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Abstract
Background Although observational studies have established some socioeconomic traits to be independent risk 
factors for pelvic organ prolapse (POP), they can not infer causality since they are easily biased by confounding factors 
and reverse causality. Moreover, it remains ambiguous which one or several of socioeconomic traits play predominant 
roles in the associations with POP risk. Mendelian randomization (MR) overcomes these biases and can even 
determine one or several socioeconomic traits predominantly accounting for the associations.

Objective We conducted a multivariable Mendelian randomization (MVMR) analysis to disentangle whether one 
or more of five categories of socioeconomic traits, “age at which full-time education completed (abbreviated as 
“EA”)”, “job involving heavy manual or physical work (“heavy work”)”, “average total household income before tax 
(income)”, “Townsend deprivation index at recruitment (TDI)”, and “leisure/social activities” exerted independent and 
predominant effects on POP risk.

Methods We first screened single-nucleotide polymorphisms (SNPs) as proxies for five individual socioeconomic 
traits and female genital prolapse (FGP, approximate surrogate for POP due to no GWASs for POP) to conduct 
Univariable Mendelian randomization (UVMR) analyses to estimate causal associations of five socioeconomic traits 
with FGP risk using IVW method as major analysis. Additionally, we conducted heterogeneity, pleiotropy, and 
sensitivity analysis to assess the robustness of our results. Then, we harvested a combination of SNPs as an integrated 
proxy for the five socioeconomic traits to perform a MVMR analysis based on IVW MVMR model.

Results UVMR analyses based on IVW method identified causal effect of EA (OR 0.759, 95%CI 0.629–0.916, p = 0.004), 
but denied that of the other five traits on FGP risk (all p > 0.05). Heterogeneity analyses, pleiotropy analyses, “leave-
one-out” sensitivity analyses and MR-PRESSO adjustments did not detect heterogeneity, pleiotropic effects, or result 
fluctuation by outlying SNPs in the effect estimates of six socioeconomic traits on FGP risk (all p > 0.05). Further, MVMR 
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Introduction
Pelvic organ prolapse (POP), predominantly including 
uterine prolapse and vaginal prolapse (i.e., female geni-
tal prolapse, FGP), is a clinically common and distress-
ing entity in women across all ages worldwide and has 
become an increasing socioeconomic problem with an 
estimated prevalence of 3–6% in the general population 
[1]. POP can significantly impact a woman’s quality of 
life [2, 3], causing discomfort, pain, urinary incontinence 
[4], and sexual dysfunction [5]. While the prevalence 
of POP is high, the etiology of this condition remains 
poorly understood. Previous observational studies have 
reported that such representative indicators for socioeco-
nomic status as less education [6–9], heavy physical labor 
[7, 9–13] and lower income [14] are independent risk fac-
tors for higher odds of having POP via multivariate logis-
tic regression analysis. However, these independent risk 
factors of POP have been challenged by some concurrent 
contradictive findings [15–18]. Furthermore, the con-
clusions drawn from observational studies are unable to 
infer causality regarding the role of socioeconomic traits 
in the development of FGP, since they may be confined by 
potential methodological limitations such as confound-
ing and reverse causality [19, 20], which obscures the 
true causal relationship. Understanding the causal factors 
underlying POP is essential for developing effective pre-
vention and treatment strategies. For example, identify-
ing modifiable risk factors for POP could help to prevent 
the onset of the condition or slow its progression.

Mendelian randomization (MR) approach, utilizing 
genetic variants (GVs) as instrumental variables (IVs) for 
an exposure, provides an estimation for potential causal 
relationship between an exposure and an outcome [21, 
22]. Since it uses GVs to imitate random allocation from 
parents to their offspring, MR can overcome the issues 
of confounding and reverse causality [23]. Although it 
is nontrivial to disentangle the causal associations of 
individual socioeconomic traits (such as educational 
attainment, heavy physical labor, income status, accom-
modational conditions, poverty degree, and leisure or 
social activities) with FGP risk, it would be also diffi-
cult to identify GVs that are solely associated with one 
socioeconomic trait, but not with the others, in con-
sideration of pleiotropic effects of these GVs [24]. So, it 
remains ambiguous which one or several of these traits 

play predominant role in the causal relationship between 
socioeconomic traits and FGP risk.

Multivariable Mendelian randomization (MVMR), an 
extension approach of traditional MR method by inte-
grating a set of SNPs in a same model, simultaneously 
estimates potential causal effects of multiple exposures 
on an outcome, in order to clarify which one or several 
of these exposures predominantly account for the causal 
effects [25, 26].

Therefore, we conducted a series of univariable Men-
delian randomization analyses (UVMR) to determine 
whether each representative of the six socioeconomic 
domains, namely, educational attainment (EA), heavy 
physical labor, income status, accommodational condi-
tions, poverty degree and leisure or social activities, was 
causally associated with FGP risk, and then a MVMR 
analysis to disentangle whether one or more of the six 
socioeconomic traits, was predominantly relevant to FGP 
risk.

Materials and methods
Study design
We first performed forward directional UVMR analy-
ses. Then, to expel the possibility of reverse causality, we 
attempted to perform reverse directional UVMR analyses 
to examine whether genetically proxied FGP had a causal 
effect on each of the six categories of socioeconomic 
traits. An overview of the rationale, design, and proce-
dures for our MR study are exhibited in Fig. 1.

Data source
We extracted SNPs that were strongly associated with 
six categories of socioeconomic traits (EA, heavy physi-
cal work, income status, accommodational conditions, 
poverty degree, and leisure or social activities) from 
the GWASs undertaken by MRC-IEU, Neale Lab, and 
SSGAC Consortium. If there were more than one GWAS 
providing summary data for one same category of socio-
economic trait (e.g., EA), only the one GWAS (e.g., 
GWAS for “educational attainment” that was undertaken 
by SSGAC including 1,131,881 participants [27]) was 
chosen and retained in consideration of its largest sample 
size. To prevent population stratification bias, we selected 
SNPs and their summary statistics (β, standard error, and 
p-value) from the studies including only individuals of 

analyses determined a predominant role of EA playing in the associations of socioeconomic traits with FGP risk based 
on both MVMR Model 1 (OR 0.842, 95%CI 0.744–0.953, p = 0.006) and Model 2 (OR 0.857, 95%CI 0.759–0.967, p = 0.012).

