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Abstract 

Background Hereditary genetic mutations causing predisposition to colorectal cancer are accountable for approxi‑
mately 30% of all colorectal cancer cases. However, only a small fraction of these are high penetrant mutations occur‑
ring in DNA mismatch repair genes, causing one of several types of familial colorectal cancer (CRC) syndromes. Most 
of the mutations are low‑penetrant variants, contributing to an increased risk of familial colorectal cancer, and they 
are often found in additional genes and pathways not previously associated with CRC. The aim of this study was to 
identify such variants, both high‑penetrant and low‑penetrant ones.

Methods We performed whole exome sequencing on constitutional DNA extracted from blood of 48 patients sus‑
pected of familial colorectal cancer and used multiple in silico prediction tools and available literature‑based evidence 
to detect and investigate genetic variants.

Results We identified several causative and some potentially causative germline variants in genes known for their 
association with colorectal cancer. In addition, we identified several variants in genes not typically included in relevant 
gene panels for colorectal cancer, including CFTR, PABPC1 and TYRO3, which may be associated with an increased risk 
for cancer.

Conclusions Identification of variants in additional genes that potentially can be associated with familial colorectal 
cancer indicates a larger genetic spectrum of this disease, not limited only to mismatch repair genes. Usage of multi‑
ple in silico tools based on different methods and combined through a consensus approach increases the sensitivity 
of predictions and narrows down a large list of variants to the ones that are most likely to be significant.
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Background
Cancer is a leading cause of premature mortality in the 
population [1] with 19.3 million newly diagnosed cases 
and 10 million deaths worldwide in 2020 [2]. Colorectal 
cancer (CRC) ranks third in cancer incidence, but second 
with respect to cancer-related mortality [2]. Of all CRC 
cases, 30% are thought to have a familial component but 
only one third of these are associated with a hereditary 
condition [3] where high-penetrance pathogenic variants 
account for their genetic predisposition leading to several 
types of familial CRC syndromes. A well-known example 
is defects in DNA mismatch repair (MMR) genes (MLH1, 
MSH2, MSH6 & PMS2) leading to Lynch syndrome (LS). 
In addition to the MMR genes, pathogenic mutations in 
other known high penetrant CRC predisposing genes 
are relevant. Mutations in APC can lead to both classic 
(FAP) and attenuated familial adenomatous polyposis 
(AFAP), while mutations in MUTYH (biallelic) can lead 
to MUTYH-associated polyposis (MAP), mutations in 
NTHL1 (biallelic) can lead to familial adenomatous poly-
posis 3 (FAP3), and mutations in POLE and POLD1 can 
lead to Polymerase proofreading-associated polyposis 
(PPAP) [4–7]. For the remaining 20% of familial CRC 
causal genetic factors for CRC predisposition remain to 
be revealed. For example familial colorectal cancer Type 
X (FCCTX), a rare inherited cancer-predisposing syn-
drome, is characterized by the fulfilment of the Amster-
dam criteria for Lynch syndrome, but genetic causes are 
not yet clear [8]. Next generation sequencing (NGS) and 
genome-wide association studies (GWASs) have been 
used to discover the etiology of familial CRC by identify-
ing novel candidate genes and causal variants which have 
not yet been linked to CRC [4, 9]. Additionally, whole 
exome sequencing (WES) has been used to identify bi-
allelic and polygenic mutations in FAP, LS or familial 
CRC cases [5, 10–12]. Polygenic variation is also recog-
nized as a potential cause of increased disease penetrance 
in Lynch syndrome [13].

DNA sequencing of protein coding regions enables the 
study of novel candidate genes and their potential role 
in cancer risk. The selection of candidate genes can be 
based on prioritization scores [14]. However, in addition 
to the actual protein coding regions, WES by capturing 
may also provide some information about other genomic 
regions. With expanded sequencing kits, WES can 
widen the targeted content to include additional regions 
beyond exons, towards 5’ untranslated regions (5’UTRs) 
to capture transcription factor binding sites (TFBSs) and 
upstream open reading frames (uORFs), and towards 
3’UTRs to reveal microRNA binding sites associated with 
gene regulation [15, 16].

Genetic variants are often classified as single nucleo-
tide (nt) variation (SNV) (1 nt), short insertion-deletion 

variation (indel) (up to 50 nt), and structural variation 
(SV) (larger than 50 nt) [17]. In this context, SVs include 
insertions, deletions, duplications, inversions, transloca-
tions or a combination of these, co-occurring in a single 
genome as described by Calvalho et  al. [18]. Deletions 
and duplications of SVs [19, 20], known as copy number 
variants (CNVs), have been associated with disease and 
can contribute to a large fraction of the disease-causing 
variation [21]. WES has mainly been used to detect dis-
ease-causing SNV/indel variants [22]. However, with the 
use of recently developed in silico methods it is possible 
to identify also CNVs from WES data [23].

An essential step in NGS data analysis is the assessment 
of a variant’s effect on gene function and any causative 
association with disease. This is achieved by assigning 
annotations consisting of both theoretical pathogenicity 
scores calculated by prediction tools and experimental 
data extracted from various databases. Annotation tools 
can provide a diverse set of annotations in one place 
[24, 25], and these annotations can then be used to filter 
down large lists of variants to the most significant ones. 
It has been shown that functional studies are necessary 
to unequivocally establish the role of variants in disease 
risk, see for example [26], and functional studies such 
as in vitro assays, animal models, or studies on patient-
derived samples can provide important insights into the 
molecular mechanisms underlying variant effects [27]. 
However, functional studies are often time-consuming, 
expensive, and technically challenging, and not all vari-
ants may be amenable to such analyses. Computational 
annotation, made as reliable as possible, will therefore 
always be essential.

