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Abstract
Objective  This article aims at exploring the role of hypoxia-related genes and immune cells in spinal tuberculosis 
and tuberculosis involving other organs.

Methods  In this study, label-free quantitative proteomics analysis was performed on the intervertebral discs (fibrous 
cartilaginous tissues) obtained from five spinal tuberculosis (TB) patients. Key proteins associated with hypoxia were 
identified using molecular complex detection (MCODE), weighted gene co-expression network analysis(WGCNA), 
least absolute shrinkage and selection operator (LASSO), and support vector machine recursive feature Elimination 
(SVM-REF) methods, and their diagnostic and predictive values were assessed. Immune cell correlation analysis was 
then performed using the Single Sample Gene Set Enrichment Analysis (ssGSEA) method. In addition, a pharmaco-
transcriptomic analysis was also performed to identify targets for treatment.

Results  The three genes, namely proteasome 20 S subunit beta 9 (PSMB9), signal transducer and activator of 
transcription 1 (STAT1), and transporter 1 (TAP1), were identified in the present study. The expression of these 
genes was found to be particularly high in patients with spinal TB and other extrapulmonary TB, as well as in TB and 
multidrug-resistant TB (p-value < 0.05). They revealed high diagnostic and predictive values and were closely related 
to the expression of multiple immune cells (p-value < 0.05). It was inferred that the expression of PSMB9, STAT 1, and 
TAP1 could be regulated by different medicinal chemicals.

Conclusion  PSMB9, STAT1, and TAP1, might play a key role in the pathogenesis of TB, including spinal TB, and the 
protein product of the genes can be served as diagnostic markers and potential therapeutic target for TB.
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Introduction
According to World Health Organization (WHO) data, 
Mycobacterium tuberculosis infects about 1/4 of the 
global population, of which approximately 10  million 
develop active TB and 1.6 million die from it [1–3]. TB 
is one of the leading causes of death worldwide and poses 
a serious threat to global public health security [4]. A 
lung infection caused by M. tuberculosis leads to pul-
monary TB. Extrapulmonary TB (EPTB) occurs when 
M. tuberculosis infects the spine, lymph nodes, kidney, 
liver, intestine, joints, brain, and other organs outside 
the lung [5]. The most common extrapulmonary form of 
TB is spinal TB, which accounts for half of all bone TB 
cases [6–8]. Spinal TB could seriously destroy bone and 
scoliosis and affect neurological function. It has a high 
refractory, disability, and recurrence rate, which seri-
ously affects the patient’s quality of life [9, 10]. Studies 
have revealed that patients infected with M. tuberculosis 
develop active TB when their immune system is imbal-
anced [11], and the incidence rate of EPTB is higher [12]. 
Granulomas containing large numbers of immune cells, 
including macrophages, monocytes, T cells, and B cells, 
form at sites of M. tuberculosis infection [13], suggesting 
that immune cell dysregulation might play a crucial role 
in TB pathogenesis.

Current research reveals that hypoxia plays a key role 
in pathological or physiological immune responses. In 
different immune processes and microenvironments, 
hypoxia affects inflammation and immunity differently. 
In pathological conditions, such as chronic inflamma-
tion, infection, and tissue ischemia, pathological hypoxia 
induces dysregulation of immune cells leading to dis-
ease progression [14]. In a study, Allison N. Bucşet al. 
found that Erdman, a strain of M. tuberculosis, exhibited 
greater virulence under hypoxic conditions. Hypoxia may 
substantially impact bacterial persistence, reactivation, 
and treatment efficiency [15. A regulatory factor called 
hypoxia-inducible factor (HIF) plays an essential role 
in regulating the transcription of immune effector cells. 
As a result of tissue hypoxia, the HIF pathway is acti-
vated [16, 17]. When the body is infected with bacteria, 
the bacterial oxygen consumption, formation of oxygen-
impermeable biofilms, and inflammation-related hypoxia 
activate HIF and affect the function of immune cells [18–
20]. In addition, a study shows that hypoxia can increase 
the drug resistance of Pseudomonas aeruginosa [21].

In this study, We utilized a label-free protein profil-
ing method to analyze the diseased intervertebral disks 
of patients with spinal TB. We utilized WGCNA and 
machine learning methods to find key hypoxia-related 
genes. Besides, various diagnostic and predictive models 
were constructed to evaluate the diagnostic and predic-
tive values of these key hypoxia-related genes in TB. We 
also used ssGSEA to identify immune cells associated 

with spinal tuberculosis and validated the results with 
data from routine blood tests. In addition, a pharma-
cotranscriptomic analysis was also performed.

Materials and methods
Tissue samples collection
We collected the intervertebral disks from ten patients 
who underwent spinal surgery at the First Affiliated Hos-
pital of Guangxi Medical University from 2018 to 2020. 
Five patients with spinal TB were included in the experi-
mental group, and five patients with thoracolumbar disk 
herniation were included in the control group. There was 
no evidence of autoimmune diseases, spinal tumors, or 
other infectious diseases in any of the patients. This study 
was conducted following the Helsinki Declaration, which 
passed the ethical review, and obtained informed consent 
from all patients.

Label-free quantitative proteomic analysis
The specific steps and processes of the Label-Free Quan-
titative Proteomic Analysis are as described in our previ-
ous research [22], as follows:

Sample lysis
The RIPA solution must be prepared right before use and 
stored in an ice bath to keep it cool. The mixture con-
sists of RIPA lysis buffer, Protease inhibitor cocktail, and 
1 mM PMSF (Phenylmethylsulfonyl fluoride). For each 
100 mg sample tissue, 1,000 µl of RIPA solution should be 
thoroughly mixed and homogenized, with sonication at 
4 °C for 5 min. Afterwards, centrifugation should be done 
at 14,000  g for 15  min at 4  °C. The supernatant should 
then be transferred to a new EP tube and stored in an ice 
bath.

BCA assay
The BCA (Bicin-choninic Acid) Protein Assay Kit 
instructions indicate that reagent A and reagent B should 
be mixed at a ratio of 50:1, and added in 160 µl/well to a 
96-well plate (with five wells for a calibration curve and 
one well for a blank). Then 10 µl of each sample (diluted 
5–10 times) or calibration standard protein (at five dif-
ferent concentrations) should be added to the respective 
wells. The plates should be shaken and incubated at 37 °C 
for 30  min, after which they should be read at 562  nm 
wavelength. Using the calibration curve, the protein con-
centration of each sample can be determined.

Acetone precipitation
For every sample, 100 µg of protein was taken and diluted 
to 1 mg/ml in RIPA buffer. Then, 4–6 times the volume 
of pre-chilled acetone was mixed into the EP tube and 
shaken in an ice bath for 30  min or left to incubate at 
-20  °C for the entire night. Following centrifugation at 
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a speed of 10,000 g and 4  °C, the supernatant was care-
fully discarded, taking care not to disturb the pellet. The 
sample was then washed twice using 200 µl of cold 80% 
acetone.

