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Abstract
Background Staphylococcus aureus (S. aureus) infection-induced osteomyelitis (OM) is an inflammatory bone disease 
accompanied by persistent bone destruction, and the treatment is challenging because of its tendency to recur. 
Present study was aimed to explore the molecular subgroups of S. aureus infection-induced OM and to deepen the 
mechanistic understanding for molecularly targeted treatment of OM.

Methods Integration of 164 OM samples and 60 healthy samples from three datasets of the Gene Expression 
Omnibus (GEO) database. OM patients were classified into different molecular subgroups based on unsupervised 
algorithms and correlations of clinical characteristics between subgroups were analyzed. Next, The CIBERSORT 
algorithm was used to evaluate the proportion of immune cell infiltration in different OM subgroups. Weighted 
gene co-expression analysis (WGCNA) was used to identify different gene modules and explore the relationship with 
clinical characteristics, and further annotated OM subgroups and gene modules by the Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis.

Results Two subgroups with excellent consistency were identified in this study, subgroup and hospital length of 
stay were independent predictors of OM. Compared with subgroup I, OM patients in subgroup II had longer hospital 
length of stay and more severe disease. Meanwhile, the infiltration proportions of monocytes and macrophages 
M0 were higher in patients of OM subgroup II. Finally, combined with the characteristics of the KEGG enrichment 
modules, the expression of osteoclast differentiation-related genes such as CTSK was upregulated in OM subgroup II, 
which may be closely associated with more severe OM patients.

Conclusion The current study showed that OM subgroup II had longer hospital length of stay and more severe 
disease, the osteoclast differentiation pathway and the main target CTSK contribute to our deeper understanding 
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Introduction
Osteomyelitis (OM) is an inflammatory process of con-
tinuous bone destruction caused by bacteria, fungi, or 
other pyogenic organisms. Long treatment time and 
uncontrollable recurrence make it one of the refractory 
infections in the field of orthopedics [1, 2]. It can gener-
ally infect patients of any age, while diabetes, peripheral 
vascular disease, and immune deficiencies make patients 
more susceptible to OM [3]. As far as the route of infec-
tion is concerned, OM mostly comes from hematogenous 
or persistent exogenous infection, and can invade almost 
any part of the bone, including bone marrow, bone cortex 
and even peripheral soft tissue [4]. The number of OM 
patients in the United States had doubled in the past 41 
years, and the cost of repeated treatment per OM patient 
can be as high as $600,000 [5, 6]. In addition to the heavy 
economic burden, the frequent recurrence of OM has led 
to a mortality rate of nearly 8%, which is even higher in 
developing countries [7] and this is incredible data.

OM often involves complex infections of multiple 
strains, so the treatment is very tricky. Generally speak-
ing, the treatment of OM requires the implantation of 

antibiotic-loaded fillers after complete surgical removal 
of dead bone, as well as the continuous administra-
tion of sufficient concentrations of antibiotics [8]. How-
ever, more than 75% of OM infections are caused by the 
opportunistic Gram-positive Staphylococcus aureus (S. 
aureus) [9]. It readily forms a dense biofilm of DNA and 
proteins, which is considered to be a barrier to treatment 
of OM. Specifically, the formation of biofilm will pre-
vent antibiotics from entering the site of action, which 
results in bacteria becoming resistant to antimicrobials 
and decreasing the success rate of treatment [10, 11]. On 
the other hand, with increasing microbial drug resistance 
and imperfect properties of implanted materials, the tra-
ditional treatment still struggles to improve the cure rate. 
Although researchers devote substantial time and effort 
to studying the potential therapeutic mechanism of OM, 
the exact mechanism of occurrence and development 
remains unknown. Previous studies demonstrated that S. 
aureus can inhibit osteoblast differentiation and promote 
the production of RANKL, which stimulated osteoclast 
differentiation and growth [12, 13]. Other studies found 
that the development of S. aureus infection-induced 
OM involved MAPK and Wnt signaling pathways of, 
accompanied by an increase in osteoclast numbers [14]. 
However, due to the lack of in-depth research on the 
mechanism, the molecular pathophysiological process of 
OM remains a difficult problem.