In the present study, WES was performed on consti-
tutional DNA extracted from blood of 48 patients with 
suspected familial colorectal cancer. Variant calling was 
undertaken to detect SNVs, indels and CNVs in all tar-
get regions of the exome. Consensus prediction based on 
multiple in silico tools and literature-based evidence was 
used to search for disease association of detected vari-
ants. We identified several potentially causative germline 
pathogenic variants in genes known to be associated with 
colorectal cancer. Additionally, several variants were 
identified in genes normally not included in gene panels 
for colorectal cancer, and these may be associated with 
an increased cancer risk.

Methods
Samples and study design
Germline DNA were extracted from blood samples from 
48 Australian patients diagnosed with colorectal cancer 
fulfilling the Amsterdam-II Criteria, including 16 related 
pairs of individuals from 8 families while 32 individuals 
were unrelated individuals. Sanger sequencing performed 
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previously detected no germline MMR mutations in the 
samples. Therefore, these patients are defined as FCCTX 
patients. Table  1 gives an overview of the 48 patients, 
including their and family members cancer types.

Whole exome sequencing (WES)
WES was performed on germline DNA from these 48 
samples. Paired-end library preparation was performed 
using the Illumina Truseq exome capturing kit. DNA was 
sheared to ~ 150 bp using the Bioruptor Pico (Diagenode) 
followed by the recommended protocol using a single 
index. The final libraries were sequenced using an Illu-
mina Nextseq 500 kit (Illumina), 150 cycles pair ended. 
Libraries were quantified using Qbit High Sensitivity 
D100 (Agilent) and were checked using either TapeSta-
tion on Bioanalyzer (Agilent) for quality and size.

Variant calling and annotation
SNV/indel variant calling was performed on the data-
set using a standardized BWA-Picard-GATK pipeline 
[22]. Joint annotation of variants was performed using 
the command-line based batch annotation software tool 
Ensembl variant effector prediction (VEP) [24] com-
plimented with additional annotations from database 
dbNSFP [28, 29] used as plugin with VEP.

Detection of CNVs was performed using an in-house 
developed method [30] for detecting CNVs in targeted 
sequencing data.

Variant prioritization
Prioritization steps were performed on the initial set of 
125.686 variants detected from variant calling on 48 sam-
ples, using the command-line based tool filter_vep from 
the VEP toolkit. This was performed in three stages. In 
stage one, variants were selected based on their frequency 
in the population database gnomAD (v2.1) [14]. Variants 
that were not present in the database were assigned a fre-
quency of zero and were also included in the selection 
process. In the second stage, variants were classified and 
prioritized based on their clinical significance assigned 
in the ClinVar database [31]. In the third and final stage, 
variants passing through the previous two stages were 
filtered based on pathogenicity estimation scores of 
selected tools. This included REVEL [32], CADD [33], 
ClinPred [34], M-CAP [35], VEST4 [36], MetaSVM [37], 
BayesDel [38] for missense, nonsense and start-loss pre-
diction; SpliceAI [39] for splicing alteration prediction; 
and Loftee [14] for loss of function prediction.

Selection of in silico prediction tools was based on 
ranking generated by our benchmarking study compar-
ing the performance of 45 different pathogenicity pre-
diction tools (see Supplementary file 1). We also took 
into consideration other benchmarking studies with 

similar goals [40–42]. Figure 1 shows workflow for these 
filtering steps and the outcome of each step. For detailed 
information about the various filtering steps, please see 
Supplementary file 2.

Results
In all 48 samples, on average more than 99% of reads 
aligned to the reference genome GRCh37, with an aver-
age coverage depth of 92X. A total of 125.686 SNP/indel 
variants (for 25.664 genes) were identified in the 48 sam-
ples after the variant calling step. The three-stage filter-
ing strategy detailed above (also displayed in Fig. 1) was 
applied to these variants, resulting in 346 variants (for 
302 genes) with variants in different filtering categories. 
The average coverage depth at the variant position for 
these 346 variants was 110X, with a median of 91X and 
a maximum of 598X. However, there were four variants 
with a coverage depth of less than 10X at the variant posi-
tion. The variants were assigned to different pathogenic-
ity classes according to the ClinVar database. Table  2 
displays a breakdown of these 346 variants into the num-
ber of variants for the different filtering steps. The full list 
of these variants is listed in Supplementary file 3.

To identify any associations of these variants with 
cancer all 302 genes were checked against three cancer-
associated databases; COSMIC [43], OncoKB [44] and 
TSGene [45]. Only 38 of the 302 genes were listed in at 
least one of these databases. All these 38 genes are either 
known or have expected roles in cancer as oncogenes, 
tumor suppressor genes or fusion genes according to 
database classification. The list of the 38 genes with their 
respective roles in cancer are given in Supplementary 
Table S1. Of the 346 variants passing the filtering stages, 
only 45 variants are associated with any of these 38 genes. 
The variants associated with repetitive regions of these 
38 genes were excluded. The average coverage depth at 
the variant position for these 45 variants was 94X, with 
a median of 79X and a maximum of 276X. The variant 
allele fraction (VAF) of these variants varied from mini-
mum of 0.08 up to 1.65, with mean of 0.63.