Resuspend protein for tryptic digest
Two hundred µl of 1% SDC and 100 mM ABC (ammo-
nium bicarbonate) were added to the EP tube, mixed with 
a vortex, and spun down. The EP tube was then subjected 
to sonication for 5 ~ 30 min in a water bath to dissolve the 
proteins. Five mmol of TCEP (tris 2-carboxyethyl phos-
phine) was then added to the EP tube and mixed at 55 °C 
for 10 min. After the sample was cooled down to room 
temperature (RT), ten mmol of IAA (iodoacetamide) was 
added in. The EP tube was then incubated in the dark for 
15 min. Trypsin (sequence grade) was resuspended in a 
resuspension buffer to 0.5 µg/µl and incubated at RT for 
5  min. A trypsin solution (protein:trypsin = 50:1) was 
then added to the EP tube. The mixture was well blended 
and spun down, then incubated at 37 °C with a thermo-
mixer for approximately 8 h or overnight.

Cleaning up of SDC
After 2% TFA (Trifluoroacetic Acid, HPLC) was added 
to the EP tube, SDC was precipitated. After being cen-
trifuged at the highest speed, the supernatant was trans-
ferred to a new EP tube. N * 100 µl of 2% TFA was added 
to the pellet to extract the co-precipitated peptides. This 
step was repeated twice. The three supernatants were 
then combined. After being centrifuged at the highest 
speed for 10–20 min, the supernatant was carefully trans-
ferred to a new EP tube, leaving the peptide samples.

Peptide desalting for Base-RP fractionation
Buffer A (0.1% FA, H2O, 2% ACN) and Buffer B (0.1% 
FA, 70% ACN) were prepared. The C18 (3  M) column 
was then equilibrated using 500 µl of ACN. This was fol-
lowed by washing it out with 500 µl of 0.1% FA twice. The 
peptide solution was then added to the column. After 
low speed centrifugation, liquid (A) was collected. This 
process was repeated once more, with peptide eluted 
using 400 µl of 70% ACN and liquid (A) collected. Desalt-
ing was performed once again with liquid (A). The two 
liquids were then combined and dried with a vacuum 
at either 4  °C or room temperature. Buffer A was then 
added to re-dissolve the peptide to 1 buffer g/buffer L for 
LC-MS/MS detection or storage at − 80 °C.

Separation via Nano-UPLC and LC-MS/MS
Separate 2 µg peptides from each sample and detect them 
using nano UPLC coupled with Q-Exactive mass spec-
trometry. Analyze using a reverse-phase column and a 
mobile phase composed of solvent A (0.1% FA, 2% ACN) 
and solvent B (80% ACN, 0.1% FA). Samples are directly 

loaded onto the chromatographic column by an autosam-
pler and then separated by the column. Analyze peptides 
for 240  min/sample by LC-MS/MS, using positive ion 
detection mode with a scanning range of 350–1600 m/z 
and DDA acquisition method. Use standard parameters 
for resolution, AGC, maximum IT, NCE, isolation win-
dow, and dynamic exclusion time.

MaxQuant analysis and LFQ
MaxQuant (1.6.1.0) processed raw MS data using the 
UNIPROT database. LFQ with trypsin, oxidation [M], 
and acetyl [protein N-term] modifications were used. 
Carbamidomethyl [C] was set as the fixed modification 
(maximum of three variable modifications). Peptides 
without variable modifications were used for quantifica-
tion, with an FDR of 0.01. Ten samples were standard-
ized, and missing values were imputed using Perseus 
software. Protein groups with fewer non-missing values 
than biological replicates were removed. LFQ quantifica-
tion results were log-transformed.

Identification of differentially expressed proteins
To identify differentially expressed proteins between spi-
nal TB and controls, we performed differential analysis 
of the normalized quantitative results using the “limma” 
package. | logfc | > 1 and p-value < 0.05 were set as the 
conditions for screening differentially expressed proteins 
[23, 24]. To illustrate these differential proteins more 
clearly, we created a volcano plot and cluster heat map 
using the “impulse” and “pheatmap” package. All opera-
tions were carried out on the R language programming 
software (version 4.1.1).

GO/KEGG and DO enrichment analyses
To further explore the biological functions of these differ-
ential proteins, we used the “clusterprofiler” package for 
gene ontology (GO) and Kyoto encyclopedia of genes and 
genomes (KEGG) enrichment analyses [25–27]. In addi-
tion, we also performed a disease ontology (DO) analysis 
on these differential proteins to reveal the relationship 
between spinal TB and other diseases [28]. To improve 
the accuracy of the results, we set the screening condi-
tions as p-value < 0.05 and q-value < 0.05. Finally, the top 
10 GO terms, KEGG pathway, and DO terms with the 
most significant enrichment were visualized.

Weighted gene co-expression network analysis
Weighted gene co-expression network analysis 
(WGCNA) is a system biology method used to describe 
the gene association pattern between different samples. It 
can be used to identify the gene set with highly synergis-
tic changes and identify the gene set with the strongest 
correlation with the disease according to the intercon-
nection of the gene set and the association between a 
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gene set and phenotype. It is widely used in the research 
of diseases and other traits and gene association studies 
[29]. In this study, we employed the “WGCNA” package 
to cluster all proteins, automatically select the best soft 
threshold, and finally obtain each protein module related 
to the disease.

Construction of a PPI network of hypoxia-related proteins
In this study, we investigated the role of hypoxia-related 
proteins in spinal TB by intersecting the two most 
disease-related modules in WGCNA with a set of all 
hypoxia-related genes in humans downloaded from the 
Molecular Signatures Database (version 7.5.1) and differ-
ential proteins [29]. Later, the results were used to con-
struct a protein-protein interaction network through the 
STRING database (version 11.5) and visualized through 
Cytoscape (version 3.9.0). Finally, a key module in the 
network was retrieved through the MCODE plugin in 
Cytoscape software [30].

Identification of key hypoxia-related proteins and 
prediction model construction
In order to investigate the transcriptome expression level 
of hypoxia-related proteins closely related to spinal TB 
in TB, the GSE144127 dataset, GSE83456 dataset, and 
GSE147690 dataset related to TB were downloaded from 
the GEO database (https://www.ncbi.nlm.nih.gov/geo/). 
The mRNA expression levels of these hypoxia-related 
proteins in spinal TB and other extrapulmonary TB from 
the GSE144127 dataset were extracted for differential 
analysis. Finally, 11 hypoxia-related genes with consis-
tent changes at the transcriptional and protein levels 
were obtained. We utilized two machine learning meth-
ods, LASSO and SVM-REF, to screen these 11 hypoxia-
related genes further. LASSO is a regression analysis 
method that performs variable selection and regulariza-
tion while fitting a generalized linear model and selects 
the best variable by the smallestλvalue [31]. This process 
is achieved through the “glmnet” package. SVM-REF is 
a powerful feature selection algorithm that continuously 
eliminates the redundancy between features and finds the 
optimal feature subset by repeatedly building the model 
[32]. This process is implemented by the “e1071”, “kern-
lab” and “caret” packages. Subsequently, we integrated 
the genes from the LASSO, SVM-REF, and MCODE 
modules to obtain three important genes. Finally, a diag-
nostic model was developed using five machine learning 
techniques, including logistic regression [33], Bayesian 
logistic regression [34], decision tree [35], random forest 
[36], and extreme gradient boosting [37], to evaluate the 
diagnostic value of these three genes in TB disease.