Conclusion Our UVMR and MVMR analyses provided genetic evidence that one socioeconomic trait, lower 
educational attainment, is associated with risk of female genital prolapse, and even independently and predominantly 
accounts for the associations of socioeconomic traits with risk of female genital prolapse.

Keywords Educational attainment, Female genital prolapse, Multivariable Mendelian randomization, Causality
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European ancestry [28]. We obtained summary-level data 
on the outcome (i.e., FGP) from a GWAS in the Finn-
Gen Research Project (ID: finn-b-N14_FEMGENPROL; 
https://gwas.mrcieu.ac.uk/datasets/finn-b-N14_FEM-
GENPROL/), which comprising data for 16,377,670 SNPs 
from 78,061 participants (9,092 cases and 68,969 con-
trols) of European ancestry. The characteristics of GWAS 
data for six categories of socioeconomic traits are exhib-
ited in Table 1.

Instrumental variable selection
Valid instrumental variables are defined by three key 
assumptions (Fig.  1) that they associate with the expo-
sure factors of interest (the relevance assumption); that 
they share no common causes with the outcome (the 
independence assumption); and that they do not affect 
the outcome except through the exposure factors (the 
exclusion restriction assumption). In order to meet the 
relevance assumption, the first of the three key assump-
tions, instrumental variants should be associated with 
the exposure factors of interest [29]. The SNPs associ-
ated with six categories of socioeconomic traits, namely, 
EA, heavy physical work, income status, accommoda-
tional conditions, poverty degree, and leisure or social 
activities, were extracted at a genome-wide significance 
level (p < 5 × 10− 8) from the GWAS datasets [30]. After-
wards, independent SNPs for exposures were obtained by 
linkage disequilibrium (LD) clumping with a threshold 
r2 < 0.001 and an allele distance > 10,000 kb [31]. We then 

extracted the SNPs and corresponding statistics from 
the GWAS dataset for outcome (i.e., FGP), removing the 
SNPs with a minor allele frequency (MAF) < 0.01 [28]. 
Further, we harmonized socioeconomic and FGP data 
by removing all palindromic SNPs [32]. In the context 
of socioeconomic-FGP relationship, such FGP-relevant 
traits or risk factors as BMI [6, 33–39], waist circum-
ference [6, 33–35], smoking [35, 36, 40], diabetes [34], 
and menopausal status [36, 41, 42], are most likely to be 
major confounders. To fulfill the second MR assumption, 
we inquired for each IV and its proxy traits referring to 
PhenoScannerV2 database (http://www.phenoscanner.
medschl.cam.ac.uk/) and discarded the SNPs surrogat-
ing for these confounding traits at a threshold of r2 > 0.80 
[43, 44]. Accordingly, these rigorously selected SNPs 
were used as IVs for the following UVMR and MVMR 
analyses. In addition, all the removed SNPs and the rea-
sons why they are excluded are exhibited in Supplemen-
tary Table 1. Also, we conducted reverse directional MR 
analyses to investigate a potential causal effect of geneti-
cally proxied FGP on the six categories of socioeconomic 
traits, respectively. To this end, we likewise selected 
SNPs that were genome-wide significant (p < 5 × 10− 8) 
and independently inherited (r2 < 0.001) without LD for 
FGP, and then extracted SNPs and corresponding sta-
tistics from the GWAS datasets for the six categories of 
socioeconomic traits. As shown in Table  1, we respec-
tively identified six, two, one, seven, two, and two GWAS 
datasets to investigate potential causal effects of these 

Fig. 1 Overview of MR rationale, design, and procedures. There are three key assumptions for MR study. Assumption 1: the GVs selected as IVs 
should be strongly associated with the exposures; Assumption 2: the used GVs should not be associated with any potential confounder; Assumption 3: 
the GVs should influence the outcome risk merely through the exposures, not via any alternative pathway. Abbreviations: ctrl = control; FGP = female 
genital prolapse; GVs = genetic variants; IV = instrumental variable; IVW = inverse variance weighted; MR = Mendelian randomization; MVMR = multivari-
able Mendelian randomization; SNP = single-nucleotide polymorphism; TDI = Townsend deprivation index; UVMR = univariable Mendelian randomiza-
tion; WM = weighted median

 

https://gwas.mrcieu.ac.uk/datasets/finn-b-N14_FEMGENPROL/
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http://www.phenoscanner.medschl.cam.ac.uk/
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six categories of socioeconomic traits on FGP risk by 
UVMR analysis. However, we only retained one trait 
whose GWAS dataset had the largest sample size within 
this socioeconomic category. Therefore, the following 
eight socioeconomic traits were chosen as the repre-
sentatives for the six categories of socioeconomic traits: 

(1) EA (n = 1,131,881), (2) job involves heavy manual or 
physical work (n = 263,615), (3) average total household 
income before tax (n = 397,751), (4) type of accommoda-
tion lived in: a flat, maisonette or apartment (n = 360,088) 
or type of accommodation lived in: a house or bunga-
low (n = 360,088), (5) Townsend deprivation index at 

Table 1 Characteristics of GWAS data for six categories of socioeconomic traits
Category Traits Sample 

size
SNPs Consortium Link Year

Educa-
tional 
attainment

Age completed full time 
education

307,897 9,851,867 MRC-IEU https://gwas.mrcieu.ac.uk/datasets/ukb-b-6134/ 2018

Age completed full time 
education

226,899 10,894,596 Neale Lab https://gwas.mrcieu.ac.uk/datasets// 2017

Year ended full time education 112,569 9,851,867 MRC-IEU https://gwas.mrcieu.ac.uk/datasets// 2018