Among these 45 variants, 14 are pathogenic/likely 
pathogenic, 6 are VUS, and 4 have conflicting interpre-
tation between pathogenic/likely pathogenic and VUS 
according to ClinVar. The remaining 21 variants are not 
reported in ClinVar. Thirty-two of the 48 samples car-
ried one or more of these 45 variants, the remaining 16 
samples did not harbor any variant with a known cancer 
association, and hence lacked a clear link to an estab-
lished cancer-associated variant. Table 3 lists the 32 sam-
ples and the associated 45 variants.

Among these 38 genes, 7 are well known cancer genes 
with high impact towards cancer. These included BRCA2, 
MLH1, MSH2, MSH6, PMS2, PTCH1 & SDHA. These 7 
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Table 1 Overview of 48 patients and their family’s cancer history

Age is in years

Abbreviations: ID Patient ID, Fid Family ID, CRC  Colorectal cancer, NA Age not available

ID (Fid) CRC: Age of 
detection and 
diagnosis

Other cancers and age of detection Family cancer history: Numbers of affected members and cancer types

S.13 (F.1) Y (50) ‑ 4 CRC, 1 stomach, 1 melanoma

S.46 (F.1) Y (46) Lung (51)

S.34 (F.2) Y (48) ‑ 3 CRC, 2 melanoma, 1 ovarian, 1 leukaemia, 1lung, 1 kidney, 4 breast, 1 uterine

S.36 (F.2) N Uterine (41)

S.47 (F.3) Y (34) Melanoma (32) 5 CRC, 2 melanoma, 3 breast,1 uterine, 2 kidney, 1 lung, 1 oesophagus, 1 bladder

S.48 (F.3) N Renal (53)

S.37 (F.4) Y (38) ‑ 2 CRC, 1 stomach, 1 throat

S.41 (F.4) Y (53) ‑

S.23 (F.5) Y (51) ‑ 4 CRC 

S.25 (F.5) Y (52) ‑

S.44 (F.6) Y (33) Uterine (NA) 3 CRC 

S.45 (F.6) N Uterine (59)

S.03 (F.7) N Ovarian (78) 1 CRC, 1 ovarian, 2 breast, 1 stomach, 1 renal, 1 liver

S.04 (F.7) Y (31) ‑

S.01 (F.8) Y (64) ‑ 3 CRC, 1 breast, 1 kidney

S.02 (F.8) Y (30 s) Breast (30 & 70)

S.31 Y (57) ‑ 9 CRC 

S.42 Y (12) CRC (29) ‑

S.19 Y (21) CRC (40), non‑hodgkin lymphoma (42) ‑

S.27 N Ureter (60) 6 CRC 

S.18 Y (70) ‑ 5 CRC, 1 stomach, 1 lung, 1 cervical, 1 polyps

S.43 Y (51) CRC (64) 5 CRC 

S.38 Y (45) ‑ 5 CRC, 1 acute lymphoblastic leukaemia, 1 hodgkin lymphoma, 1 brain

S.06 Y (60) Kidney (60), bladder (53) 5 CRC, 1 prostate

S.07 Y (50) ‑ 5 CRC, 1 uterine

S.24 Y (50) ‑ 5 CRC, 1 stomach

S.05 Y (64) ‑ 5 CRC, 1 breast, 1 jaw

S.12 Y (60) ‑ 4 CRC 

S.15 Y (42) ‑ 4 CRC 

S.21 N Pancreas (62) 4 CRC 

S.32 Y (58) Pancreatic (60) 4 CRC, 3 unknown

S.40 Y (66) Stomach (NA), kidney (NA) 4 CRC, 4 stomach, 1 brain, 4 eye, 2 lung

S.28 Y (57) ‑ 4 CRC, 1 kidney

S.17 Y (72) Kidney (71) 4 CRC 

S.08 Y (48) ‑ 4 CRC, 1 endometrial, 1 throat

S.29 Y (48) Uterine (56) 3 CRC, 1 abdomen

S.10 Y (53) Kidney (59) 3 CRC, 2 bladder, 1 lymphoma, 1 brain, 3 melanoma, 1 thyroid, 2 breast, 1 
unknown

S.11 Y (60) Bone (32), breast (57) 3 CRC 

S.14 Y (52) Breast (52) 3 CRC 

S.35 Y (36) Bladder (35), uterine (35) 2 CRC, 4 breast, 2 throat, 2 non‑Hodgkin lymphoma

S.30 Y (68) Ureter (79) 3 CRC, 1 prostate

S.22 Y (54) CRC (55) 2 CRC, 2 unknown

S.20 Y (55) Endometrial (41), breast (51) 3 CRC, 3 renal, 1 endometrial, 1 melanoma

S.09 Y (65) Uterine (50) 2 CRC, 1 breast

S.16 Y (48) CRC (67) 2 CRC, 1 stomach

S.33 Y (63) Endometrial (29) 1 CRC, 1 leukaemia, 1 melanoma, 1 endometrial, 3 unknown

S.26 Y (65) Endometrial (50) 1 Stomach, 1 throat

S.39 Y (77) Renal (51), uterine (55) 1 CRC, 1 brain, 1 unknown
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genes have 9 variants with pathogenicity classes 5, 4 or 3, 
occurring in 10 patients. Table 4 lists these genes and the 
associated variants.

Copy number variant calling
We performed CNVs calling step only for 88 known can-
cer genes. List of these genes is provided as Supplemen-
tary file 4. We detected 5 CNVs associated to 5 genes 
including 1 deletion and 4 duplications in 5 patients. 
More details are available as Supplementary Table S2.