Immune infiltration analysis
We obtained 28 immune cells and their marker genes 
from a prior study, used ssGSEA to assess the protein 
expression matrix through the “GSVA” package, and 
scored each sample according to the expression of the 
marker genes to determine the immune cell infiltra-
tion level [31]. Finally, using the “limma” and “corrplot” 
packages, the difference and correlation analyses were 
performed.

Blood routine data validation
To further validate the differential analysis of immune 
cell infiltration findings, we collected lymphocytes, 
monocytes, and platelets during routine blood examina-
tions from 162 normal patients and 237 patients with spi-
nal TB for statistical analysis. This study adhered to the 
Declaration of Helsinki guidelines and received approval 
from the hospital ethics committee.

Pharmaco-transcriptomic analysis
To provide new solutions for treating multidrug-resistant 
TB, we conducted a pharmaco-transcriptomic analysis 
utilizing the DrugBank database (version 5.1.9). Drug-
Bank database integrates the chemical structure and 
pharmacological action of drugs, as well as the sequence, 
structure, and physiological pathway of drug action tar-
gets [38]. It is an extensive, public web database. Finally, 
Cytoscape was used to obtain and visualize the effect of 
drug molecule metabolism on the up- or down-regula-
tion of genes.

Immunohistochemistry
In this study, 5 cases of intervertebral disc tissue resected 
during surgery for spinal tuberculosis diagnosed at First 
Affiliated Clinical Hospital of Guangxi Medical Uni-
versity were taken as a test group, and 5 cases of inter-
vertebral disc tissue resected during surgery for lumbar 
intervertebral protrusion were taken as the control 
group. The differences in expression of PSMB9, STAT1, 
and TAP1 between experimental and control groups 
were compared by immunohistochemistry. After sepa-
rating the disc tissue, we immersed it in formalin solu-
tion and preserved it within 10  min. We then made 
immunohistochemical sections and done staining after 
laboratory operations such as wax sealing, sectioning, 
antigen repair, antibody hybridization, color develop-
ment, and tissue sealing. The specimens were observed 
under the inverted microscope, and the experimental and 
control group images were collected, respectively. We 
used Image J software to evaluate the positive rate of all 
immunohistochemical images and used an independent 
samples t-test to statistically analyze the positive rate of 
PSMB9, STAT1, and TAP1 in the experimental group 

https://www.ncbi.nlm.nih.gov/geo/
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and the control group, respectively, through IBM SPSS 
Statistics 26.0.

Results
Differentially expressed proteins
Following label-free quantitative proteomic analysis, we 
obtained 1965 quantifiable proteins. The quantitative 
repeatability analysis between samples revealed that the 
quantitative experiment had good sensitivity and reli-
ability (Fig.  1A). According to the screening conditions, 
we obtained 350 differentially expressed proteins, which 
could be clearly distinguished by volcano plot (Fig.  1B) 
and cluster heat map (Fig. 1C). Furthermore, the cluster 
heat map also indicated that these differential proteins 
could distinguish well between the spinal TB and control 
groups.

GO/KEGG and DO enrichment analyses
Through GO enrichment analysis, we found that these 
differentially expressed proteins are primarily involved in 
cytoplasmic translation, generation of precursor metabo-
lites and energy, electron transport chain, cellular respira-
tion, oxidation of organic compounds to produce energy, 
aerobic respiration, collagen fibril organization, and other 
processes (Fig. 2A). KEGG pathway analysis showed that 
these differentially expressed proteins were primarily 
related to a ribosome, coronavirus disease (COVID-19), 
chemical carcinogenesis-reactive oxygen species, phago-
some, oxidative phosphorylation, neutrophil extracellular 

trap formation, citrate cycle (TCA cycle) and other path-
ways (Fig. 2B). DO analysis found that these differentially 
expressed proteins were not only linked to pulmonary 
disease but also linked to osteoarthritis, bacterial infec-
tious disease, atherosclerosis, arteriosclerotic cardiovas-
cular disease, phagocyte bactericidal dysfunction, and 
other diseases. This provides novel insights into the etiol-
ogy and comorbidities of spinal TB (Fig. 2C).

WGCNA and identification of key modules
WGCNA could cluster genes with similar expression 
patterns, analyze the correlation between modules and 
specific traits or phenotypes, and identify the molecu-
lar markers that are strongly correlated with diseases. It 
is an advanced method frequently employed for bioin-
formatics analysis. Following analysis, we found that the 
two modules, “salmon” and “green,“ were highly corre-
lated with spinal TB (Fig. 3A-I), and the gene expression 
in most modules also showed a significant correlation 
(Fig. 3J-P).

PPI network of hypoxia-related proteins
We intersected the proteins in the two modules of 
“salmon” and “green” in WGCNA with 3147 hypoxia-
related genes and 350 differential proteins screened 
by our study. Finally, 36 hypoxia-related proteins were 
obtained in total (Fig. 4A). We constructed a protein-pro-
tein interaction network using the string database with 
22 points and 27 edges (Fig.  4B). Through the MCODE 

Fig. 1  Differentially expressed proteins. (A) The quantitative repeatability analysis between samples. (B) The cluster heat map of differentially expressed 
proteins. (C) The volcano plot of differentially expressed proteins
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plugin, we found that there is only one key module in the 
network (Fig. 4C).

The key hypoxia-related proteins and prediction models
To further explore the role of hypoxia-related genes in 
TB, we analyzed the GSE144127 datasets. We found that 
the transcriptional levels of 11 genes in these 36 hypoxia-
related genes were consistent with the protein expression 

Fig. 2  GO/KEGG and DO enrichment analyses. (A) The top 10 entries of GO enrichment analysis for differentially expressed proteins. (B) The top 10 en-
tries of the KEGG pathway enriched by the differentially expressed proteins. (C) The top 30 entries of DO analysis enriched by the differentially expressed 
proteins
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Fig. 3  Results of weighted gene co-expression network analysis. (A-P) The entire WGCNA process, from sample clustering to correlation analysis, looking 
for the genes in the modules most associated with the disease
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levels (10 up-regulation and 1 down-regulation). The dif-
ference in transcriptional level was significant, in extra-
pulmonary TB and the control group (Fig. 5A). These 11 
genes were further screened in extrapulmonary TB and 
control groups using LASSO and SVM-REF machine 
learning (Fig.  5B-D) and then intersected with the key 
modules extracted by the MCODE plugin. Finally, 
three genes, PSMB9, STAT1, and TAP1, were obtained 
(Fig. 5E). The GSE83456 dataset revealed significant dif-
ferences in these three genes between the TB and con-
trol groups (Fig.  5F-H). In addition, in the GSE144127 
dataset, the AUC of PSMB9, STAT1, and TAP1 in extra-
pulmonary TB and the control group were 0.781, 0.804, 
and 0.788 (Fig. 5I). In the GSE83456 dataset, the AUC of 
PSMB9, STAT1, and TAP1 genes in the TB and control 
groups were as high as 0.934, 0.961, and 0.966 (Fig. 5J). 
All these three genes have high diagnostic value for TB 
and may play a crucial role in the pathogenesis of TB.