With the continuous development of bioinformatics 
and high-throughput sequencing technology have led to 
an increasing number of studies using bioinformatics to 
examine the specific occurrence and development mech-
anisms of OM. Chen et al. [15] analyzed the differentially 
expressed genes (DGEs) in OM caused by S. aureus by 
using public database chips, and further revealed the 
biological function and pathway mechanism of differen-
tial genes. However, most of the previous studies focused 
on the DGEs between OM samples and normal samples, 
there were comparatively few in-depth studies on DGEs 
between OM samples. To better understand the patho-
genesis of OM caused by S. aureus, we divided OM 
patients into different molecular subgroups, established 
a gene co-expression module, and discussed the clinical 
relationship and deep molecular mechanism of each sub-
group (Fig. 1).

Materials and methods
Collection and annotation of GEO microarray data
Three gene expression datasets (GSE6269, GSE16129 and 
GSE30119) of OM and healthy samples were downloaded 

for the molecular mechanisms associated with S. aureus infection-induced OM, and the construction of molecular 
subgroups suggested the necessity for different subgroups of patients to receive individualized treatment.
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Fig. 1 Flow chart of the study
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and obtained for free through The Gene Expression 
Omnibus (GEO) website (https://www.ncbi.nlm.nih.gov/
geo/). GSE6269 and GSE16129 came from GPL96, while 
GSE30119 was based on GPL6947. The extracted infor-
mation included probe matrix files and gene matrix files. 
We translated the probe names into gene names using 
the programming language Perl (http://www.perl.org/) 
[16], then used the “limma” and “sva” packages [17] of R 
software to merge the three gene expression datasets to 
obtain the gene expression profiles of 164 OM patients 
and 60 healthy controls. Log2 was used to convert large 
numerical data. As the merged microarray data come 
from three different gene chips, we applied the “ComBat” 
method to correct the data in batches to eliminate the 
batch effects caused by multiple factors [18]. Finally, the 
principal component analysis was performed with the R/
ggplot2 package to determine whether batch effects was 
removed.

Construction of subgroups based on consensus clustering
The consensus clustering uses quantitative and visual 
methods to obtain a centralized estimate of data, building 
a more meaningful subgroup. The consensus clustering 
was performed using the “limma” and “ConsensusClus-
terPlus” packages of R/Bioconductor package [19], and 
specifically, the homogenized gene matrix was passed to 
the consensus clustering algorithm to obtain each cluster 
membership of OM sample. The maximum number of 
clusters was set at 10 and the final number of clusters was 
determined by the concensus index, cumulative distribu-
tion function (CDF) and cluster consistency score > 0.75.

Immune infiltration analysis
The CIBERSORT algorithm [20] was used to calculate 
the infiltration abundance of 22 immune cell types in 
each OM and healthy sample to explore the differences 
in immune microenvironment between OM and healthy 
patients. Based on the different clustering results, the 
abundance of immune cell infiltration between different 
OM subgroups was explored.

Comparison of clinical characteristics of different 
subgroups
From the previously downloaded probe matrix files of the 
three gene datasets, we extracted relevant clinical charac-
teristics, such as gender, age, race, pathogen species, OM 
type, severity, and hospital length of stay, and compared 
the two subgroups for clinical differences. Categorical 
variables such as gender, race, pathogen species, severity, 
and OM type, were compared using pairwise data com-
parison to create a histogram. Continuous variables such 
as age and hospital length of stay, were compared using 
the Wilcoxon’s rank-sum test to create a boxplot.

Identification of upregulated genes in subgroups
In each subgroup, the “limma” package in R software was 
used to identify genes that were upregulated in compari-
son with the control group. The threshold of mean differ-
ence is greater than 0.2, and the adjusted P value is less 
than 0.05.

Protein-protein interaction (PPI) and gene-TF-miRNA 
interaction networks
The PPI network of top 10 upregulated DEGs was con-
structed through the STRING online website (https://
cn.string-db.org/). To show the interactions of the 10 
DEGs as much as possible, the minimum required inter-
action score was set to: low confidence (0.15). The gene-
TF-miRNA interaction network was further constructed 
by miRTarBase v8.0 and ENCODE ChIP-seq data in Net-
workAnalyst online website (https://www.networkana-
lyst.ca/).