Discussion
This study uses a WES-based approach to identify the 
genetic causes of disease in FCCTX patients, where the 
majority of the patients had been diagnosed with CRC, 

and all fulfilling the AMS criteria. Most of the patients 
in this cohort were at the time of genetic testing pre-
screened using denaturing high performance liquid 
chromatography (DHPLC) prior to Sanger sequencing. 
DHPLC is an inferior screening method that does miss 
some genetic variants and hence some samples were 
not further processed for Sanger Sequencing. The use of 
WES was therefore performed to identify relevant vari-
ants in additional cancer-associated genes, as well as the 
MMR genes. We identified significant variants in 38 
genes known for cancer associations; this included 7 well 
established cancer genes with high cancer penetrance.

Four patients harbored pathogenic MMR variants, and 
therefore have a molecular diagnosis of Lynch syndrome. 
In addition, one suspicious VUS (MLH1 c.514G > A) was 
detected in two members of family 5 and may also repre-
sent Lynch syndrome.

Fig. 1 Variants filtering workflow, illustrating all filtering stages and their criteria. Variants in green boxes are the final output of filtration and are 
used for analysis
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The MLH1 variant c.514G > A (p.Glu172Lys) found in 
two patients from the same family (S.23 and S.25, family 
F.5), is a VUS with the potential to be pathogenic. Immu-
nohistochemistry showed missing protein staining for 
MLH1 and PMS2 in tumors from both family members. 
The variant is not reported in gnomAD, and the REVEL 
score (0.876) indicates pathogenicity. Residue Glu172 is 
highly conserved and located in the ATPase domain of 
MLH1, within an α-helix structure. The switch from Glu 
to Lys results in a change from acidic to basic residue, 
which may disrupt the α-helix. In addition, this variant 
has been observed as a somatic change in three carcino-
mas (COSMIC database) of the breast, endometrium and 
large intestine.

PMS2 has two mutations c.614A > C (p.Gln205Pro) 
and c.1A > G (p.Met1Val) classified as class 4 and class 5 
respectively. Both were found in two unrelated patients, 
S.19 and S.36. These two variants have also been detected 
in one patient by a previous study [46]. For variant 
c.614A > C functional studies have demonstrated signifi-
cantly higher repair efficiency than that of a pathogenic 
control, but 50% compromised when compared to wild 
type [47]. Biallelic defects in MMR genes are known as 
constitutive mismatch repair defect (CMMRD), and 
CMMRD patients often have more severe phenotypes 
than Lynch syndrome patients have. Previous stud-
ies have identified biallelic pathogenic PMS2 mutations 
driven CMMRD leading to cancers in younger patients 
[48–50]. Patient S.19 was diagnosed with CRC at early 
age of 21  years and a second CRC at age of 40  years, 
whereas patient S.36 was diagnosed with uterine cancer 
at 41, and she did not develop CRC. We are not able to 
distinguish whether the two PMS2 variants are biallelic 
or in cis (same allele) in these two patients. Gene SDHA 

has variant c.762_770 + 17del (p.Ala255_Gly257del) in 
patient S.25 (F.5), a deletion of three amino acids pre-
dicted to cause loss of a splice donor site (SpliceAI 
score:1). Loss of donor splice site is predicted to disrupt 
RNA splicing and culminate in either the absence or dis-
ruption of the protein product. As a tumor suppressor 
gene, SDHA is more likely to be associated with neuroen-
docrine related cancers, more commonly paraganglio-
mas, with germline mutations accounting for 7.6% of 
patients with this cancer type [51].

Family 7 harbor a pathogenic BRCA2 mutation 
c.2808_2811del causing hereditary breast and ovarian 
cancer. One of the two included family members had 
been diagnosed with ovarian cancer, while extended fam-
ily members had breast and ovarian cancer, in addition 
to CRC. There has been a discussion whether pathogenic 
BRCA1/2 variants are associated with CRC. However, 
a recent meta-analysis concluded that BRCA1 and/or 
BRCA2 mutation carriers are not at a higher risk of colo-
rectal cancer [52].

The remaining 31 genes are associated with a vari-
ety of different roles including tumor suppressor genes, 
oncogenes, and fusion genes in various types of cancers 
(Supplementary Table S1). The identification of variants 
in these genes that have not previously been associated 
with familial CRC suggests a larger spectrum of genetic 
variants associated with this disease that is not limited 
to DNA mismatch repair genes or other known cancer-
associated genes. Among these 31 candidate genes CFTR, 
PABPC1, and TYRO3 have variants over-represented in 
this patient cohort.

We identified two pathogenic variants in gene 
CFTR (NM_000492.4); c.2723C > A (p.Thr908Asn) 
and c.1392G > T (p.Lys464Asn). Variant c.2723C > A 

Table 2 Number of variants as outputs from different filtering stages

Filtering stages: Stage 1: Frequency (gnomAD) based filtering; Stage 2: Clinical significance (ClinVar) based filtering; Stage 3: Chosen in silico tools-based filtering, 3.0: 
Variants without any scores in chosen in silico tools, 3.1: Variants passing tool rank-scores cut-offs, 3.2.1: Variants passing splicing related filters, 3.2.2: Variants passing 
frameshift related filters
a Number of genes is higher than number of associated variants, due to multiple naming of some genes

Variant calling 125,686 variants (in 25,664 genes)

Stage 1 22,626 variants (in 14,754 genes)