Finally, the five machine learning methods of logistic 
regression, Bayesian logistic regression, decision tree, 
random forest, and extreme gradient boosting were used 
to build a prediction model based on these three genes. 
In the GSE144127 dataset, the accuracies in extrapulmo-
nary TB and the control group were 0.764, 0.764, 0.758, 
0.701 and 0.783, respectively (Fig. 5K). In the GSE83456 
dataset, the accuracies of pulmonary TB and the con-
trol group were 0.822, 0.844, 0.822, 0.8, and 0.8 (Fig. 5L). 
Comparatively, we can observe that the machine learning 
method extreme gradient boosting has the highest pre-
diction accuracy for extrapulmonary TB, which is 0.783, 
and Bayesian logistic regression has the highest predic-
tion accuracy for pulmonary TB, which is 0.844.

Immune infiltration analysis
By ssGSEA analysis, we obtained 25 types of infiltrating 
immune cells in all protein samples (Fig.  6A). Through 
the correlation heat map, we can observe that activated 
dendritic cells with gamma delta T cells possess a strong 
positive correlation, r = 0.73, and gamma delta T cells 
with immature B cells also possess a strong positive cor-
relation, r = 0.77. Monocytes and most lymphocytes also 
have a more significant correlation (Fig. 6B). Differential 
analysis showed that most immune cells were highly infil-
trated in the disease group, and the activated dendritic 
cells, gamma delta T cells, and immaturity B cells were 
significantly different between the spinal TB group and 
control group (p-value < 0.05) (Fig. 6C).

Correlation of hypoxia-related genes PSMB9, STAT1, and 
TAP1 with immune cells
Following correlation analysis (Fig.  7), we found that 
PSMB9, STAT1, and TAP1 significantly correlated with 
activated dendritic cells, gamma delta T cells, immature 
B cells, and neutrophils. In addition, STAT1 and TAP1 
were also significantly positively correlated with central 
memory CD4 T cells and macrophages while negatively 
correlated with Type 1 T helper cells. PSMB9 and STAT1 
had the strongest and most significant correlation with 
gamma delta T cells, while TAP1 had the strongest and 
most significant correlation with immature B cells. This 
suggests that these key genes and immune cells might 
play an important role in the pathogenesis of TB, includ-
ing spinal TB (Fig. 7A-U).

Blood routine data validation
Through a statistical analysis of the blood routine exami-
nation of 162 normal patients and 237 patients with 

Fig. 4  The PPI network of hypoxia-related proteins. (A) The results of taking the intersection of the differentially expressed proteins, the hypoxia-associat-
ed genes, and the genes from the two modules most associated with the disease. (B) A protein-protein interaction network of hypoxia-related proteins. 
(C) The key module in the network
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Fig. 5  The key hypoxia-related proteins and prediction models. (A) Differential expression of 11 genes in extrapulmonary TB and control group in the 
GSE144127 dataset. (B) SVM-REF algorithm for screening key genes. (C) LASSO coefficient spectrum of 11 differentially expressed genes selected by opti-
mal. (D) Selection of the best parameter. (E) PSMB9, STAT1, and TAP1 were screened by two algorithms and MCODE. (F-H) Differential expression of PSMB9, 
STAT1, and TAP1 between TB group and control group in the GSE83456 dataset. (I, J) Diagnostic ROC curves of PSMB9, STAT1, and TAP1 in extrapulmonary 
TB and TB. (K, L) Accuracy of PSMB9, STAT1, and TAP1 prediction models based on 5 machine learning algorithms for extrapulmonary TB and TB.
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spinal TB, we found that the monocytes and platelets in 
the spinal TB group were higher in comparison to the 
normal control group. In contrast, the lymphocytes in 
the normal control group were higher in comparison to 
the spinal TB group, and the difference was statistically 
significant (p-value < 0.05) (Fig. 8A-C). According to our 
immune cell infiltration results, based on ssGSEA analy-
sis, the monocytes and macrophages had higher infiltra-
tion levels in the disease group. This finding was proven 
to be accurate through routine blood data.

Pharmaco-transcriptomic analysis
In the GSE147690 dataset, we found that PSMB9, 
STAT1, and TAP1 were also highly expressed in the 

multidrug-resistant TB group, and the difference was 
very statistically significant (p-value < 0.01) (Fig.  9A-C). 
PSMB9, STAT1, and TAP1 may be potential therapeutic 
targets for multidrug-resistant TB. Therefore, we per-
formed pharmaco-transcriptomic analysis and found that 
11 drug compounds, such as estradiol, cyclosporine, and 
cisplatin, can upregulate the expression of PSMB9. At the 
same time, acetaminophen and calcitriol can down-regu-
late the expression of PSMB9. Cyclosporine, dactinomy-
cin, diethylstilbestrol, and other 11 drug compounds can 
upregulate the expression of STAT1. In contrast, afimoxi-
fene, azathioprine, diclofenac, and other 14 kinds of drug 
compounds can down-regulate the expression of STAT1, 
and acetaminophen, estradiol, and methotrexate have 

Fig. 6  Immune infiltration analysis. (A) Heat map of the landscape of 25 immune cell subpopulations infiltration. (B) Heat map of correlation between 
immune cells. (C) Violin plot of immune cell differences between disease group and control group

 



Page 11 of 17Wu et al. BMC Medical Genomics          (2023) 16:142 

Fig. 7  Correlation of PSMB9, STAT1, and TAP1 with immune cells. (A-C) Lollipop plot of correlation of PSMB99, STAT1, and TAP1 with immune cells. (D-U) 
Scatter plot of significant correlation between PSMB99, STAT1, and TAP1 with immune cells
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effects on the up- and downregulation of STAT1. Dacti-
nomycin, daunorubicin, camptothecin, and other 22 
drug compounds can upregulate the expression of TAP1, 
while arsenic trioxide can downregulate the expression 
of TAP1 (Fig. 9D-F). This will help us in providing new 
insights into the treatment of multidrug-resistant TB.

Immunohistochemical analysis results
Immunohistochemical staining of PSMB9, STAT1, and 
TAP1 was performed in 5 patients with spinal tuberculo-
sis and 5 patients with lumbar disc herniation. The results 
showed that the specific expressions of PSMB9, STAT1, 
and TAP1 in the experimental group were significantly 
higher than in the control group (Fig.  10A-F). We used 
Image J software to detect the positive rate of immuno-
histochemical images. The positive rate data of PSMB9, 
STAT1, and TAP1 were imported into SPSS 26.0, and the 
difference between the two groups was statistically ana-
lyzed by independent sample t-test. The positive rates 
of PSMB9, STAT1, and TAP1 genes in the experimental 
group were significantly higher than those in the con-
trol group (p-value < 0.001) (Fig.  10G-I). It showed that 
PSMB9, STAT1, and TAP1 were differentially expressed 
in the experimental and control groups. This result con-
firms the accuracy of our analysis.