Qualifications: College or Univer-
sity degree

458,079 9,851,867 MRC-IEU https://gwas.mrcieu.ac.uk/datasets// 2018

Qualifications: College or Univer-
sity degree

334,070 10,894,596 Neale Lab https://gwas.mrcieu.ac.uk/datasets// 2017

Educational attainment 1,131,881 10,101,242 SSGAC https://thessgac.com/ 2018

Heavy 
physical 
work

Job involves heavy manual or 
physical work

263,615 9,851,867 MRC-IEU https://gwas.mrcieu.ac.uk/datasets/ukb-b-2002/ 2018

Job involves heavy manual or 
physical work

190,643 10,894,596 Neale Lab https://gwas.mrcieu.ac.uk/datasets/ukb-a-503/ 2017

Income 
status

Average total household income 
before tax

397,751 9,851,867 MRC-IEU https://gwas.mrcieu.ac.uk/datasets/ukb-b-7408/ 2018

Accom-
moda-
tional 
conditions

Type of accommodation lived in: 
A flat, maisonette or apartment

360,088 13,586,555 Neale Lab https://gwas.mrcieu.ac.uk/datasets/ukb-d-670_2/ 2018

Type of accommodation lived in: 
A house or bungalow

360,088 13,586,555 Neale Lab https://gwas.mrcieu.ac.uk/datasets/ukb-d-670_1/ 2018

Own or rent accommodation 
lived in: Live in accommodation 
rent free

356,340 10,768,474 Neale Lab https://gwas.mrcieu.ac.uk/datasets/ukb-d-680_6/ 2018

Own or rent accommodation 
lived in: Own outright (by you or 
someone in your household)

356,340 13,586,423 Neale Lab https://gwas.mrcieu.ac.uk/datasets/ukb-d-680_1/ 2018

Own or rent accommoda-
tion lived in: Rent - from local 
authority, local council, housing 
association

356,340 13,586,423 Neale Lab https://gwas.mrcieu.ac.uk/datasets/ukb-d-680_3/ 2018

Own or rent accommodation 
lived in: Rent - from private 
landlord or letting agency

356,340 13,586,423 Neale Lab https://gwas.mrcieu.ac.uk/datasets/ukb-d-680_4/ 2018

Own or rent accommodation 
lived in: Own with a mortgage

356,340 13,586,423 Neale Lab https://gwas.mrcieu.ac.uk/datasets/ukb-d-680_2/ 2018

Poverty 
degree

Townsend deprivation index at 
recruitment

336,798 10,894,596 Neale Lab https://gwas.mrcieu.ac.uk/datasets/ukb-a-44/ 2017

Townsend deprivation index at 
recruitment

462,464 9,851,867 MRC-IEU https://gwas.mrcieu.ac.uk/datasets/ukb-b-10011/ 2018

Leisure 
or social 
activities

Leisure/social activities: pub or 
social club

461,369 9,851,867 MRC-IEU https://gwas.mrcieu.ac.uk/datasets/ukb-b-4171/ 2018

Leisure/social activities: Sports 
club or gym

461,369 9,851,867 MRC-IEU https://gwas.mrcieu.ac.uk/datasets/ukb-b-4000/ 2018

Abbreviations: GWAS = genome-wide association studies; MRC-IEU = The Medical Research Council Integrative Epidemiology Unit at the University of Bristol; 
SNP = single-nucleotide polymorphism; SSGAC = Social Science Genetic Association Consortium

https://gwas.mrcieu.ac.uk/datasets/ukb-b-6134/
https://gwas.mrcieu.ac.uk/datasets//
https://gwas.mrcieu.ac.uk/datasets//
https://gwas.mrcieu.ac.uk/datasets//
https://gwas.mrcieu.ac.uk/datasets//
https://thessgac.com/
https://gwas.mrcieu.ac.uk/datasets/ukb-b-2002/
https://gwas.mrcieu.ac.uk/datasets/ukb-a-503/
https://gwas.mrcieu.ac.uk/datasets/ukb-b-7408/
https://gwas.mrcieu.ac.uk/datasets/ukb-d-670_2/
https://gwas.mrcieu.ac.uk/datasets/ukb-d-670_1/
https://gwas.mrcieu.ac.uk/datasets/ukb-d-680_6/
https://gwas.mrcieu.ac.uk/datasets/ukb-d-680_1/
https://gwas.mrcieu.ac.uk/datasets/ukb-d-680_3/
https://gwas.mrcieu.ac.uk/datasets/ukb-d-680_4/
https://gwas.mrcieu.ac.uk/datasets/ukb-d-680_2/
https://gwas.mrcieu.ac.uk/datasets/ukb-a-44/
https://gwas.mrcieu.ac.uk/datasets/ukb-b-10011/
https://gwas.mrcieu.ac.uk/datasets/ukb-b-4171/
https://gwas.mrcieu.ac.uk/datasets/ukb-b-4000/
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recruitment (n = 462,464), and (6) leisure/social activities: 
pub or social club (n = 461,369) or leisure/social activities: 
sports club or gym (n = 461,369).

Instrumental strength
First, we computed the proportion of phenotypic varia-
tion that is explained by all SNPs (i.e., R2-values) in our 
MR analysis using the formula R2 = Σ [2 × (1 – MAF) × 
MAF × (β/ SD)2 [45, 46] where SD and β are the stan-
dard deviation and β coefficient for effect size, and MAF 
is the minor allele frequency for each SNP. Then, we cal-
culated F-statistic to evaluate the instrumental strength 
of our SNPs for each socioeconomic trait in explaining 
phenotypic variation using the formula F = [(N - k − 1)/k] 
× [R2/ (1 - R2)] [47] where N is the sample size, k is the 
total number of SNPs that are selected for MR analysis, 
and R2 is the total proportion of phenotypic variation 
that is explained by all the SNPs in our MR analysis. A 
F-statistic > 10 suggests that the combined SNPs in our 
IVW MVMR model is a sufficiently strong instrument 
to explain phenotypic variation, while a F-statistic ≤ 10 
implies a weak instrument [47].