Stage 2 Class Unknown Class 3 Class 3 + Class 4&5 Class1&2 Class 2 + 
20,541 variants
(14,043 genes)

752 variants
(849a genes)

41 variants
(37 genes)

68 variants
(91a genes)

897 variants
(1013a genes)

340 variants
(378a genes)

Stage 3 3.0 14,467 variants
(11,222 genes)

309 variants
(382a genes)

16 variant
(5 genes)

No Stage 3 filtering in these classes (4&5, 1&2, 2 +)

3.1 81 variants
(78 genes)

24 variants
(24 genes)

22 variants
(21 genes)

3.2 3.2.1 90 variants
(85 genes)

0 1 variant
(1 gene)

3.2.2 58 variants
(43 genes)

2 variants
(2 genes)

0
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Table 3 List of 32 samples and associated 45 variants

ID (Fid) gNomen, cNomen (pNomen), Existing variation ClinVar No. of samples

S.02 (F.8) NM_022552.5(DNMT3A):c.2210 T > C (p.Leu737Pro) NR 1

S.03 (F.7) NM_000059.4(BRCA2):c.2808_2811del (p.Ala938Profs*21), rs80359351 P 2 (F.7)

NM_006293.3(TYRO3):c.1660 + 1G > C (p.?), rs757748573 NR 3

NM_001009944.3(PKD1):c.6605C > T (p.Ala2202Val), rs764264106 VUS 1

NM_002894.3(RBBP8):c.298C > T (p.Arg100Trp), rs373804633 P 1

S.04 (F.7) NM_000059.4(BRCA2):c.2808_2811del (p.Ala938Profs*21), rs80359351 P 2 (F.7)

NM_003331.5(TYK2):c.1011 + 2 T > G (p.?), rs1463636749 NR 1

NM_002568.4(PABPC1):c.739‑1G > A (p.?), rs759516741 NR 7

S.08 NM_000492.4(CFTR):c.1392G > T (p.Lys464Asn), rs397508198 P 5

S.09 NM_007289.4(MME):c.467del (p.Pro156Leufs*14), rs749320057 P 1

NM_001128840.3(CACNA1D):c.1750G > A (p.Val584Ile), rs773365038 VUS 1

S.11 NM_001349338.3(FOXP1):c.179A > G (p.Gln60Arg), rs374060287 LP 1

S.13 (F.1) NM_006343.3(MERTK):c.1450G > A (p.Gly484Ser), rs527236084 VUS 1

NM_002568.4(PABPC1):c.739‑1G > A (p.?), rs759516741 NR 7

S.14 NM_005168.5(RND3):c.349‑2A > T (p.?), rs1222374113 NR 1

S.15 NM_000088.4(COL1A1):c.4066C > A (p.Arg1356Ser), rs1341595487 VUS 1

NM_002568.4(PABPC1):c.739‑1G > A (p.?), rs759516741 NR 7

NM_002568.4(PABPC1):c.388‑1G > A (p.?), rs771446357 NR 1

S.16 NM_004431.5(EPHA2):c.2162G > A (p.Arg721Gln), rs116506614 CI 1

NM_000492.4(CFTR):c.1392G > T (p.Lys464Asn), rs397508198 P 5

NM_002568.4(PABPC1):c.739‑1G > A (p.?), rs759516741 NR 7

S.17 NM_002911.4(UPF1):c.2474G > T (p.Ser825Ile) NR 1

NM_006941.4(SOX10):c.718A > C (p.Thr240Pro), rs1332625359 VUS 1

S.19 NM_006293.3(TYRO3):c.1660 + 1G > C (p.?), rs757748573 NR 3

NM_000535.7(PMS2):c.614A > C (p.Gln205Pro), rs587779342 CI 2

NM_000535.7(PMS2):c.1A > G (p.Met1Val), rs587779333 P/LP 2

NM_002568.4(PABPC1):c.739‑1G > A (p.?), rs759516741 NR 7

S.20 NM_002693.3(POLG):c.2209G > C (p.Gly737Arg), rs121918054 P/LP 1

NM_022552.5(DNMT3A):c.1122 + 2 T > G (p.?), COSV53057339 NR 1

S.21 NM_000059.4(BRCA2):c.7977‑1G > C (p.?), rs81002874 P 1

NM_052839.4(PANX2):c.1479dup (p.Gly494Argfs*13) NR 1

S.23 (F.5) NM_000400.4(ERCC2):c.1480‑1G > C (p.?), rs375284572 NR 1

NM_000249.4(MLH1):c.514G > A (p.Glu172Lys), COSV51617106 NR 2 (F.5)

S.24 NM_033084.5(FANCD2):c.1588C > T (p.Arg530*), rs962867926 NR 1

NM_004625.4(WNT7A):c.874C > T (p.Arg292Cys), rs104893835 P 1

NM_006424.3(SLC34A2):c.1267G > A (p.Gly423Arg), rs769110830 NR 1

S.25 (F.5) NM_000249.4(MLH1):c.514G > A (p.Glu172Lys), COSV51617106 NR 2 (F.5)