Discussion
Granuloma is an important feature of TB, and it is also a 
place where M. tuberculosis obtains nutrients and evades 
immunity, and plays a key role in the spread of TB infec-
tion [39, 40]. Studies suggest that M. tuberculosis gran-
ulomas may be in a hypoxic environment in which M. 
tuberculosis enters a non-replicating “quiescent” state, 
thereby enhancing bacterial resistance to antibiotics [41]. 
Hua Yang et al. found that M. tuberculosis can secrete 
fatty acid-degrading protein A under hypoxic conditions, 
regulate fatty acid metabolism, and inhibit the secretion 
of pro-inflammatory cytokines, thereby inhibiting host 

immunity so that M. tuberculosis could survive in the 
granuloma and persist in the host infection [42]. There-
fore, the molecular mechanism of hypoxia-related genes 
in tuberculosis infection deserves further exploration.

By analyzing the differentially expressed proteins 
between the spinal TB group and the control group, we 
found that in the GO enrichment analysis, these differen-
tial proteins were mainly concentrated in the generation 
of precursor metabolites and energy, cellular respiration, 
oxidation of organic compounds to produce energy, aero-
bic respiration, respiratory electron transport chain, and 
reactive oxygen species metabolic process. KEGG path-
way analysis also showed that these differential proteins 
mainly concentrated in the ribosome, chemical carcino-
genesis-reactive oxygen species, oxidative phosphoryla-
tion, and citrate (TCA cycle). Ribosomal stability is very 
important for the persistence and latent infection of 
mycobacteria. Under hypoxic conditions, ribosome-asso-
ciated factor during hypoxia (Rafh) is the primary factor 
leading to the hypoxic survival of mycobacteria mediated 
by response regulator dose [43]. All these results indicate 
that hypoxia is closely related to the pathogenesis of TB.

In this study, we screened out three key hypoxia-
related genes, PSMB9, STAT1, and TAP1, which were 
highly expressed at the protein and transcriptional levels 
in spinal TB. Notably, previous studies have shown that 
PSMB9, STAT1, and TAP1 are all associated with TB. A 
meta-analysis integrating the transcriptional expression 
dataset of whole blood of multiple hosts and integrat-
ing and comparing different data through the network 
method found that there is a highly active core gene 
group in TB, which is composed of 380 genes, of which 
STAT1 and PSMB9 are the key hubs of the gene group 
[44]. PSMB9 is an immunoproteasome subunit involved 
in MHC class I antigen presentation, and the expression 
of this gene is induced by inflammatory factors, such as 
interferon-gamma [45, 46]. Tetsuaki Shoji et al. found 
that in cisplatin-resistant lung cancer cell line models, 

Fig. 8  Routine blood tests. (A-C) The results of routine blood tests for monocytes, platelets, and lymphocytes in 162 normal patients and 237 patients 
with spinal TB.
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Fig. 9  Pharmaco-transcriptomic analysis. (A-C) Differential expression of PSMB9, STAT1, and TAP1 between the multidrug-resistant TB group and the 
control group. (D-F) The pharmaco-transcriptomic analysis of PSMB9, STAT1, and TAP1.
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the transcription levels of PSMB8 and PSMB9 were 
highly expressed, and the protein expression levels were 
also significantly increased. After treatment with immu-
noproteasome inhibitors, it was found that immunopro-
teasomes may be an effective therapeutic target for some 
cisplatin-resistant lung cancers [47]. STAT1 is a signal 
transducer and activator of transcription 1, a member 
of the STAT protein family [48]. This protein can be 
activated by ligands, such as interferon-alpha and inter-
feron-gamma, and plays an important role in the immune 
response to viral, fungal, and mycobacterial pathogens 
[49, 50]. STAT1 transcriptional up-regulation in severe 
COVID-19 patients is a potential predictive biomarker 
and target for certain interferon pathway-targeted ther-
apies [51]. Tuo Liang et al. also found that STAT1 is 
related to the pathogenesis of spinal TB and other extra-
pulmonary TB, which may be involved in M1-macro-
phage polarization and then cause bone destruction. It is 
an important biomarker of tuberculosis and a potential 
therapeutic target [52]. The full name of TAP1 is trans-
porter 1, an ATP binding cassette subfamily B member. 
In the process of antigen processing and presentation, 
heterodimer transporters related to antigen processing 
(TAP) transport peptides produced by immunoprotea-
some to the endoplasmic reticulum to play immune func-
tion. TAP1 and PSMB9 are involved in the formation of 
heterodimer transporters and immune proteasomes, 
respectively. When TAP is dysfunctional, pathogenic 
microorganisms can escape immune surveillance [53, 
54]. Several studies have shown that abnormalities in the 
TAP1 gene are closely associated with pulmonary TB [55, 

56]. In this study, PSMB9, STAT1, and TAP1 have high 
diagnostic and predictive values for both extrapulmonary 
TB and TB. These results indicate that PSMB9, STAT1, 
and TAP1 may play a role in the pathogenesis of TB, such 
as spinal TB.

In addition, PSMB9, STAT1, and TAP1 were also sig-
nificantly upregulated in the multidrug-resistant TB 
group. Pharmaco-transcriptomic analysis showed that 
estradiol, cyclosporine, cisplatin, and other drug com-
pounds could upregulate the expression of PSMB9, while 
acetaminophen and calcitriol can down-regulate PSMB9 
expression. Cyclosporine, dactinomycin, diethylstil-
bestrol, and other drug compounds can upregulate the 
expression of STAT1, while 14 kinds of drug compounds, 
such as afimoxifene, azathioprine, and diclofenac can 
down-regulate the expression of STAT1, and acetamino-
phen, estradiol, and methotrexate have effects on the up 
and down regulation of STAT1. Dactinomycin, dauno-
rubicin, camptothecin, and other drug compounds can 
upregulate the expression of TAP1, while arsenic trioxide 
can down-regulate the expression of TAP1. Cyclosporine 
is an important immunosuppressant. Its main mecha-
nism is to inhibit the activity of the immune system by 
inhibiting the activity and growth of T cells [57]. Delayed 
activation of T lymphocytes and insufficient secretion of 
related cytokines can lead to pathogenic inflammation, 
increased bacterial load, spread of infection, and severe 
disease progression [58, 59]. Therefore, T lymphocytes 
play an important role in immune protection against 
Mb infection. Many studies have also shown that cyclo-
sporin is associated with an increased risk of activation 

Fig. 10  Immunohistochemical staining analysis. (A-F) Shows the specific expression of PSMB9, STAT1, and TAP1 in spinal TB group and the control group. 
(G-I) Shows the statistical analysis results of the positivity rate between spinal TB group and the control group. 
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of TB and latent tuberculosis infection [60]. In this study, 
we found that cyclosporin can upregulate the expression 
of PSMB9 and STAT1, which may be one of the mecha-
nisms of cyclosporin-induced increased risk of activation 
of tuberculosis disease. Calcitriol is the “active metabo-
lite” of vitamin D3. An in vitro study showed that it has 
antibacterial properties and inhibits the production of 
pro-inflammatory cytokines [61]. In addition, calcitriol 
also plays a role in host defense against mycobacterium 
tuberculosis infection by inducing autophagy of antimi-
crobial peptides (AMP) and/or colonized macrophages 
[62]. Klauer et al. first proved that calcitriol could inhibit 
pathogenic Mycobacterium tuberculosis proliferation in 
human macrophages [63]. This provides a new reference 
for the treatment of multidrug-resistant TB.