Gene Set Enrichment Analysis (GSEA) of subgroup
The comparison files of each subgroup and the control 
group were converted into gene list files and gene dataset 
files by Perl software, and then the files of the two sub-
groups were divided into two times for GSEA analysis 
by GSEA software (version 4.3.2) [21]. The run options 
were set to a minimum of 15 and a maximum of 5000 so 
that data criteria for larger gene sets can be met. In the 
results, P values and false discovery rate (FDR) less than 
0.05 were considered significantly enriched.

Construction of weighted gene co-expression Network 
Analysis (WGCNA)
A weighted co-expression network was constructed by 
the WGCNA package in R software to determine the bio-
logical function of specific genes in each subgroup that 
are representative [22]. Initially, based on the scale-free 
network model, a “pickSoftThreshold” function is used to 
find the most appropriate soft threshold that balances the 
scale independence and average connectivity of the co-
expression network. Next, the topological overlap matrix 
(TOM) and its corresponding (1-TOM) values were cal-
culated, and they were used as distance metrics to merge 
the highly correlated modules. Finally, the correlation 
coefficients and P values between each expression mod-
ule and clinical features were calculated using the Pear-
son correlation analysis and visualized by a heatmap.

Gene Ontology (GO) and pathway Enrichment Analysis
The GO database and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) Pathway Enrichment data-
base (https://www.kegg.jp/kegg/pathway.html) [23] are 
important databases for the analysis of gene biological 
processes and molecular functions, facilitating our search 
for clinical therapeutic directions at the mechanistic 
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level. Enrichment results for the four gene modules were 
derived using the “enrichplot” package and the “clus-
terProfiler” package and visualized as bubble plots [24]. 
It is worth noting that we set the P value filter condi-
tion to 0.05 and the corrected P value filter condition to 
1. To further understand the pathway mechanism, the 
most significantly upregulated genes from each module 
were screened to show the detailed gene enrichment of 
each subgroup in the four pathways and visualized by a 
heatmap.

Results
Characteristics of OM sample
All study samples were obtained from three separate 
GEO genetic datasets. The GSE6269 dataset included 19 
OM samples and 6 healthy controls, the GSE16129 data-
set included 46 OM samples and 10 healthy controls, and 
the GSE30119 dataset included 99 OM samples and 44 
healthy controls. All three databases provide information 
on patient gender, age, and ethnicity. The remaining clini-
cal information including pathogen species, OM type, 
severity, and total hospital stay was obtained from the 
GSE30119 dataset.

Evaluation of eliminating batch effects
The principal component analysis (PCA) cluster diagram 
was used to evaluate the batch effect between GSE6269, 
GSE16129 and GSE30119 datasets. Before eliminating 
the batch effect, the data of the three gene datasets are 
concentrated in two different parts (Fig.  2A). To elimi-
nate the batch effect, the “sva” package in R was used to 
normalize the above data. After standardized processing, 
data from the three gene datasets were evenly distributed 
in the same region, indicating that the batch effect was 
successfully eliminated (Fig. 2B).

Consensus clustering analysis of OM sample
To explore the relationship between subgroups and clini-
cal characteristics, consensus clustering analysis was 
performed on the corrected gene expression files and 
all 164 OM samples. After setting the maximum value 
of the clustering variable (K) to 10, a total of 9 clusters 
were obtained (Fig.  2C). When the clustering variable 
was 2, all OM samples were divided into two subgroups. 
The clustering score of each subgroup was greater than 
0.75 (Fig. 2D), indicating that the two subgroups had high 
agreement and similarity. Two subgroups were finally 
confirmed by combining the results of concensus index 
and CDF curves (Fig.  2E F). The top 10 upregulated 
DEGs were shown in Table 1.

Immune microenvironment analysis in OM patients
Based on the CIBERSORT algorithm we further 
observed the immune microenvironment in 164 OM 

patients (Fig.  3A and B), and the results suggested that 
18 of 22 immune cells were involved in the regulation 
of the immune microenvironment in OM, of which 12 
immune cells had significantly higher infiltration abun-
dance in OM patients and 6 immune cells had lower infil-
tration abundance in OM patients. Moreover, we further 
explored the differences in the immune microenviron-
ment of two different OM subgroups (Fig. 3 C and 3D), 
suggesting that monocytes and macrophages M0 were 
significantly highly expressed in subgroup II.