UVMR analysis
Afterwards, we undertook a series of UVMR analyses 
to estimate the causal associations of genetically prox-
ied socioeconomic traits with FGP risk using five MR 
methods, inverse variance weighted (IVW), MR-Egger, 
weighted median (WM), simple mode, and weighted 
mode [48]. The IVW method uses a meta-analysis 
approach to combine the Wald ratios of the genetically 
causal effects of each SNP, relying on the assumption 
that all SNPs are valid IVs with no evidence of directional 
pleiotropy [28]. So, it is considered to provide an esti-
mate with the highest power and the best precision, and 
is used as major analysis [24, 49]. Odd ratios (ORs) and 
corresponding 95% confidence intervals (CIs) were cal-
culated for estimating causal effects of the six categories 
of socioeconomic traits on FGP risk. In order to account 
for multiple testing of the five MR methods, we used the 
Bonferroni correction [50]. We calculated a Bonferroni-
corrected p threshold, by dividing 0.05 by the number of 
tests, which assumes each test is independent [51–54]. 
We considered a p value less than Bonferroni-corrected p 
threshold as being statistically significant [50, 55, 56], and 
that larger than Bonferroni-corrected p threshold but less 
than 0.05 was suggestive of statistical significance in the 
univariable MR analysis [50].

Heterogeneity, pleiotropy, and sensitivity analysis
After forward and reverse directional UVMR analy-
ses, we conducted heterogeneity, pleiotropy, and sen-
sitivity analysis to verify whether heterogeneity and 
pleiotropy biased our UVMR results. First, we calculated 

Q-statistics and I2 (%)-values to quantitatively evalu-
ate the heterogeneity level across individual SNPs [57]. 
Thereafter, we conducted “leave-one-out” sensitivity 
analyses by removing a different SNP in each iteration to 
clarify whether the overall MR estimates were affected by 
removed SNPs [58]. If one or more SNPs were detected 
to be responsible for drastic alteration of overall MR esti-
mates, it or they would be removed and MR analyses be 
re-performed. After that, we evaluated the pleiotropy of 
our effect estimates with MR-Egger intercept method, 
using “mr_pleiotropy_test” function in R TwoSampleMR 
package. Furthermore, we applied the Pleiotropy RESid-
ual Sum and Outlier (MR-PRESSO) analysis [59] to pro-
vide outlier-adjusted estimates of causal associations by 
removing one or more pleiotropic outlying SNPs and re-
conducting MR analyses.

MVMR analysis
Further, we used IVW MVMR method to disentan-
gle which one or several of these socioeconomic traits 
predominantly accounted for the causal associations 
with FGP risk. Unlike UVMR analysis, MVMR analy-
sis assumes that the IVs are strongly associated with at 
least one exposure, although not necessarily with each. 
To this end, we converged a combination of SNPs as an 
integrated proxy for the six categories of socioeconomic 
traits. Additionally, we performed feature selection for 
these six categories of socioeconomic traits using the 
“mv_lasso_feature_selection” function, and excluded 
one or more exposure traits with severe collinearity out 
of the subsequent MVMR analysis. Then, we performed 
MVMR analysis using “mv_multiple” function in R 
TwoSampleMR package. Similarly, ORs and correspond-
ing 95% CIs were calculated for estimating causal effects. 
Bonferroni correction accounting for multiple testing 
was not tailed for MVMR analysis, since the latter has its 
inherent nature of mutual adjustment [24].

Statistical power
Moreover, we determined the statistical power in esti-
mating causal effects of socioeconomic traits on FGP risk 
using a webpage-based application, the mRnd power cal-
culator (https://shiny.cnsgenomics.com/mRnd/) [60].

Software and packages
All statistical analyses and visualization for results were 
performed using R statistical software (version 4.1.0, R 
Foundation for Statistical Computing, Vienna, Austria; 
https://www.R-project.org) with the “TwoSampleMR”, 
“LDlinkR”, and “forestplot” Packages.

https://shiny.cnsgenomics.com/mRnd/
https://www.R-project.org
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Results
Eligible SNPs
After we removed SNPs with LD or MAF < 0.01, palin-
dromic SNPs, and confounder-related SNPs (detailed in 
Supplementary Table  1), we retained 320 SNPs serving 
as IVs for “EA”, 15 SNPs for “job involves heavy manual 
or physical work”, 32 SNPs for “average total household 
income before tax”, one SNP for “type of accommodation 
lived in: a flat, maisonette or apartment”, one SNP for " 
type of accommodation lived in: a house or bungalow”, 13 
SNPs for “Townsend deprivation index at recruitment”, 
ten SNPs for “leisure/social activities: pub or social club”, 
and seven SNPs for “leisure/social activities: sports club 
or gym” to perform UVMR analyses (Table 2).