TB is closely related to the immune response in the 
body but the immune mechanism of anti-M. tuberculo-
sis antibodies are not completely clear [64]. By analyzing 
the ssGSEA data, we described the immune cell infiltra-
tion of spinal TB. We found that activated dendritic cells, 
gamma delta T cells, and immature B cells were different 
in the spinal TB group and the control group, and they 
were significantly positively correlated with PSMB9, 
STAT1, and TAP1. Dendritic cells have the function of 
activating and stabilizing T lymphocytes and B lympho-
cytes and can differentiate into different immune cells, 
participate in cellular and humoral responses, and also 
form complexes with multifunctional APCs, which play 
a key role in antipathogen activity; they are one of the 
most important immune regulatory cells [65, 66]. Den-
dritic cells play a role in granuloma formation by induc-
ing the migration of natural killer (NK) cells and T cells 
in vitro under the stimulation of M. tuberculosis [67]. 
Gamma delta T cells are unconventional T cells that 
play an important role in recognizing foreign pathogens 
and stress signals of infected cells [68–70]. In tuberculo-
sis, γδT cells can rapidly recognize M. tuberculosis anti-
gens, respond to the BCG vaccine, inhibit the growth of 
mycobacteria, and are potential vaccine targets against 
TB [71]. We also found a significant positive correla-
tion between STAT1 and macrophage, which once again 
demonstrated that STAT1 might induce M1-macrophage 
polarization to cause bone destruction in spinal TB. In 
addition, we analyzed the differences of monocytes/mac-
rophages in patients with spinal TB through the blood 
routine examination data of 162 normal patients and 
237 patients with spinal TB and found that the number 
of monocytes/macrophages in the disease group was sig-
nificantly higher than that of normal control groups. This 
observation verifies the obtained results.

Similar to other studies, our study also had limitations. 
First, the sample size was inadequate. Taking into account 
the analysis of large samples, we only used five pairs of 10 
samples for the protein park test, which was insufficient. 

Second, there are limitations in using routine blood data 
to check differential immunocyte analysis; tissue-based 
flow cytometry should be used for further verification. 
In addition, we do not have more laboratory analysis to 
verify our results, and this study should be further veri-
fied through cell and animal experiments.

Conclusion
PSMB9, STAT1, and TAP1, might play a key role in the 
pathogenesis of TB, including spinal TB, and the protein 
product of the genes can be served as diagnostic markers 
and potential therapeutic target for TB.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12920-023-01566-z.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Acknowledgements
We are grateful to Dr. Xinli Zhan (Spine and Osteopathy Ward, The First 
Affiliated Hospital of Guangxi Medical University) for his kindly assistance in all 
stages of the present study.

Authors’ contributions
SW, CL, and XZ designed the study. TL, HG, LC, JJ, and JZ analyzed the data. YY, 
ZY, CZ, JQ, and BF processed the digital visualization. SW wrote and revised the 
manuscript. CL and XZ revised the manuscript. All authors read and approved 
the final manuscript. All co-authors participated in the laboratory operation. 
All authors read and approved the final manuscript.

Funding
This work was supported by grants from the National Natural Science 
Foundation of China (81560359 and 81860393).

Data Availability
The original contributions presented in the study are included in the 
article/supplementary material. Further inquiries can be directed to the 
corresponding author.

Declarations

Ethics approval and consent to participate
The studies involving human participants were performed in accordance 
with the Declaration of Helsinki protocols and were approved by the Ethics 
Committee of the First Affiliated Hospital of Guangxi Medical University 
(Ethical Application Ref: NO.2022-KY-E-152). Informed consent was obtained 
from all participants and/or their legal guardians.

Consent for publication
Not Applicable.

Competing interests
The authors declare no competing interests.

Received: 23 August 2022 / Accepted: 31 May 2023

http://dx.doi.org/10.1186/s12920-023-01566-z
http://dx.doi.org/10.1186/s12920-023-01566-z


Page 16 of 17Wu et al. BMC Medical Genomics          (2023) 16:142 

References
1.	 Pai M, Behr MA, Dowdy D, Dheda K, Divangahi M, Boehme CC, et al. Tubercu-

losis Nat Rev Dis Primers. 2016;2:16076.
2.	 Suarez I, Funger SM, Kroger S, Rademacher J, Fatkenheuer G, Ryb-

niker J. The diagnosis and treatment of tuberculosis. Dtsch Arztebl Int. 
2019;116(43):729–35.

3.	 Furin J, Cox H, Pai M, Tuberculosis. Lancet. 2019;393(10181):1642–56.
4.	 Sharma A, Machado E, Lima KVB, Suffys PN, Conceicao EC. Tuberculosis drug 

resistance profiling based on machine learning: a literature review. Braz J 
Infect Dis. 2022;26(1):102332.

5.	 Sharma SK, Mohan A. Extrapulmonary tuberculosis. Indian J Med Res. 
2004;120(4):316–53.

6.	 Weng CY, Ho CM, Dou HY, Ho MW, Lin HS, Chang HL, et al. Molecular typing 
of Mycobacterium tuberculosis isolated from adult patients with tubercular 
spondylitis. J Microbiol Immunol Infect. 2013;46(1):19–23.

7.	 Gorse GJ, Pais MJ, Kusske JA, Cesario TC. Tuberculous spondylitis. A report of 
six cases and a review of the literature. Med (Baltim). 1983;62(3):178–93.

8.	 Nussbaum ES, Rockswold GL, Bergman TA, Erickson DL, Seljeskog EL. 
Spinal tuberculosis: a diagnostic and management challenge. J Neurosurg. 
1995;83(2):243–7.

9.	 Garcia-Rodriguez JF, Alvarez-Diaz H, Lorenzo-Garcia MV, Marino-Callejo A, 
Fernandez-Rial A, Sesma-Sanchez P. Extrapulmonary tuberculosis: epidemiol-
ogy and risk factors. Enferm Infecc Microbiol Clin. 2011;29(7):502–9.

10.	 Jain AK. Tuberculosis of the spine: a fresh look at an old disease. J Bone Joint 
Surg Br. 2010;92(7):905–13.

11.	 Cliff JM, Kaufmann SH, McShane H, van Helden P, O’Garra A. The human 
immune response to tuberculosis and its treatment: a view from the blood. 
Immunol Rev. 2015;264(1):88–102.

12.	 Tahseen S, Khanzada FM, Baloch AQ, Abbas Q, Bhutto MM, Alizai AW, et al. 
Extrapulmonary tuberculosis in Pakistan- A nation-wide multicenter retro-
spective study. PLoS ONE. 2020;15(4):e0232134.

13.	 Cronan MR, Matty MA, Rosenberg AF, Blanc L, Pyle CJ, Espenschied ST, et 
al. An explant technique for high-resolution imaging and manipulation of 
mycobacterial granulomas. Nat Methods. 2018;15(12):1098–107.

14.	 Taylor CT, Colgan SP. Regulation of immunity and inflammation by hypoxia in 
immunological niches. Nat Rev Immunol. 2017;17(12):774–85.

