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Abstract 

Background Smoking is a well-recognized risk factor for esophageal carcinoma, but the underlying molecular 
mechanism remains unclear. Previous studies have demonstrated the predictive value of non-coding RNA (ncRNA) for 
the prognosis of esophageal carcinoma; however, the expression of smoking-related ncRNAs has not been system-
atically characterized. Herein, we comprehensively assessed the hazard of heavy smoking and its impact on ncRNA 
expression patterns in patients with esophageal carcinoma.

Methods Transcriptome and clinical features of patients with esophageal carcinoma were acquired from The Cancer 
Genome Atlas (TCGA) database. Cox regression analysis was employed to calculate the hazard ratio (HR) of smoking 
behavior. Differential expression analysis was conducted with the “edgeR” package. The smoking-related RNA regula-
tory network was based on lncRNA‒miRNA and miRNA‒mRNA pairs and visualized by Cytoscape 3.7.1. We applied 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses for 
functional annotation. Univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses 
were used for model construction. We applied Kaplan‒Meier analysis with a log-rank test for survival analysis, with 
group comparison by the Wilcoxon signed ranked test.

Results Heavy smoking contributed to the poor overall survival of esophageal carcinoma, with an HR of 3.167 (95% 
CI: 1.077–9.312). A total of 195 lncRNAs and 73 miRNAs were differentially expressed between patients with or without 
smoking behavior. We constructed smoking-related RNA regulatory networks, and functional annotation enriched a 
series of cancer-related pathways. We generated a smoking-related prognostic risk score and found that patients with 
a high score had a poor prognosis. Fourteen out of 23 immune cell types differentially infiltrated into a distinct risk 
group, while no correlation was observed between the risk score and immune cells.

Conclusion Altogether, we profiled smoking-related ncRNA expression patterns and constructed an RNA regulatory 
network, providing a landscape of smoking-related molecular mechanisms of esophageal carcinoma. The smoking-
related risk score, which was related to prognosis, revealed that tobacco smoking could suppress tumor immunity via 
the ncRNA mechanism.
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Introduction
Esophageal carcinoma, with approximately 604,000 
new cases and 544,000 deaths in 2020, remains the sev-
enth most common cancer and the sixth leading cause 
of cancer-related death worldwide [1]. Epidemiological 
studies have demonstrated that the geographic variation 
in esophageal carcinoma incidence substantially differs 
between esophageal squamous cell carcinoma (ESCC) 
and esophageal adenocarcinoma (EAC) [2]. Over the 
past decades, the incidence of ESCC has been broadly 
declining in some high-risk regions in Asia, whereas the 
incidence of EAC has significantly risen in developed 
countries. Although ESCC and EAC share overwhelm-
ingly distinct etiologies, tobacco smoking is a well-estab-
lished common factor [3]. Observational data suggested 
that active smoking contributes to an over fivefold 
increased risk of ESCC [4, 5] and a nearly threefold risk of 
EAC. Although polycyclic hydrocarbons, nitrosamines, 
and acetaldehyde are common harmful substances, the 
underlying molecular mechanism induced by smok-
ing remains unclear. Over the past decades, significant 
efforts have been dedicated to screening strategies, diag-
nostic approaches, and therapeutic regimens in esopha-
geal carcinoma, but the prognosis remains unsatisfactory. 
Importantly, although immunotherapy has gained much 
attention in the past few years, only some patients effec-
tively respond, which deserves further exploration.

Genetic and epigenetic alterations are major hall-
marks of cancers [6, 7]. Epigenetics refers to heritable 
alterations in gene expression without mediating DNA 
sequence changes, including DNA or RNA methylation, 
histone modification, and non-coding RNA (ncRNA). 
Among them, ncRNAs are transcribed from the genome 
and exert functions at the RNA level in mammals. Stud-
ies have shown that dysregulated ncRNAs are frequently 
found in cancers, especially microRNAs (miRNAs), long 
non-coding RNAs (lncRNAs), and circular RNAs (circR-
NAs) [8]. lncRNAs that are longer than 200 nucleotides 
are essential regulators of many biological processes, 
including gene expression, a decoy for transcription fac-
tors, and competing endogenous RNAs (ceRNAs) [9, 10]. 
A class of endogenous, small non-coding RNA molecules 
constituting 18–25 nucleotides is known as microR-
NAs (miRNAs). They can bind target messenger RNAs 
(mRNAs) in their 3′-untranslated regions (3′-UTRs), 
degrading them or inhibiting their translation, thus hav-
ing a negative effect on the posttranscriptional regulation 
of gene expression. Studies have shown that lncRNAs can 
function as competitive endogenous RNAs (ceRNAs) for 
sponging miRNAs to destabilize mRNAs. This mecha-
nism inhibits mRNA translation and impacts the body’s 
physiological processes, which ultimately regulate gene 
expression [11, 12]. Mi et al. [10] demonstrated that high 