Comparison of clinical information among subgroups
The clinical characteristics were extracted from probe 
matrix file, and the differences of information between 
the above two subgroups were compared. For categori-
cal variables, the results of pathogen species compari-
son suggested that the number of pathogenic bacteria 
as MRSA was higher in subgroup II than in subgroup I 
(P < 0.05) (Fig.  4A). The results of OM severity grading 
indicated that the severity was higher in subgroup II than 
in subgroup I (P < 0.05) (Fig. 4B). However, there were no 
significant differences in the remaining categorical vari-
ables such as sex, race, and OM classification among the 
two subgroups (P > 0.05) (Fig. 4 C-4E).

For continuous variables, the results of comparing 
hospital length of stay indicated that the hospital length 
of stay was longer in subgroup II than in subgroup I 
(P < 0.001) (Fig.  4F). Besides, there was no significant 
difference in the age of the patients among the two sub-
groups (P > 0.05) (Fig. 4G).

PPI and gene-TF-miRNA networks
To explore the underlying molecular mechanisms of top 
10 upregulated DEGs in subgroup I and subgroup II, 
PPI networks were further constructed, with a total of 9 
nodes and 17 edges in subgroup I network and 4 nodes 
and 3 edges in subgroup II network (Fig.  5A and B). 
Additionally, the gene-TF-miRNA network in subgroup 
I included 138 nodes and 141 edges and the gene-TF-
miRNA network in subgroup II included 225 nodes and 
251 edges (Fig. 5 C and 5D).

GSEA analysis of different OM subgroups
Through pairwise comparison between each subgroup, 
2127, 1907 and 65 upregulated DEGs were found in sub-
group I and subgroup II, respectively (the threshold of 
mean difference > 0.2 and the adjusted P < 0.05) (Addi-
tional file 1). The highest point of the green curves rep-
resents the enrichment score (ES) of the subgroup gene 
set, the black lines represent the unique DGEs in the sub-
group, and the gray lines represent the signal-to-noise 
ratio between the subgroup and the healthy sample. The 
black and gray areas of the two subgroups were all con-
centrated on the left side of the image, and their FDR and 
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Fig. 2 Principal component analysis (PCA) and consensus clustering. A Before eliminating the batch effect. B Elimination of batch effect through PCA, 
data from the three datasets were evenly distributed in the same region. C Gene expression clustering map of two subgroups. The deeper blue rectangle 
in the subgroup, the stronger the genetic correlation. D Nine classification methods are obtained by consensus clustering analysis. The abscissa repre-
sents different groups, and the ordinate indicates consensus clustering score. E Cumulative distribution graph of nine classification methods. F Delta area 
of nine classification methods
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P values were all less than 0.001, suggesting that the spe-
cific DGEs among different subgroups and between the 
subgroups and healthy samples were consistent (Fig. 6A 
and B). Notably, the clinical severity and hospital length 
of stay were also greater in subgroup II than in subgroup 
I, which might suggest that patients in subgroup II were 
more severe.

WGCNA analysis and clinical characteristics
After determining the soft threshold of 6 (Fig.  7A and 
B), a total of 4145 up-regulated specific DGEs were 

incorporated into WGCNA analysis. Next, four modules 
are removed from the identification of gene clustering 
tree species (Fig.  7C). There are 3830 genes in the blue 
module, 134 genes in the green module, 110 genes in the 
red module and 69 genes in the grey module. We sum-
marized the top 50 genes with the most significant differ-
ences in each gene module (Additional file 2).

In addition, the association between each module and 
the clinical characteristics of OM patients was demon-
strated through graphical visualization. For categorical 
variables, genes in the blue, red, and gray modules were 
negatively associated with more severe OM patients, 
while the green module showed a synergistic relation-
ship. Genes in the blue and red modules were positively 
associated with MRSA-infected OM, while the green 
module was negatively associated. Male OM patients had 
more expressed genes in the blue module, and conversely, 
the red module showed a slight negative correlation. In 
addition, Cierny-Mader type I patients expressed more 
genes in the red module (Fig. 7D). For continuous vari-
ables, blue and red modules were negatively correlated 
with age and hospital length of stay of OM patients, while 
green was positively correlated with these two indictors. 
The gray module was only negatively correlated with the 
total length of stay of OM patients and had no correlation 
with age (Fig. 7E).