15.	 Bucsan AN, Veatch A, Singh DK, Akter S, Golden NA, Kirkpatrick M et al. 
Response to Hypoxia and the Ensuing Dysregulation of inflammation 
impacts Mycobacterium tuberculosis Pathogenicity. Am J Respir Crit Care 
Med. 2022.

16.	 Taylor CT, Doherty G, Fallon PG, Cummins EP. Hypoxia-dependent 
regulation of inflammatory pathways in immune cells. J Clin Invest. 
2016;126(10):3716–24.

17.	 Cummins EP, Keogh CE, Crean D, Taylor CT. The role of HIF in immunity and 
inflammation. Mol Aspects Med. 2016;47–48:24–34.

18.	 Devraj G, Beerlage C, Brune B, Kempf VA. Hypoxia and HIF-1 activation in 
bacterial infections. Microbes Infect. 2017;19(3):144–56.

19.	 Werth N, Beerlage C, Rosenberger C, Yazdi AS, Edelmann M, Amr A, et al. Acti-
vation of hypoxia inducible factor 1 is a general phenomenon in infections 
with human pathogens. PLoS ONE. 2010;5(7):e11576.

20.	 Schaffer K, Taylor CT. The impact of hypoxia on bacterial infection. FEBS J. 
2015;282(12):2260–6.

21.	 Schaible B, Taylor CT, Schaffer K. Hypoxia increases antibiotic resistance in 
Pseudomonas aeruginosa through altering the composition of multidrug 
efflux pumps. Antimicrob Agents Chemother. 2012;56(4):2114–8.

22.	 Yu C, Zhan X, Liang T, Chen L, Zhang Z, Jiang J, et al. Mechanism of hip 
arthropathy in Ankylosing Spondylitis: abnormal myeloperoxidase and 
phagosome. Front Immunol. 2021;12:572592.

23.	 Chen Q, Zhou H, Rong W. Circular RNA_0078767 upregulates Kruppel-like 
factor 9 expression by targeting microRNA-889, thereby inhibiting the pro-
gression of osteosarcoma. Bioengineered. 2022;13(6):14313–28.

24.	 Sun X, Xin S, Jin L, Zhang Y, Ye L. Neurexophilin 4 is a prognostic biomarker 
correlated with immune infiltration in bladder cancer. Bioengineered. 
2022;13(5):13986–99.

25.	 Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. 
Nucleic Acids Res. 2000;28(1):27–30.

26.	 Kanehisa M. Toward understanding the origin and evolution of cellular 
organisms. Protein Sci. 2019;28(11):1947–51.

27.	 Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG 
for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 
2023;51(D1):D587–D92.

28.	 Schriml LM, Arze C, Nadendla S, Chang YW, Mazaitis M, Felix V, et al. Disease 
Ontology: a backbone for disease semantic integration. Nucleic Acids Res. 
2012;40(Database issue):D940–6.

29.	 Jiang J, Zhan X, Qu H, Liang T, Li H, Chen L, et al. Upregulated of ANXA3, 
SORL1, and neutrophils may be key factors in the Progressionof Ankylosing 
Spondylitis. Front Immunol. 2022;13:861459.

30.	 Wang N, Zhang H, Li D, Jiang C, Zhao H, Teng Y. Identification of novel 
biomarkers in breast cancer via integrated bioinformatics analysis and experi-
mental validation. Bioengineered. 2021;12(2):12431–46.

31.	 Du S, Zeng F, Sun H, Liu Y, Han P, Zhang B, et al. Prognostic and therapeutic 
significance of a novel ferroptosis related signature in colorectal cancer 
patients. Bioengineered. 2022;13(2):2498–512.

32.	 Jia W, Liu X, Wang Y, Pedrycz W, Zhou J. Semisupervised learning via axiomatic 
fuzzy set theory and SVM. IEEE Trans Cybern. 2022;52(6):4661–74.

33.	 Stoltzfus JC. Logistic regression: a brief primer. Acad Emerg Med. 
2011;18(10):1099–104.

34.	 Rabaglino MB, Salilew-Wondim D, Zolini A, Tesfaye D, Hoelker M, Lonergan 
P, et al. Machine-learning methods applied to integrated transcriptomic 
data from bovine blastocysts and elongating conceptuses to identify genes 
predictive of embryonic competence. FASEB J. 2023;37(3):e22809.

35.	 Liu Y, Bhagwate A, Winham SJ, Stephens MT, Harker BW, McDonough SJ, et 
al. Quality control recommendations for RNASeq using FFPE samples based 
on pre-sequencing lab metrics and post-sequencing bioinformatics metrics. 
BMC Med Genomics. 2022;15(1):195.

36.	 Hu S, Shen C, Yao X, Zou Y, Wang T, Sun X, et al. m6A regulator-mediated 
methylation modification patterns and immune microenvironment infiltra-
tion characterization in osteoarthritis. BMC Med Genomics. 2022;15(1):273.

37.	 Liu M, Yang J, Wang J, Deng L. Predicting miRNA-disease associations using 
a hybrid feature representation in the heterogeneous network. BMC Med 
Genomics. 2020;13(Suppl 10):153.

38.	 Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 
5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 
2018;46(D1):D1074–D82.

39.	 Davis JM, Ramakrishnan L. The role of the granuloma in expansion and dis-
semination of early tuberculous infection. Cell. 2009;136(1):37–49.

40.	 Chao MC, Rubin EJ. Letting sleeping dos lie: does dormancy play a role in 
tuberculosis? Annu Rev Microbiol. 2010;64:293–311.

41.	 Galagan JE, Minch K, Peterson M, Lyubetskaya A, Azizi E, Sweet L, et al. 
The Mycobacterium tuberculosis regulatory network and hypoxia. Nature. 
2013;499(7457):178–83.

42.	 Yang H, Wang F, Guo X, Liu F, Liu Z, Wu X, et al. Interception of host fatty acid 
metabolism by mycobacteria under hypoxia to suppress anti-TB immunity. 
Cell Discov. 2021;7(1):90.

43.	 Trauner A, Lougheed KE, Bennett MH, Hingley-Wilson SM, Williams HD. The 
dormancy regulator DosR controls ribosome stability in hypoxic mycobacte-
ria. J Biol Chem. 2012;287(28):24053–63.

44.	 Sambarey A, Devaprasad A, Baloni P, Mishra M, Mohan A, Tyagi P, et al. Meta-
analysis of host response networks identifies a common core in tuberculosis. 
NPJ Syst Biol Appl. 2017;3:4.

45.	 Cui Z, Hwang SM, Gomes AV. Identification of the immunoproteasome 
as a novel regulator of skeletal muscle differentiation. Mol Cell Biol. 
2014;34(1):96–109.

46.	 Dahlmann B. Proteasomes Essays Biochem. 2005;41:31–48.
47.	 Shoji T, Kikuchi E, Kikuchi J, Takashima Y, Furuta M, Takahashi H, et al. Evaluat-

ing the immunoproteasome as a potential therapeutic target in cisplatin-
resistant small cell and non-small cell lung cancer. Cancer Chemother 
Pharmacol. 2020;85(5):843–53.