levels of the lncRNA AFAP1-AS1 could act as a molec-
ular sponge of miR-26a and target ATF2, thus affecting 
the invasion and metastasis of esophageal carcinoma. Liu 
et  al. [13] illustrated that SLC2A1-AS1 sponging miR-
378a-3p resulted in Glut1 overexpression in esophageal 
carcinoma cells, promoting poor prognosis in esopha-
geal carcinoma patients. However, previous studies have 
mainly focused on a single gene with limited predictive 
power; it is more meaningful to discover a cluster of 
genes and construct a multi-index and multimolecular 
model.

Notably, the deposition of ncRNAs is dynamic, allow-
ing rapid responses to environmental events [14]. For 
instance, transcriptome analysis of KSHV-infected pri-
mary endothelial cells and B cell lines identified that 
human circRNAs had different responses to infection 
[15]. It has been well-accepted that genetics and lifestyles 
contribute to the entire cancer process, ranging from 
cancer etiology, prevention, early detection, diagnosis, 
and treatment to prognosis. A study by Gang et al. [16] 
identified that H19, a lncRNA involved in invasion and 
proliferation, was overexpressed and linked to patho-
logical tumor size in smoking ESCC patients compared 
with non-smoking patients. Cigarette-induced miR-
25-3p excessive maturation could promote pancreatic 
cancer progression [17]. However, the interplay between 
lifestyles and epigenetics in cancers has not been well 
studied. Previous studies have not systematically char-
acterized the expression of smoking-related ncRNAs in 
esophageal carcinoma. In this study, we comprehensively 
explored the impacts of heavy smoking on the progno-
sis of esophageal carcinoma, the underlying alteration 
of ncRNA, and its correlation with the immune micro-
environment based on the TCGA database. We profiled 
smoking-related ncRNAs, constructed an RNA regula-
tory network, explored the underlying molecular mecha-
nism, and constructed a smoking-related risk score that 
revealed that tobacco smoking could suppress tumor 
immunity via the ncRNA mechanism.

Materials and methods
Datasets and differential expression analysis
The available RNA expression datasets and correspond-
ing clinical characteristics of patients with esophageal 
carcinoma were obtained from TCGA. Specifically, the 
raw count expression profiles were retrieved from the 
TCGA database (https:// portal. gdc. cancer. gov/), includ-
ing 11 normal tissues and 160 tumorous tissues for 
lncRNA and mRNA, as well as 13 normal and 185 tumor-
ous tissues for miRNA. Clinical data were acquired using 
“TCGAbiolinks”, composed of demographic characteris-
tics (age, gender, BMI, smoking, and alcohol history), sur-
vival information (vital status, days to the last follow-up, 

https://portal.gdc.cancer.gov/
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and days to death), and clinical stage. Non-smoking 
was referred to as a lifelong non-smoker and a current 
reformed smoker for greater than 15 years. Heavy smok-
ers (hereafter named smokers) were defined as those who 
smoked at least 20 pack-years among current smokers or 
current reformed smokers who smoked for less than or 
equal to 15 years.

The “edgeR” package was utilized for differential 
ncRNA expression analyses, with a filter of log |Fold 
change|> 1 and FDR < 0.05. These level-3 datasets are 
open-access and publicly available; thus, no approval was 
needed.

Construction of the smoking‑related regulatory network
For the smoking-related ceRNA regulatory network, we 
introduced the lncRNA‒miRNA and miRNA‒mRNA 
intersections. Specifically, the miRcode database (http:// 
www. mirco de. org/ index. php) was applied to predict the 
target miRNA for lncRNA. Then, the overlapping miRNAs 
between the predicted miRNAs and the expressed miRNAs 
in esophageal carcinoma were candidates for lncRNA‒
miRNA pairs. Next, the miRNA‒mRNA pairs (the above-
mentioned candidate miRNA and smoking-related 
miRNA) were predicted by miRTarBase (miRTarBase: the 
experimentally validated microRNA-target interactions 
database (cuhk.edu.cn)), miRDB (http:// mirdb. org/), and 
Targetscan (http:// www. targe tscan. org/ vert_ 72/). Pairs 
that were simultaneously predicted by all three methods 
were selected. Then, the overlapping ones between these 
predicted messenger RNAs (mRNAs) and the differen-
tially expressed mRNAs in esophageal carcinoma were 
candidates for miRNA‒mRNA pairs. Finally, the smoking-
related lncRNA‒miRNA‒mRNA axis was visualized by 
Cytoscape 3.7.1 software (https:// cytos cape. org/).