Effect estimations based on IVW UVMR
As shown in Table 2, higher EA (OR 0.759, 95%CI 0.629–
0.916, p = 0.004) has a causal association with lower FGP 
risk based on IVW UVMR model. That is to say, the 
women possessing higher EA have approximately one-
quarter less probability of incident FGP compared to 
their counterparts. However, the other five traits have no 
causal effects on odds of FGP (“Job involves heavy man-
ual or physical work”: OR 1.518, 0.779–2.956, p = 0.220; 
“average total household income before tax”: OR 1.257, 
0.775–2.037, p = 0.354; “Townsend deprivation index 
at recruitment”: OR 0.598, 0.232–1.542, p = 0.287; “lei-
sure/social activities: pub or social club”: OR 0.136, 
0.006–3.239, p = 0.218; “leisure/social activities: sports 
club or gym”: OR 1.753, 0.053–58.028, p = 0.753). The 
results regarding causal associations of the eight socio-
economic traits with FGP risk by UVMR analyses based 
on three MR methods are demonstrated in Table 2. Also, 
we conducted reverse directional MR analyses to inves-
tigate potential causal effect of genetically proxied FGP 
on each of eight socioeconomic traits respectively. After 
we removed SNPs with a series of procedures above, 
we retained eight SNPs serving as IVs for FGP to per-
form reverse directional UVMR analyses. Our reverse 
directional UVMR analyses show that genetically prox-
ied FGP has a causal association with none of the eight 
socioeconomic traits based on IVW UVMR model (“EA”: 
OR 0.999, 95%CI 0.987–1.011, p = 0.810; “job involves 
heavy manual or physical work”: OR 0.997, 0.981–1.012, 
p = 0.659; “average total household income before tax”: 
OR 1.004, 0.986–1.022, p = 0.669; “type of accommoda-
tion lived in: a flat, maisonette or apartment”: OR 0.998, 
0.995–1.002, p = 0.377; “type of accommodation lived in: 
a house or bungalow”: OR 1.002, 0.998–1.006, p = 0.341; 
“Townsend deprivation index at recruitment”: NA; “lei-
sure/social activities: pub or social club”: OR 1.002, 
0.997–1.007, p = 0.473; “leisure/social activities: sports 
club or gym”: OR 0.998, 0.991–1.005, p = 0.596). That is to 
say, our analyses expel the possibility of reverse causality Ta
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between genetically proxied FGP and any of eight socio-
economic traits.

Sensitivity, heterogeneity, and pleiotropy
As indicated in Table 3, there exists pronounced hetero-
geneity regarding the effect estimates of “average total 
household income before tax” (Q = 47.818, I2 = 35.171%, 
p = 0.027) and “leisure/social activities: pub or social club” 
(Q = 21.437, I2 = 58.017%, p = 0.011) on FGP risk in UVMR 
analyses. Our “Leave-one-out” sensitivity analyses did not 
detect noticeable alterations in effect estimates when any 
one SNP was removed (Supplementary Figs.  1–6), sug-
gesting robustness in our UVMR results. Additionally, as 
demonstrated in Table 3, there is no apparent pleiotropy 
concerning the effect estimates of all the six socioeco-
nomic traits on FGP risk in UVMR (“EA”: Egger intercept 
= -0.002, SE = 0.004, p = 0.647; “job involves heavy manual 
or physical work”: Egger intercept = -0.014, SE = 0.028, 
p = 0.622; income: Egger intercept = -0.001, SE = 0.023, 
p = 0.975; “Townsend deprivation index at recruitment”: 
Egger intercept = 0.019, SE = 0.036, p = 0.611; “leisure/
social activities: pub or social club”: Egger intercept = 
-0.007, SE = 0.043, p = 0.871; “leisure/social activities: 
sports club or gym”: Egger intercept = 0.004, SE = 0.121, 
p = 0.972). Further, as shown in Table  2 and Table  3, 
our MR-PRESSO analyses identify pleiotropic outly-
ing SNPs and determine outlier-adjusted estimates after 
removing these outlying SNPs (“average total household 
income before tax”: PRESSO-adjusted OR 1.402, 95%CI 
0.898–2.189, p = 0.137; “leisure/social activities: pub or 
social club”: PRESSO-adjusted OR 0.524, 0.023–11.765, 
p = 0.684). Remarkably, after PRESSO adjustments, we 
did not observe significant heterogeneity in the results 
for causal effects of income (Q = 38.149, I2 = 21.361%, 
p = 0.146) and pub or club (Q = 12.520, I2 = 36.102%, 
p = 0.069) on FGP risk. In addition, the results of effect 
estimates (β values) for the six socioeconomic traits on 
FGP risk in UVMR analyses are visualized in six scatter 

plots (Supplementary Figs.  7–12). Moreover, the results 
of effect estimates for individual SNPs in UVMR analy-
ses are illustrated in six forest plots (Supplementary 
Figs. 13–18), and that for all SNPs are demonstrated in a 
summarized forest plot (Fig. 2).

MVMR results
Eligible SNPs
Next, we leveraged the SNPs surrogating for these six 
socioeconomic traits to establish the following two mod-
els to conduct MVMR analyses, depending on different 
combination patterns for the six socioeconomic traits: 
(1) Model 1: “EA”, “heavy physical work”, “income “, “TDI”, 
and “pub or club”; (2) Model 2: “EA”, “heavy physical 
work”, “income “, “TDI”, and “sports”. We clustered 402 
SNPs for Model 1 and 408 SNPs for Model 2 respectively, 
and used them as integrated proxy instruments to con-
duct MVMR analyses.

LASSO feature selection
Additionally, we performed LASSO feature selection for 
the two MVMR models using the “mv_lasso_feature_
selection” function, and removed “income” due to its 
severe collinearity with “heavy physical work” in Model 
1. Accordingly, the remaining four traits were retained. 
Dissimilarly, none of the five traits was detected to carry 
collinearity in Model 2.