Table 1 Top 10 specifically upregulated genes in the two 
subgroups
Subgroup DEGs
Subgroup I PRKCQ/FAIM3/CD2/CD6/BCL11B/

SPOCK2/PRKCH/AES/PPP3CC/SKAP1

Subgroup II DYSF/CCPG1/GYG1/F5/KIF1B/PYGL/
CDA/PGD/BST1/GCA

Abbreviations: DEGs: differentially expressed genes.

Table 2 Analysis of variance for subgroups and age
Degree of 
freedom

Sum 
square

Mean 
square

F value P 
value

Subgroup 1 133.9 590.2 3.245 0.0434*

Subgroup: Age 1 1961 227.3 1.25 0.2914

Residuals 159 1641.5 181.9
Abbreviations: *: P < 0.05; **: P < 0.01; ***: P < 0.001.

Fig. 3 Immune microenvironment in OM patients and different OM subgroups. A and B Differences in the proportion of 22 immune cell infiltrations 
between OM patients and healthy controls. C and D Differences in the proportion of 22 immune cell infiltrations between OM subgroup I and subgroup 
II. P values were showed as: *: P < 0.05; **: P < 0.01; ***: P < 0.001
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In the analysis of the correlation between different 
modules and gene subgroups, the results showed that 
in the subgroups II, the gene expression of blue and red 
module was lower, while that of green module was higher. 
On the contrary, in the subgroup I, the gene expression 
of green module was lower and that of red module was 
relatively higher (Fig. 8A). Besides, the results of ANOVA 
showed that both subgroup and hospital length of stay 
were independent predictors of OM severity (Tables  2 
and 3, P < 0.05).

GO and KEGG functional enrichment analysis
The biological processes and pathways of the four gene 
modules were concentrated and analyzed using the GO 
and KEGG databases. In GO analysis, the blue module 
genes were closely related to biological processes such 
as T cell activation, leukocyte adhesion and immune 
response. The green module genes were closely related 
to biological processes such as cellular lipid biosynthetic 
process, cellular response to antibiotic and endoplasmic 
reticulum to Golgi vesicle-mediated transport. The grey 
module genes were closely related to biological processes 
such as ossification, mesenchyme morphogenesis and 
regulation of oxidative phosphorylation. The grey mod-
ule genes were closely related to biological processes 

such as interleukin-2 production, intrinsic apoptotic and 
chondrocyte development (Fig. 8B).

In the analysis of KEGG pathway, the blue module was 
significantly enriched in Th17 cell differentiation path-
way, green module was significantly enriched in interac-
tion in vesicular transport, grey module was significantly 
enriched in PI3K-Akt signaling pathway, and red module 
was significantly enriched in TGF-beta signaling path-
way (Fig.  8C). To further investigate the enrichment of 
KEGG pathway in different subgroups, a visual KEGG 
pathway heatmap was drawn. Genes related to ribosome 
biogenesis in eukaryotes in vesicular transport pathway 
were lowly expressed in subgroup II. Interestingly, genes 
related to osteogenic differentiation and endocytosis 
pathways were highly expressed in subgroup II and rel-
atively low in normal samples. While no significant dif-
ferences were found in the expression of genes related to 
oxytocin signaling pathway (Fig. 8D) (Additional file 3).

Discussion
S. aureus is the most common pathogen of OM [9]. 
Exploring the mechanism of occurrence and develop-
ment of OM mediated by S. aureus is utmost critical for 
timely and accurate diagnosis and targeted treatment of 
OM patients. A recent OM-related bioinformatics study 