Functional and pathway enrichment analyses
To illustrate the functional annotations in smoking-
related ncRNAs, we performed gene ontology (GO) 
analysis and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analyses [18] using the 
“clusterProfiler” package with a cutoff of P-value < 0.05. 
Visualization of GO and KEGG results was realized by 
the “ggplot2” package.

Identification and validation of the smoking‑related 
prognostic signature
To investigate the smoking-related prognostic impli-
cation in esophageal carcinoma, we constructed a 
smoking-related molecular signature. In brief, uni-
variate Cox regression analysis was first used to screen 
candidate mRNAs with a threshold of P-value < 0.1. 
Then, the least absolute shrinkage and selection opera-
tor (LASSO) Cox regression analysis was applied for 

signature selection and shrinkage using the “glmnet” 
package, with the parameter “maxit = 10,000”. The 
expression of smoking-related mRNAs was a candi-
date independent variable, and the overall survival time 
and status of patients with esophageal carcinoma were 
defined as the response variables. A smoking-related 
risk score was derived from the prediction model. All 
patients were categorized into high- or low-risk sub-
groups based on the median value of the score. Fur-
thermore, the receiver operating characteristic (ROC) 
curve was utilized to evaluate the efficiency of the 
smoking-related prognostic risk score. The ROC curve 
was plotted, and the area under the curve (AUC) was 
calculated by the “survivalROC” package.

Single sample gene set enrichment analysis (ssGSEA) 
and immune cell infiltration analysis
We employed single sample gene set enrichment analy-
sis (ssGSEA) to explore the effects of smoking on the 
immune microenvironment. Namely, we compared 
the infiltration degree of 23 immune cell types between 
smoking-associated low-risk and high-risk groups. The 
relative abundance of each immune cell type was cal-
culated by an enrichment score, which was normalized 
into a range from 0 to 1. Then, the biosimilarity of the 
infiltrating immune cells was evaluated by a “Gaussian” 
fitting model. The correlation analysis explored the asso-
ciation between smoking-related risk scores and immune 
cell types.

Statistical analysis
Categorical variables are reported as frequencies and 
percentages. The Wilcoxon signed ranked test was 
adopted for comparison between normal and esophageal 
carcinoma groups. The hazard ratio (HR) and 95% con-
fidence interval (CI), which were calculated by the Cox 
regression model, were used to estimate the strength 
of the association. We applied LASSO Cox regression 
analysis to screen mRNAs and extracted significant 
ones and their coefficients. The expression of smoking-
related mRNAs was defined as an independent variable, 
and the overall survival time and status of patients with 
esophageal carcinoma were defined as the response vari-
ables to establish a smoking-related molecular prediction 
model. The survival analysis was performed by Kaplan‒
Meier survival analysis with a log-rank test. ROC curves 
and AUCs were utilized to evaluate the efficiency of the 
smoking-related prognostic risk score. All statistical 
analyses were generated using R software, version 3.7.1 
(https:// www.r- proje ct. org/), using the “edge”, “cluster-
Profiler”, “ggplot2”, “glmnet”, “survivalROC”, “survival”, 
and “forestplot” packages. A P-value less than 0.05 was 
considered statistically significant.

http://www.mircode.org/index.php
http://www.mircode.org/index.php
http://mirdb.org/
http://www.targetscan.org/vert_72/
https://cytoscape.org/
https://www.r-project.org/
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Results
Effect of heavy smoking on the prognosis of esophageal 
carcinoma
Most patients with esophageal carcinoma documented 
complete information on smoking (86.16%, 137/159) and 
alcohol consumption (98.11%, 156/159). After removing 
individuals who had missing survival time, clinicopatho-
logical information, tobacco smoking, and alcohol con-
sumption data, we included 85 patients in the survival 
analysis. In the univariate Cox regression model, heavy 
smoking was significantly associated with the poor prog-
nosis of patients with esophageal carcinoma, with an HR 

of 3.005 (95% CI: 1.777–7.675). No significant associa-
tion was observed for alcohol consumption (HR: 0.883, 
95% CI: 0.316–2.469) (Fig.  1A). In the multivariate Cox 
regression model, smoking was an independent risk fac-
tor for overall survival, with an HR of 3.167 (95% CI: 
1.077–9.312) (Fig. 1B).