Instrumental strength of MVMR Models
First, we calculated the proportion of phenotypic vari-
ances that were explained by our two clusters of SNPs 
and revealed that 402 SNPs as IVs for MVMR Model 1 
explained 0.690% of phenotypic variances for EA, 0.702% 
for heavy physical work, 0.142% for TDI, and 0.117% for 
pub or club, respectively. As far as MVMR Model 2 was 
concerned, the proportion (i.e., R2-value) of phenotypic 
variations that were explained by our 408 integrated 
SNPs was 0.702% for EA, 0.718% for heavy physical 

Table 3 Heterogeneity and pleiotropy evaluations for genetically causal associations of socioeconomic traits with FGP risk
Socioeconomic traits nSNP Heterogeneity Pleiotropy

Q I2 (%) p Intercept SE p
Educational attainment 320 293.38 8.7 0.845 0.002 0.004 0.647

Job involves heavy manual or physical work 15 8.887 57.5 0.838 < 0.001 0.029 0.998

Average total household income before tax 32 47.818 35.2 0.027 0.001 0.023 0.975

PPRESSO adjustment 31 38.149 21.4 0.146 0.008 0.021 0.688

Type of accommodation lived in: a flat, maisonette or apartment 1 NA NA NA NA NA NA

Type of accommodation lived in: a house or bungalow 1 NA NA NA NA NA NA

Townsend deprivation index at recruitment 13 15.273 21.4 0.227 0.019 0.036 0.611

Leisure/social activities: pub or social club 10 21.437 58 0.011 0.007 0.043 0.871

PPRESSO adjustment 8 12.52 36.1 0.069 0.026 0.04 0.545

Leisure/social activities: sports club or gym 7 11.688 48.7 0.069 0.004 0.121 0.972
Abbreviations: CI = confidence interval; IVW = inverse-variance weighted; MR = Mendelian randomization; OR = odds ratio; SE = standard error; nSNP = number of 
single-nucleotide polymorphism; WM = weighted median
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work, 0.421% for income, 0.143% for TDI, and 0.108% 
for sports, respectively. Furthermore, we determined 
F-statistics symbolizing the total instrumental strength of 
our 402 SNPs (Model 1) and 408 SNPs (Model 2). Spe-
cifically, the former was respectively 2795.203, 650.161, 
1147.773, and 1145.337 for the four traits, while the latter 
was 2753.746, 640.479, 969.778, 1130.869, and 1128.580 
for the five traits. In summary, our findings supported 
strong, robust, and reliable genetic proxies for socioeco-
nomic traits to investigate their causal associations with 
FGP risk.

Effect estimations based on model 1
The results of our MVMR analyses based on Model 1 are 
displayed in Fig. 3; Table 4. As the figure and table indi-
cate, higher EA (OR 0.842, 95%CI 0.744–0.953, p = 0.006) 
has protective effect on FGP risk, and predominantly 
accounts for the associations between the four socio-
economic traits and FGP risk after adjusting for “heavy 
physical work” (OR 0.968, 95%CI 0.774–1.211, p = 0.774, 
TDI (OR 1.108, 0.774–1.586, p = 0.574), and “pub or club” 
(OR 0.529, 0.226–1.234, p = 0.141). In other words, the 
women who achieve higher EA have one-seventh lower 

predisposition to incident FGP than those own lower EA, 
regardless of the involvement of heavy physical work in 
their jobs, TDI, and leisure activities such as attendance 
to social pub or club.

Effect estimation based on model 2
The results of our MVMR analyses based on Model 2 are 
also exhibited in Fig.  3; Table  4. Similar to the MVMR 
findings acquired from Model 1, our MVMR results from 
Model 2 also indicate that higher EA (OR 0.857, 95%CI 
0.759–0.967, p = 0.012) has protective effect on FGP risk, 
and plays a predominant role in the associations of the 
five socioeconomic traits with FGP risk, independent of 
heavy physical work (OR 0.797, 0.582–1.093, p = 0.1590), 
income (OR 0.789, 0.582–1.072, p = 0.130), TDI (OR 
0.875, 0.580–1.320, p = 0.524), and sports (OR 1.092, 
0.397–3.001, p = 0.864). That is to say, the women with 
higher EA are one-quarter less likely to have incident 
FGP than those with lower EA, regardless of the involve-
ment of heavy physical work in their jobs, income, TDI, 
and engagement in such leisure activities as sports.

Fig. 2 Forrest plot for causal associations of socioeconomic traits with FGP risk based on five UVMR methods. The forest plot suggests causal 
effect of genetical predisposition to lower EA on higher FGP risk based on IVW UVMR method. Inconsistently, the other five socioeconomic traits do not 
have any causal effect on FGP risk. Abbreviations: CI = confidence interval; EA = “educational attainment”; FGP = female genital prolapse; heavy physical 
work = “job involves heavy manual or physical work”; income = “average total household income before tax”; IVW = inverse-variance weighted; MR = Men-
delian randomization; nSNP = number of single-nucleotide polymorphism; OR = odds ratio; pub or club = “leisure/social activities: pub or social club”; 
sports = “leisure/social activities: sports club or gym”; TDI = “Townsend deprivation index at recruitment”; UVMR = univariate Mendelian randomization; 
WM = weighted median
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Statistical power
The results of statistical power for the nine groups of 
integrated SNPs in estimating causal associations of 
socioeconomic traits with FGP risk are presented in 
Table 2. As the table manifests, the statistical power of all 
our nine groups of SNPs is suboptimal but moderate.

Discussion
POP prevalence across socioeconomic populations
There have been a variety of characteristics used as indi-
cators measuring socioeconomic status in health research 
[61, 62], including educational attainment [61, 63, 64], 
occupational nature [64, 65], income level [61, 63, 64], 
poverty degree proxied by TDI [63, 65], leisure activities 
[66–69], and accommodational conditions [70, 71]. Tor-
neto et al. [72] observed a POP prevalence of 0 in high-
socioeconomic group, 21% in middle-socioeconomic 

Table 4 Causal effects of multiple socioeconomic traits on FGP risk based on IVW MVMR model
Socioeconomic traits nSNP β SE OR 95%CI p
Model 1
 EA 402 -0.248 0.091 0.842 0.744–0.953 0.006

 Heavy physical work 402 -0.047 0.165 0.968 0.774–1.211 0.774

 TDI 402 0.148 0.264 1.108 0.774–1.586 0.574

 Pub or Club 402 -0.92 0.624 0.529 0.226–1.234 0.141

Model 2
 EA 408 -0.223 0.089 0.857 0.759–0.967 0.012

 Heavy Physical Work 408 -0.327 0.232 0.797 0.582–1.093 0.159

 Income 408 -0.341 0.225 0.789 0.582–1.072 0.13

 TDI 408 -0.193 0.303 0.875 0.580–1.320 0.524

 Sports 408 0.127 0.744 1.092 0.397–3.001 0.864

Abbreviations: FGP = female genital prolapse; IVW = inverse-variance weighted; MVMR = Multivariable Mendelian randomization; SE = standard error; 
OR = odds ratio; CI = confidence interval; EA = Educational attainment; Heavy physical work = job involves heavy manual or physical work; Average 
total household income before tax; nSNP = number of single-nucleotide polymorphism; Pub or club = Leisure/social activities: pub or social club; 
Sports = Leisure/social activities: sports club or gym; TDI = Townsend deprivation index at recruitment.