Fig. 4 Analysis of differences in clinical characteristics between two subgroups. A Histogram of the proportion of MRSA between two subgroups. B His-
togram of the proportion of severe between two subgroups. C-E Histogram of differences of gender, race, and OM classification between two subgroups. 
F Box plot of differences of hospital stay between two subgroups. G Box plot of age differences between two subgroups. P values were showed as: ns: 
P > 0.05; *: P < 0.05; **: P < 0.01; ***: P < 0.001
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revealed that two key proteins, PH domain and leucine 
rich repeat protein phosphatase 2 (PHLPP2) and epider-
mal growth factor (EGF), are core nodes of OM-related 
differential genes that may affect the interaction of S. 
aureus with osteoblast interactions [15]. However, the 
specific molecular pathophysiological mechanisms of 
OM remain unclear, making it difficult to derive defini-
tive treatment options. OM has considerable clinical 
heterogeneity and the huge differences in patient groups 
have led to more than 10 typing methods [25]. Most clas-
sifications are related to the clinical symptoms and signs 
of patients, and there are no criteria for typing at the 
molecular level. Moreover, most of the previous studies 
focused on the differential gene analysis of OM cases and 
control cases [26–28], and there were no molecular sub-
types based on transcriptome data.

To the best of our knowledge, we conducted the first 
study to classify patients with S. aureus-induced OM into 
multiple molecular subgroups by bioinformatics analysis, 
aiming to explore the association of each subgroup with 
clinical features and molecular mechanisms. In this study, 
we integrated samples from three independent GEO gene 

datasets, including healthy samples and OM samples. 
First, after eliminating the batch effect due to platform 
and batch, 164 OM patients were classified into two dif-
ferent subgroups using an unsupervised algorithm. Next, 
genes from OM patients were modularized by combining 
GSEA and WGCNA to further explore the associations 
between the clinical characteristics and gene modules. 
Finally, the biological functions and pathways of genes 
in each subgroup were further explored through GO and 
KEGG enrichment analyses to provide support for clini-
cal severity grading of OM based on transcriptomics.

Previous studies have shown that molecular subgroup 
analysis of cancer can associate subgroups with internal 
and external indicators to predict the prognosis of sub-
groups and guide treatment. Zhang et al. [29] classified 
gastric adenocarcinoma into five subgroups based on 
single-cell sequencing data, three of which were highly 
compatible with pathologic features and one of which 
predicted poor prognosis in gastric adenocarcinoma. A 
recent large prospective study found that the subgroup 
of HER2-low-positive tumours survived longer than 
the HER2-zero subgroup after receiving neoadjuvant 

Fig. 5 Protein-protein interaction (PPI) and gene-TF-miRNA networks. A PPI network based on the top 10 upregulated genes in subgroup I, including 9 
nodes and 17 edges. B PPI network based on the top 10 upregulated genes in subgroup II, including 4 nodes and 3 edges. C Gene-TF-miRNA network 
based on the top 10 upregulated genes in subgroup I, including 138 nodes and 141 edges. D Gene-TF-miRNA network based on the top 10 upregulated 
gene in subgroup II, including 225 nodes and 251 edges. Nodes without interactions were removed
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combination chemotherapy and may serve as a novel 
molecular subgroup for the clinical treatment of breast 
cancer [30]. Additionally, molecular subgroups are also 
widely used in the study of many non-tumor diseases 
such as coronary artery disease [31], chronic obstruc-
tive pulmonary disease [32] and idiopathic pulmonary 
fibrosis [33] to provide assistance for precision diag-
nosis and treatment. We divided the patients with OM 
into two subgroups and found that although there was 
no significant difference in age and sex between the two 
subgroups, the number of MRSA, the number of severe 
cases in subgroup II were higher than those in subgroup 
I, and the length of hospital stay in subgroup II was much 
longer than that in subgroup I, suggesting that patients 
in subgroup II might be more serious than subgroup I. 
Therefore, we can distinguish the above two subgroups 
according to different clinical characteristics, and further 

explore the molecular mechanism of the subgroups to 
guide the diagnosis and treatment of S. aureus-induced 
OM.

It is well known that the pathophysiological develop-
ment of OM mediated by S. aureus involves the imbal-
ance of differentiation ability and quantity of osteoblasts 
and osteoclasts, which is a bone destruction process in 
which the differentiation ability of osteoclasts is stronger 
than that of osteoblasts [34]. Several studies have demon-
strated the fundamental role of osteoclast differentiation 
in S. aureus-induced OM. S. aureus enhances osteoclast 
differentiation in vitro, leading to bone loss. Furthermore, 
S. aureus induced differentiation of mouse RAW264.7 
cells to osteoclasts, a process associated with increased 
NF-κB p65 phosphorylation as well as the nuclear factor 
of activated T cells c1 (NFATc1) expression [35]. It has 
also been found that S. aureus protein A (SPA), the main 
component of S. aureus, stimulates osteoclast differentia-
tion through binding to IgG, accompanied by increased 
expression of the osteoclast differentiation-related gene 
NFATc1 [36]. In our study, the pathway of osteoclast dif-
ferentiation was significantly enriched in subgroup II. 
Most notably, the ability of genes related to osteoclast 
differentiation was enhanced in the pathological process 
of OM [37], which is consistent with the rich results of 
genes related to osteoclast differentiation in subgroup II 
and may indicate that the pathway of osteoclast differen-
tiation is associated with more severe molecular subtypes 
of OM.

