22D3 may serve as a pivotal regulator
of T cell predysfunction [48]. Recent research shows
that the proliferation, survival, and drug resistance
of AML cells may be sustained and modulated by the
bone marrow immunosuppressive microenvironment

[49]. Our study showed a significantly positive corre-
lation between monocyte/macrophage and TSC22D3
expression. How did TSC22D3 regulate monocyte/
macrophage needed further study in AML immune
microenvironment.

To sum up, TSC22D3 might be involved in AML pro-
gression through multiple mechanisms, including the
regulation of target genes, kinases, signaling pathways,
drug resistance, and immune cell infiltration. MIR143-
3p sponging TSC22D3 might exhibit anti-leukemic effect
in adult AML. Our study extended our understanding of
TSC22D3 as a novel prognostic factor in adult AML and
its potential role in AML.
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