Fig. 3 Forrest plot for causal associations of socioeconomic traits with FGP risk based on IVW MVMR Model 1 and 2. The forest plot demonstrates 
that EA is independently and predominantly responsible for causal effects of socioeconomic traits on FGP risk after adjusting for heavy physical work, TDI, 
and pub or club (Model 1), or adjusting for heavy physical work, income, TDI, and sports (Model 2). Abbreviations: nSNP = number of single-nucleotide 
polymorphism; OR = odds ratio; CI = confidence interval; EA = educational attainment; FGP = female genital prolapse; heavy physical work = job involves 
heavy manual or physical work; income = average total household income before tax; IVW = inverse-variance weighted; MR = Mendelian randomization; 
MVMR = multivariable Mendelian randomization; pub or club = leisure/social activities: pub or social club; sports = leisure/social activities: sports club or 
gym; TDI = Townsend deprivation index at recruitment
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group, and 45% in low-socioeconomic group. It was pre-
sumed that the significant differences concerning POP 
prevalence among different socioeconomic populations 
might be attributed to diverse genital hygiene, different 
nutritional status, and/ or different knowledge about this 
condition.

Main findings
UVMR results
Our UVMR analyses based on IVW method revealed a 
causal association of lower EA with higher FGP risk, 
suggesting that women with lower EA are more suscep-
tible to have FGP than those with the opposite features. 
Moreover, our UVMR results are robust in consideration 
of no heterogeneity or pleiotropy in effect estimates. 
Besides, our results of reverse directional UVMR analy-
ses expelled the possibility of reverse causality between 
FGP and any of the eight socioeconomic traits, which 
had been regarded as one of the major methodological 
limitations in previous observational studies.

MVMR results
Our MVMR analyses further uncovered that among the 
four socioeconomic traits (in MVMR Model 1) and five 
socioeconomic traits (in MVMR Model 2), there was 
only one trait, namely, EA that independently and pre-
dominantly accounted for the causal associations of these 
socioeconomic traits with FGP risk.

Potential mechanisms
We speculated that higher educational attainment is 
associated with a lower probability of heavy physical 
work [73], higher income [74], better nutrition [75], more 
access to better healthcare services [76, 77], routine med-
ical examinations, lower probability of early marriage [78, 
79] and vaginal delivery [80]. In previous studies, all the 
above factors have an impact on FGP risk. Also, it has 
been well established that socioeconomic factors, such as 
education, strongly shape health-related behaviors [62], 
potentially due to superior self-management and health-
care engagement practices afforded to those with greater 
education, suggesting that individuals with higher educa-
tional attainment may be more inclined to pay attention 
to their health and take preventive measures to maintain 
good health, which could decrease the risk of FGP.

Comparisons to previous studies
Educational attainment
Although it has been frequently found in previous obser-
vational studies that the decreased prevalence of POP 
is significantly associated with increased level of educa-
tion by univariate analysis, there has been a controversy 
with regard to independent association of EA with the 
prevalence of POP. Some multivariate logistic regression 

analyses consistently evidenced that absent or insuffi-
cient formal education was an independent risk factor of 
having FGP or POP [6–9]. Given the independent asso-
ciation of insufficient knowledge about POP with low 
EA that was reported in O’Neill’s [81] and Chen’s [82] 
studies, promoting girls’ education was recommended 
to possibly decline the prevalence of POP. However, the 
independent association was not observed in Wang’s [15] 
retrospective cross-sectional study and Lovejoy’s [16] 
prospective cohort study. Explicitly, our UVMR results 
have resolved the controversy existing in previous obser-
vational studies, and clarified that higher EA is caus-
ally associated with lower FGP risk, while “job involving 
heavy physical work” has no causal effect on higher FGP 
risk. Furthermore, our MVMR analyses provide genetic 
evidence supporting EA as the independent and pre-
dominant trait that accounts for the relationship between 
multiple socioeconomic traits and FGP risk.

Strenuous work
Jobs needing heavy physical labor, such as heavy load 
carrying, are ubiquitous activities for women living in 
low-income countries. In previous observational studies, 
there have been existing discrepant findings regarding 
whether strenuous work is independently associated with 
prevalence of POP. Some studies concluded that strenu-
ous work [9–13] was an independent determinant for 
having POP via multivariate logistic regression analyses. 
Therefore, some researchers recommended avoidance of 
carrying heavy objects for attenuating POP risk. In con-
trast, Devkota’s [18] multivariate analysis did not agree 
on such a significant association between heavy load car-
rying and uterine prolapse (UP). Our UVMR and MVMR 
analyses have resolved this ambiguity and clearly denied 
any causal effect of “job involving heavy manual or physi-
cal work” on FGP risk.