NM_004168.4(SDHA):c.762_770 + 17del (p.Ala255_Gly257del), rs1041809852 P 1

S.27 NM_000492.4(CFTR):c.2723C > A (p.Thr908Asn), rs369521395 P 1

NM_002568.4(PABPC1):c.739‑1G > A (p.?), rs759516741 NR 7

S.29 NM_002568.4(PABPC1):c.739‑1G > A (p.?), rs759516741 NR 7

S.30 NM_004963.4(GUCY2C):c.612‑1G > A (p.?), rs763904634 NR 1

NM_006293.3(TYRO3):c.308 + 1G > C (p.?), rs764446020 NR 1

NM_000179.3(MSH6):c.3724_3726del (p.Arg1242del), rs63749942 P/LP 1

NM_000492.4(CFTR):c.1392G > T (p.Lys464Asn), rs397508198 P 5

NM_001001548.3(CD36):c.1202_1205del (p.Val401Glufs*4), rs769354931 CI 1

S.31 NM_006092.4(NOD1):c.689 T > G (p.Phe230Cys), CM1612670 NR 1

S.32 NM_007371.4(BRD3):c.71dup (p.Glu25Glyfs*51), rs768970491 NR 1

S.33 NM_002568.4(PABPC1):c.367G > T (p.Gly123Cys), rs755674364 NR 1
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is occurring in one patient whereas c.1392G > T is 
occurring in five patients, all five have CRC. That the 
pathogenic variant c.1392G > T (p.Lys464Asn) is over-
represented in this cohort of cancer patients indicates 
that it could contribute to CRC development, but this 
needs further investigation. Previously, CFTR has pri-
marily been associated with cystic fibrosis (CF) (a reces-
sive disease), but has recently been categorized as a CRC 
risk gene [53]. This is seen as a result of CF patients sur-
viving long enough to develop CRC. In addition, recent 
evidence indicates that low expression levels of CFTR is 
associated with a significant risk towards CRC [54].

Variants in the gene PABPC1 (NM_002568.4) were 
found in nine patients, and the most frequently occurring 

variant (c.739-1G > A) was found in seven of these. The 
gene product of PABPC1 is PABP-1, which is a poly(A) 
binding protein involved in several aspects of mRNA 
metabolism, including splicing of pre-mRNA, initiation 
of translation of mRNA, and mRNA decay [55]. PABPC1 
has been shown to be an oncogene that is upregulated in 
gastric carcinoma, where high expression predicts poor 
survival [56]. However, for esophageal cancer it has been 
shown that reduced expression of PABPC1 correlates 
with tumor progression and poor prognosis after surgery 
[57], indicating a complex relationship between PABPC1 
expression levels and cancer. Recently PABPC1 has been 
identified as a putative CRC driver gene in some patients 
[58]. Several domains have been identified in the protein, 

Table 3 (continued)

ID (Fid) gNomen, cNomen (pNomen), Existing variation ClinVar No. of samples

S.34 (F.2) NM_001371290.1(ZBTB7C):c.402_403insC (p.Glu135Argfs*4) NR 1

NM_000492.4(CFTR):c.1392G > T (p.Lys464Asn), rs397508198 P 5

S.36 (F.2) NM_145728.3(SYNM):c.2523del (p.His842Thrfs*47), COSV60376961 NR 1

NM_000535.7(PMS2):c.614A > C (p.Gln205Pro), rs587779342 CI 2

NM_000535.7(PMS2):c.1A > G (p.Met1Val), rs587779333 P/LP 2

S.37 (F.4) NM_006293.3(TYRO3):c.1660 + 1G > C (p.?), rs757748573 NR 3

S.38 NM_024415.3(DDX4):c.673 + 2 T > C (p.?), rs201596382 NR 1

S.39 NM_000251.3(MSH2):c.2228C > G (p.Ser743*), rs63751155 P 1

S.43 NM_002335.4(LRP5):c.3562C > T (p.Arg1188Trp), rs141178995 P 1

S.44 (F.6) NM_000264.5(PTCH1):c.104G > A (p.Arg35Gln), rs587778627 VUS 1

S.47 (F.3) NM_000492.4(CFTR):c.1392G > T (p.Lys464Asn), rs397508198 P 5

S.48 (F.3) NM_017563.5(IL17RD):c.392A > C (p.Lys131Thr), rs184758350 CI 1

Abbreviations: ID Patient ID, Fid Family ID, LP Likely pathogenic, P Pathogenic, VUS Uncertain significance, LB Likely benign, NR Not reported, CI Conflicting 
interpretations (P/LP; VUS)

Table 4 List of known cancer genes and associated variants

Abbreviations: ID Patient ID, Fid Family ID, CRC  Colorectal cancer, BrC Breast cancer, GS Gorlin syndrome, PG Paraganglioma

Gene Linked to 
cancer

Variant ACMG-AMP ID (Fid)

BRCA2 (NM_000059.4) BrC c.2808_2811del (p.Ala938Profs*21), rs80359351, VCV000009322.91 Class 5 S.03 (F.7)

S.04 (F.7)

c.7977‑1G > C (p.?), rs81002874, VCV000038132.28 Class 5 S.21

MLH1 (NM_000249.4) CRC c.514G > A (p.Glu172Lys), COSV51617106 Class 3 S.23 (F.5)

S.25 (F.5)

MSH2 (NM_000251.3) CRC c.2228C > G (p.Ser743*), rs63751155, VCV000090933.13 Class 5 S.39

MSH6 (NM_000179.3) CRC c.3724_3726del (p.Arg1242del), rs63749942, VCV000089450.22 Class 4 S.30

PMS2 (NM_000535.7) CRC c.614A > C (p.Gln205Pro), rs587779342, VCV000091361.24 Class 4 S.19

S.36 (F.2)

c.1A > G (p.Met1Val), rs587779333, VCV000091323.36 Class 5 S.19

S.36 (F.2)