KEGG enrichment results revealed that there were 62 
main targets involved in osteoclast differentiation, and 
the first three main targets included cathepsin K (CTSK), 
protein kinase B (AKT2) and B cell linker (BLNK). CTSK, 
an acidic cysteine endonuclease produced by osteoclasts, 
has been shown to play a role in bone resorption under 
inflammatory conditions [38]. One study found signifi-
cantly higher CTSK expression in infected OM samples 
compared to normal bone tissue, which may lead to 
lysis of bone tissue [39]. In recent years, CTSK has been 
widely used as a biomarker of osteoclast differentiation 
to study the mechanism of OM. The inflammatory factor 
interleukin-1 (IL-1) promoted RANKL-induced CTSK 
expression in osteoblasts and stimulated activation of 
the major transcription factor NFATc1 [40]. The inflam-
matory environment simulated by SPA can significantly 
promote the expression of CTSK in osteoclasts via the 
NF-κB pathway, and the expression of CTSK was inhib-
ited by the addition of inhibitors of this pathway, which 
provided a potential target for the treatment of OM. 
Therefore, inhibition of CTSK expression may inhibit or 
even reverse osteoclast differentiation and slow the pro-
gression of bone destruction [41]. We may consider the 
use of CTSK-related inhibitors to improve the condition 
of patients with subgroup II OM. However, the exact 

Fig. 6 GSEA analysis of the subgroups. A GSEA analysis of subgroup (I) B 
GSEA analysis of subgroup (II) The green curve represents the enrichment 
score (ES) of the subgroup gene set. The black vertical line is the posi-
tion of the unique DGEs in the gene ranking list. The gray area reflects the 
signal-to-noise ratio between each subgroup and the control group
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efficacy needs to be validated by in-depth basic research 
and clinical trials.

In addition, the pathway of SNARE interactions in 
vesicular transport was enriched in subgroup II. Related 
studies showed that SNARE produced inflammatory 

mediators by reducing nuclear translocation of NF-κB 
[42]. Osteoblasts delivered synthetic bone matrix pro-
teins to the bone surface, and SNAREs played a specific 
role in mediating nuclear fusion in this process [43]. 
Therefore, we hypothesize that the pathway of SNARE 

Fig. 7 WGCNA analysis of the two subgroups. A and B The association of various soft-thresholding powers with the scale-free fitting Index and the mean 
connectivity. C Clustering dendrogram of genes. D The relationships between genes of each module and categorical variables such as pathogen, type, 
severity, gender, and race. E The relationships between genes of each module and continuous variables such as age and hospital length of stay
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interactions in vesicular transport may play a role in 
osteoblast-associated protein transport under OM con-
ditions. However, whether genes related to this pathway, 
such as ACTR2, can be used as targets of action requires 
further in-depth mechanistic studies.

Our study has several certain limitations. Firstly, 
despite good consistency was found for the two OM sub-
groups, validation is still needed in combination with 
more transcriptomic and large samples of clinical data. 
Secondly, although we incorporated transcriptomic 
data from three datasets, future integration of data from 
emerging omics such as metabolomics is needed to pro-
vide guidance on diagnostics and personalized new drug 
development for OM molecular subgroups.

Conclusion
This study identified a novel molecular subgroup of OM 
caused by S. aureus based on transcriptomic data, and 
further analyzed the clinical features, immune microen-
vironment and biological functions of the DGEs among 
the subgroups. The upregulated genes related to the 
osteogenic differentiation pathway suggested that OM 
subgroup II is more severe. CTSK, the main target of 
this pathway, may be a potential therapeutic target for 
patients with OM subgroup II.
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