Income
UVP, the main constituent of FGP, is a major cause of 
mortality and morbidity among women in low-income 
countries such as Nepal [83]. Woodman et al.’s multivari-
ate logistic analysis [14] established that annual income of 
$10,000 or less in women was independently associated 
with more severe POP, relative to that of over $10,000 
(p < 0.001). The mechanism underlying the associations 
between income level and FGP risk in observational 
studies remains unexplained, which can be interpreted 
partially by previous findings that the women with lower 
income are more predisposed toward a higher probability 
of early marriage [84–86], vaginal delivery [87–91], and 
strenuous work [13, 92, 93].
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Townsend deprivation index
The TDI is defined as an area-based measure of socioeco-
nomic deprivation and regarded as a proxy of individuals’ 
socioeconomic deprivation, with a higher TDI referring 
to a higher level of socioeconomic deprivation [65]. Also, 
there has been insufficient evidence from observation 
studies examining the association of TDI with the prev-
alence of POP. Unambiguously, our UVMR and MVMR 
analyses ascertained that TDI had no causal effect on risk 
of FGP.

Leisure or social activities
Scientists have long known that the socioeconomic con-
ditions in which children grow up impact their health 
behaviors in adulthood —particularly physical activ-
ity [64]. Participation in active free play, namely leisure 
activities, decreases in girls from low-income residential 
areas relative to their counterparts from high-income 
ones [64]. In addition, compared with the girls from high 
socioeconomic backgrounds, those from low socioeco-
nomic backgrounds usually report a lower preference for 
physical activity [64, 94, 95]. In previous observational 
studies, there has been a lack of definite evidence sup-
porting an independent association of leisure or social 
activities with odds of FGP. In a multivariate logistic 
regression analysis by Nygaard et al. [17], leisure activity 
was not found to be independently correlated to prob-
ability of POP. Our MVMR analyses, for the first time, 
disentangled the ambiguity deposited in previous obser-
vational studies, and definitely advocated that “leisure 
or social activities” had no causal effect on FGP risk, let 
alone independent and predominant role in the associa-
tions of socioeconomic traits with FGP risk.

Interpretation for discrepant findings
Based on the complexity of the causal pathways result-
ing from social factors [96], such as education, previous 
observational studies have found that the correlation 
between other socioeconomic factors and FGP may be 
influenced by different levels of education. In addition, 
educational attainment is a reliable proxy for measuring 
socioeconomic status as it is determined early in life and 
is strongly associated with later life measures of socio-
economic position, such as employment and income 
[97]. In contrast, individual-level proxies such as income 
are prone to reporting bias and ecological fallacy [98]. 
Therefore, educational attainment is a valuable indica-
tor for investigating the role of socioeconomic factors in 
FGP. Furthermore, the discrepancies between the results 
of observational studies and MR analyses can be attrib-
uted to the limitations of observational studies and the 
inherent superiority of MR analyses. Unlike observa-
tional studies, MR analyses can overcome the issues of 
confounding and reverse causality by integrating a set of 

SNPs that are strongly associated with multiple socioeco-
nomic traits in a same model. This enables MR analyses 
to simultaneously estimate potential causal effects of 
multiple socioeconomic traits on one outcome event, 
i.e., FGP. Therefore, MR analyses provide a more robust 
and reliable approach to identifying causal relationships 
between socioeconomic factors and FGP than observa-
tional studies.

Public health implications
Our UVMR and MVMR findings have important impli-
cations for public health by providing new insights into 
the pathogenesis underlying female genital prolapse 
(FGP) from a genetic perspective. Our study results 
add to the existing research on the association between 
FGP and socioeconomic status and suggest that modi-
fying specific socioeconomic traits, such as promoting 
education among girls, may serve as a potential prophy-
lactic measure against FGP. It is essential to extend edu-
cational attainment and initiate public health education 
programs, especially in countries where education is not 
widely available, as this can have a long-term impact on 
preventing FGP beyond simply raising people’s incomes. 
While it may be challenging to change educational 
attainment in adulthood, screening for FGP should be 
prioritized among women with lower educational attain-
ment from a preventive perspective and early diagnosis 
standpoint.

Strengths in our study
There are several strengths in the present study. To the 
best of our knowledge, our study is the first MR study 
focused on causal associations of multiple socioeco-
nomic traits with FGP risk using large-scale GWAS 
data. Undoubtedly, our UVMR and MVMR analyses are 
superior over previous observational studies because we 
extract summary data from GWASs with a much larger 
sample size and a huge number of SNPs. Moreover, the 
results are robust and reliable by virtue of no heterogene-
ity or pleiotropic effect. Extremely importantly, our two 
MVMR models prove to be strong, robust, and reliable 
genetic proxies for socioeconomic traits.

Limitations in our study
We confess several limitations in our study. Above all, 
although FGP predominates in female POP population, 
FGP is not exactly equal to POP. Owing to no GWAS 
available for POP, we had to resort to FGP as an out-
come event instead of POP. It is not sound enough to 
implement comparisons of conclusions regarding asso-
ciations of socioeconomic traits with two different, 
even if approximate, outcome events between observa-
tional studies and MR analyses. Secondly, a weak statis-
tical power of our SNPs surrogating compromises the 
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precision and reliability in estimating causal effect on 
FGP risk. Therefore, our conclusions should be used with 
caution. The unfavorable statistical power will not be 
improved unless the advent of updated GWAS datasets 
with a larger sample size and more eligible SNPs repre-
senting socioeconomic traits and FGP in the future. After 
all, we acknowledge that this study provides insights into 
the causal effect of EA on POP from genetic perspective. 
Still, the underlying mechanisms behind this causal rela-
tionship remain elusive and are worth further exploration 
in, perhaps, a mediation effect analysis of heavy physical 
work, income, TDI, and social activities, or in a pathway 
analysis involving molecular mechanisms and hormonic 
factors in the future.

Conclusion
To sum up, our UVMR and MVMR analyses provided 
genetic evidence that as a representative of socioeco-
nomic traits, educational attainment is causally asso-
ciated with risk of female genital prolapse, and even 
independently and predominantly accounts for the asso-
ciation of socioeconomic status with risk of female geni-
tal prolapse.
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