48.	 Ihle JN. The Stat family in cytokine signaling. Curr Opin Cell Biol. 
2001;13(2):211–7.

49.	 Casanova JL, Holland SM, Notarangelo LD. Inborn errors of human JAKs and 
STATs. Immunity. 2012;36(4):515–28.

50.	 Dupuis S, Dargemont C, Fieschi C, Thomassin N, Rosenzweig S, Harris J, et al. 
Impairment of mycobacterial but not viral immunity by a germline human 
STAT1 mutation. Science. 2001;293(5528):300–3.

51.	 Rincon-Arevalo H, Aue A, Ritter J, Szelinski F, Khadzhynov D, Zickler D, et al. 
Altered increase in STAT1 expression and phosphorylation in severe COVID-
19. Eur J Immunol. 2022;52(1):138–48.

52.	 Liang T, Chen J, Xu G, Zhang Z, Xue J, Zeng H, et al. STAT1 and CXCL10 involve 
in M1 macrophage polarization that may affect osteolysis and bone remodel-
ing in extrapulmonary tuberculosis. Gene. 2022;809:146040.

53.	 Garbi N, Tanaka S, van den Broek M, Momburg F, Hammerling GJ. Acces-
sory molecules in the assembly of major histocompatibility complex class 



Page 17 of 17Wu et al. BMC Medical Genomics          (2023) 16:142 

I/peptide complexes: how essential are they for CD8(+) T-cell immune 
responses? Immunol Rev. 2005;207:77–88.

54.	 Strehl B, Seifert U, Kruger E, Heink S, Kuckelkorn U, Kloetzel PM. Interferon-
gamma, the functional plasticity of the ubiquitin-proteasome system, and 
MHC class I antigen processing. Immunol Rev. 2005;207:19–30.

55.	 Harriff MJ, Burgdorf S, Kurts C, Wiertz EJ, Lewinsohn DA, Lewinsohn DM. 
TAP mediates import of Mycobacterium tuberculosis-derived peptides into 
phagosomes and facilitates loading onto HLA-I. PLoS ONE. 2013;8(11):e79571.

56.	 Zhang M, Wang X, Zhu Y, Chen S, Chen B, Liu Z. Associations of genetic vari-
ants at TAP1 and TAP2 with pulmonary tuberculosis risk among the chinese 
population. Epidemiol Infect. 2021;149:e79.

57.	 Motiee M, Zavaran Hosseini A, Soudi S. Evaluating the effects of Cyclosporine 
A immunosuppression on mycobacterial infection by inhaling of Cyclo-
sporine A administrated BALB/c mice with live Bacillus Calmette Guerin. 
Tuberculosis (Edinb). 2022;132:102163.

58.	 Simmons JD, Stein CM, Seshadri C, Campo M, Alter G, Fortune S, et al. Immu-
nological mechanisms of human resistance to persistent Mycobacterium 
tuberculosis infection. Nat Rev Immunol. 2018;18(9):575–89.

59.	 Prezzemolo T, Guggino G, La Manna MP, Di Liberto D, Dieli F, Caccamo N. 
Functional signatures of human CD4 and CD8 T cell responses to Mycobacte-
rium tuberculosis. Front Immunol. 2014;5:180.

60.	 Snast I, Bercovici E, Solomon-Cohen E, Avni T, Shitenberg D, Hodak E, et al. 
Active tuberculosis in patients with psoriasis receiving biologic therapy: a 
systematic review. Am J Clin Dermatol. 2019;20(4):483–91.

61.	 Ge MQ, Ho AW, Tang Y, Wong KH, Chua BY, Gasser S, et al. NK cells regulate 
CD8 + T cell priming and dendritic cell migration during influenza a infec-
tion by IFN-gamma and perforin-dependent mechanisms. J Immunol. 
2012;189(5):2099–109.

62.	 Hewison M. Antibacterial effects of vitamin D. Nat Rev Endocrinol. 
2011;7(6):337–45.

63.	 Crowle AJ, Ross EJ, May MH. Inhibition by 1,25(OH)2-vitamin D3 of the mul-
tiplication of virulent tubercle bacilli in cultured human macrophages. Infect 
Immun. 1987;55(12):2945–50.

64.	 Chan J, Flynn J. The immunological aspects of latency in tuberculosis. Clin 
Immunol. 2004;110(1):2–12.

65.	 Banchereau J, Steinman RM. Dendritic cells and the control of immunity. 
Nature. 1998;392(6673):245–52.

66.	 Ingulli E, Mondino A, Khoruts A, Jenkins MK. In vivo detection of dendritic cell 
antigen presentation to CD4(+) T cells. J Exp Med. 1997;185(12):2133–41.

67.	 Lande R, Giacomini E, Grassi T, Remoli ME, Iona E, Miettinen M, et al. IFN-alpha 
beta released by Mycobacterium tuberculosis-infected human dendritic cells 
induces the expression of CXCL10: selective recruitment of NK and activated 
T cells. J Immunol. 2003;170(3):1174–82.

68.	 Meermeier EW, Harriff MJ, Karamooz E, Lewinsohn DM. MAIT cells and micro-
bial immunity. Immunol Cell Biol. 2018;96(6):607–17.

69.	 De Libero G, Mori L. The T-Cell response to lipid antigens of Mycobacterium 
tuberculosis. Front Immunol. 2014;5:219.

70.	 Huang S. Targeting Innate-Like T cells in tuberculosis. Front Immunol. 
2016;7:594.

71.	 Shen L, Frencher J, Huang D, Wang W, Yang E, Chen CY, et al. Immunization 
of Vgamma2Vdelta2 T cells programs sustained effector memory responses 
that control tuberculosis in nonhuman primates. Proc Natl Acad Sci U S A. 
2019;116(13):6371–8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 


	﻿Proteomic analysis to identification of hypoxia related markers in spinal tuberculosis: a study based on weighted gene co-expression network analysis and machine learning
	﻿Abstract
	﻿Introduction
	﻿Materials and methods
	﻿Tissue samples collection
	﻿Label-free quantitative proteomic analysis
	﻿Sample lysis
	﻿BCA assay
	﻿Acetone precipitation
	﻿Resuspend protein for tryptic digest
	﻿Cleaning up of SDC
	﻿Peptide desalting for Base-RP fractionation
	﻿Separation via Nano-UPLC and LC-MS/MS
	﻿MaxQuant analysis and LFQ


	﻿Identification of differentially expressed proteins
	﻿GO/KEGG and DO enrichment analyses
	﻿Weighted gene co-expression network analysis
	﻿Construction of a PPI network of hypoxia-related proteins
	﻿Identification of key hypoxia-related proteins and prediction model construction
	﻿Immune infiltration analysis
	﻿Blood routine data validation
	﻿Pharmaco-transcriptomic analysis
	﻿Immunohistochemistry
	﻿Results
	﻿Differentially expressed proteins
	﻿WGCNA and identification of key modules
	﻿PPI network of hypoxia-related proteins
	﻿The key hypoxia-related proteins and prediction models
	﻿Correlation of hypoxia-related genes PSMB9, STAT1, and TAP1 with immune cells
	﻿Immunohistochemical analysis results

	﻿Discussion
	﻿Conclusion
	﻿References