PTCH1 (NM_000264.5) GS c.104G > A (p.Arg35Gln), rs587778627, VCV000135094.9 Class 3 S.44 (F.6)

SDHA (NM_004168.4) PG c.762_770 + 17del (p.Ala255_Gly257del), rs1041809852, VCV000412346.10 Class 3 S.25 (F.5)
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including four RNA recognition motif (RRM) domains, 
and a PAB C-terminal (PABC) domain that can bind 
interacting proteins [55]. One of the variants revealed in 
this study (rs759516741) has been classified as a splice 
acceptor, and the variant is located at position -1 rela-
tive to the start of exon 6 (NM_002568.4:c.739-1G > A). 
This exon is coding for residues 247 to 292 of the pro-
tein sequence, which overlaps partly with the third RRM 
domain (191–268). The variant may therefore affect the 
RRM 3 domain as well as domains further downstream, 
RRM 4 (294–370) and PABC (542–619). However, it is 
difficult to estimate how this may affect the function of 
PABP-1 and any processes where it is involved.

For TYRO3 (NM_006293.3) two different variants 
in four patients were identified. The most frequent 
(c.1660 + 1G > C) was found in three patients. TYRO3 is 
a receptor tyrosine kinase of 890 residues, and signals are 
transduced into the cytoplasm when extracellular ligand 
binding induces dimerization and autophosphorylation 
of its intracellular domain [59]. TYRO3 acts as an onco-
genic protein [60]. Overexpression has been observed in 
several cancers and is associated with a poor prognosis. 
Somatic mutations have also been observed, but without 
validation of their effect [59]. Regulation of TYRO3 in 
CRC by specific non-coding RNA molecules has recently 
been documented [61, 62], and these studies also high-
light the clear relationship between TYRO3 overexpres-
sion and cancer. The most frequent variant in this dataset 
(rs757748573) has been classified as a splice donor vari-
ant. It is found at position + 1 relative to the end of exon 
13 (NM_006293.3:c.1660 + 1G > C). The start of exon 14 
corresponds to position 553 of the protein, which is in 
the intracellular domain (451–890). This means that the 
variant may affect signal transduction. However, whether 
that can give a similar metabolic effect as a general over-
expression of TYRO3 and activation of the protein is dif-
ficult to predict.

One among five detected CNVs, RB1 (NM_000321.2) 
ex6.del, will most probably cause frameshift and affect 
the function of the gene. However, RB1, a tumor suppres-
sor gene, often retains higher expression levels compared 
with adjacent normal tissue in CRC cells [63]. It is less 
likely that this CNV is associated to CRC and hence not 
significant. For the other four detected CNVs we could 
not establish any functional significance towards CRC.

Variant calling in whole exome regions identified 
125.686 SNPs/indels in 25.664 genes. These numbers 
are too high for a detailed analysis of all cases; therefore, 
some filtering was needed to limit the number of variants 
for further analysis. To identify the variants that were 
most likely to have an effect on gene function, we applied 
a set of strict filtering criteria. Details of these criteria can 

be found in the Methods section. One of the initial fil-
ters used was based on variant frequency, with a cut-off 
of less than 0.1% in the gnomAD database. This cut-off is 
typically used for high-penetrance variants, while a cut-
off of 1% is recommended for low-penetrance variants 
[64]. It is likely that this strict frequency threshold can 
result in the loss of some significant low-penetrance vari-
ants. However, this is not always the case. For example, 
previous studies have indicated that the CFTR gene con-
tains disease-associated recessive variants with frequen-
cies that are relatively low for such variants [53, 54].

In addition to frequency-based filters, we also applied 
stringent filters on prediction scores for variants using 
both individual tools as well as consensus predic-
tions from multiple tools based on different prediction 
approaches. These filters resulted in a much smaller set 
of 346 variants that passed our criteria. Although the 
use of very strict filtering criteria increases the chance of 
detecting variants which are more likely to have a nega-
tive effect on gene function, it will also increase the risk 
of missing significant variants, causing a bias in the study. 
For example, a known (and likely pathogenic) variant 
NM_000251.3(MSH2): (p.Ala689Asp) was c.2066C > A 
identified in sample S.20 (not included in Table 4). Even 
though it had very high pathogenicity score by all seven 
prediction tools, it was filtered out by class unknown 
filters ([T2-cutoff-0.99] || [T7-cutoff-0.8]) by a very small 
margin (scored 0.78 rank score by CADD-raw). However, 
even a small adjustment towards less stringent filtering 
allowing this variant to pass, would also have increased 
the number of unknown variants after filtering by a mini-
mum two-fold. The number of variants passing different 
combination filters based on rank-scores of 7 in silico 
tools is provided as Supplementary Table S3. Addition-
ally, the MSH2 c.2066C > A variant assigned as unknown 
(not reported) by VEP-based offline ClinVar annotation 
is a VUS according to the most recent online ClinVar 
records. Using this more recent ClinVar classification 
as VUS, i.e., a class 3 variant, it passes the class 3 filters 
([T6-cutoff-0.8] || [T1-cutoff-0.99]). Hence, it is not only 
strict filtering but also the discrepancy between offline 
and online annotation records which may lead to a loss 
of significant variants during filtering. Another variant, 
PTCH1 c.104G > A (p.Arg35Gln) a VUS passed the class 
3 filters. Mutations in PTCH1 can cause nevoid basal cell 
carcinoma syndrome (NBCCS) an autosomal dominant 
disorder commonly known as Gorlin syndrome [65]. 
This variant (c.104G > A) has very low rank-scores in all 
selected in silico tools except in M-CAP (rank-score of 
0.99639) which let it pass the filtering. A stricter filtering 
may have removed this variant from the final list. These 
examples demonstrate the challenges of setting up filters 
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for large datasets, e.g., from whole genome or exome 
sequencing. This may be a problem mainly in more 
explorative analysis where exome or genome wide data 
are analyzed and relatively stricter filtering is required 
in order to keep the number of variants at a manage-
able level. This will normally not be the case in diagnos-
tic settings, where fewer and mainly well-characterized 
genes are screened. Hence a relatively smaller number 
of variants are used as input for filtering, and less strict 
filtering criteria may be applied. Variants passing filter-
ing stage 3.0, i.e., variants without any prediction scores, 
were not included in final list. Class 3 & 3 + variants of 
this stage were briefly checked for any significance, but 
none were found. There is a large number of variants in 
class unknown passing filtering in this stage, which can 
be used in future studies.

Mean coverage of these 48 samples was 92X where 
84.3% of all variants in these samples had coverage depth 
higher than 30X. But one of these samples (S.36) had low 
coverage depth of 9X. However, detected variants in this 
sample were known to variant databases ClinVar [31] and 
dbSNP [66] with enlisted phenotypic effects matching 
the patient’s phenotype. This supports our findings in this 
patient sample. One of the variants in this sample, PMS2 
c.614A > C (p.Gln205Pro), a class 4 variant has coverage 
depth of 7X. This variant has also been identified in one 
additional sample in the cohort.

VAFs of the 45 variants found in known cancer genes 
ranged from a minimum of 0.08 up to 1.65. Only one of 
these variants had VAFs below 0.1. The variant PABPC1 
c.739-1G > A (rs759516741), occurred in 7 patients in our 
study cohort and has a VAF of 0.08 (depth_ref,alt:35,3) in 
one of the 7 patients. It has also been submitted to the 
dbSNP database multiple times.

Validation of variants with an alternative technique 
(i.e., Sanger sequencing) could not be performed because 
most of the sample material has been exhausted. How-
ever, given the high accuracy of present day NGS-based 
detection of SNV/indel variants, additional validations 
are often not necessary [67]. To ensure the reliability of 
identified variants we used Alamut visual plus [68] to 
manually check each variant in the respective BAM files 
for correct identification.

In this cohort of 48 patients, 32 patients have variants 
in genes with known associations to cancer. Only 7 of 
these 32 patients have pathogenic or likely pathogenic 
variants (classified according to ACMG-AMP guidelines) 
in known cancer genes. Of these 7 patients, four harbor 
confirmed causative variants in MMR genes, thereby 
establishing a diagnosis of LS (Table  4). For 25 patients 
we detected significant variants in candidate genes with 

a potential to be associated with familial CRC. However, 
to fully establish the significance of these candidate genes 
and variants it is necessary to integrate genetic and clini-
cal data with data from functional studies.

In the remaining 16 patients, we have not detected 
any significant variants passing our filtering criteria in 
known or candidate cancer-association genes. A possi-
ble explanation for missing variants in these 16 samples 
is the strict filtering criteria. Less strict filtering is one 
possible approach to identify significant variants in these 
samples. It is also possible to incorporate the combined 
effect of multiple variants as causative factor for disease 
susceptibility. The co-occurrence of multiple rare low-
to-moderate risk alleles are likely to be associated with 
a complex genetic predisposition [69], as the combined 
effect of common low-risk loci is currently estimated to 
be up to 15% of the familial risk for cancer [70]. Polygenic 
risk score based models are one of the latest methods 
utilizing this approach [71]. Additionally, with exome 
sequencing deep intronic mis-splicing variants may be 
missed, and such variants also contribute towards can-
cer [72]. We also have not included variants in regulatory 
regions, e.g., variants in uORF (up-stream open reading 
frames) in our analysis, mainly because of very sparse 
annotation for such variants. This is mainly due to the 
fact that these regions are not commonly sequenced in 
targeted sequencing, hence annotation data for relevant 
tools (e.g., UTRannotator [73]) is very sparse. In addition 
to these factors, there are many more that can also lead to 
a missed molecular diagnosis [74] for these 16 samples, 
e.g., somatic mosaicism, epigenetic inheritance, techno-
logical limitations, non-genetic risk factors and the fact 
that the clinical diagnosis may be incorrect due to insuf-
ficient information.

Conclusions
In this study we have used whole exome sequencing 
(WES) to identify germline variants with a pathogenic 
potential in patients with FCCTX. This provides an 
opportunity to identify important variants in the full 
set of genes, not limited to a predefined subset of genes 
from a gene panel. However, it also gives very large lists 
of variants where most are of uncertain significance. 
The use of consensus predictions for pathogenicity 
by combining multiple in silico tools based on differ-
ent approaches helps in narrowing down the list to the 
variants that are most likely to affect gene function. 
Although a strict approach means that important vari-
ants may be missed out from detection, such filtering is 
still an essential step in the analysis of WES data. Our 
analysis identified possibly pathogenic variants in genes 
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that have not previously been associated with famil-
ial CRC, such as PABPC1 and TYRO3. This warrants 
further investigation to establish any potential role of 
these genes with respect to CRC. The results indicate 
that a larger spectrum of genes and genetic variants 
may be associated with this disease, not limited to the 
usual suspects like the DNA MMR genes.
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