Identification of smoking‑related ncRNAs in esophageal 
cancer
To determine the expression patterns of ncRNAs 
modified by smoking in esophageal carcinoma, we 
profiled the differentially expressed ncRNAs between 

Fig. 1 The association between tobacco smoking and overall survival in patients with esophageal carcinoma. A Univariate Cox regression analysis. 
B Multivariate Cox regression analysis
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non-smokers and smokers. Of these, 13,162 RNAs 
were successfully mapped into lncRNAs, and 2068 
RNAs were mapped into miRNAs. A total of 195 dif-
ferentially expressed lncRNAs (DElncRNAs), includ-
ing 108 upregulated and 87 downregulated lncRNAs, 
and 73 differentially expressed miRNAs (DEmiR-
NAs), including 10 upregulated and 63 downregulated 
miRNAs, were identified in smokers (Fig.  2A and B). 
Among them, AC092484.1 and AC021713.1 were iden-
tified as the most upregulated and downregulated 
lncRNAs, respectively. Meanwhile, hsa-miR-216b-5p 
and hsa-miR-372-3p were defined as the most upregu-
lated and downregulated lncRNAs, respectively.

Construction of smoking‑related regulatory network 
and functional annotation
Considering the critical function of miRNAs in inhib-
iting target mRNAs and the mechanism of well-rec-
ognized ceRNAs, we constructed a smoking-related 
regulatory network in esophageal carcinoma. We first 
identified 3139 differentially expressed mRNAs in 
esophageal carcinoma, including 1399 upregulated and 
1740 downregulated mRNAs (Supplemental Fig.  1). 
For the smoking-related ceRNA regulatory network, 
we predicted lncRNA‒miRNA and miRNA‒mRNA 
intersections. As a result, we identified 83 lncRNA‒
miRNA pairs and 195 miRNA‒mRNA pairs, composed 
of 11 lncRNAs, 28 miRNAs, and 138 mRNAs (Fig. 2C). 
Additionally, we determined 186 smoking-related 
miRNA‒mRNA pairs based on smoking-related miR-
NAs, including 41 miRNAs and 125 mRNAs (Fig. 2C).

To better understand the underlying functions 
of smoking, we conducted GO and KEGG pathway 
enrichment analyses. For the target mRNAs of smok-
ing-related lncRNAs, a total of 45 GO terms and 35 
KEGG pathways were enriched. In particular, several 
cancer-related pathways were observed, such as pro-
teoglycans in cancer, the TGF-β signaling pathway, 
the p53 signaling pathway, and the PI3K-Akt signaling 
pathway (Fig. 3A). For the target mRNAs of smoking-
related miRNAs, a total of 36 GO terms and 25 KEGG 
pathways were enriched, including the p53 signaling 
pathway, purine metabolism, TGF-β signaling pathway, 
and MAPK signaling pathway (Fig. 3B).

Generation of smoking‑related prognostic signature 
and survival analysis
In terms of the significance of smoking and related ncR-
NAs in esophageal carcinoma, we further constructed 
a smoking-related prognostic signature based on 
LASSO Cox regression analysis. In total, we obtained 

208 target mRNAs of smoking-related ncRNAs. Nine-
teen candidates were first screened by univariate Cox 
regression analysis, followed by 16 smoking-related 
prognostic signatures recognized by Lasso Cox regres-
sion, and then a smoking-related risk score was gen-
erated (Fig.  4A). The risk score was calculated by 
considering EGFR2, RIMS3, CADM2, HMGB3, E2F1, 
PLAU, FYCO1, TGFBR2, KLHL15, SNCG, ATAD2, 
KIAA1549L, HHIP, CYBRD1, CELF2, and FBLN2. The 
ROC curve revealed that such a risk score could well 
distinguish patients into two subgroups, with an AUC 
of 0.842 (Fig. 4B).

Subsequently, we stratified patients into high- and low-
risk subgroups based on the median value of the risk 
score. Patients with a low-risk score had a better overall 
survival (Fig. 4C). As indicated in Fig. 4D, patients with 
a high-risk score exhibited a higher risk of death. The 
proportion of survivors in the low-risk group was higher 
than that in the high-risk group, and survivors exhib-
ited a lower risk score than that of deaths (Fig. 4E). The 
univariate and multivariate Cox regression analyses sug-
gested that smoking-related risk factors were linked to a 
poor prognosis, with a crude HR of 3.489 (95% CI: 1.736–
7.012) and an adjusted HR of 4.070 (95% CI: 1.933–8.571) 
(Fig. 5A and B).

We also illustrated the expression patterns of each sig-
nature among distinct clinical characteristics (Fig.  6A). 
Comparison of these signatures between normal and 
tumor samples indicated that HMGB3, E2F1, PLAU, 
ATAD2, and KIAA1549L were highly expressed in 
tumor tissues, while RIMS3, CADM2, FYCO1, TGFBR2, 
KLHL15, SNCG, HHIP, CYBRD1, and CELF2 were 
downregulated (Fig. 6B).

Association between smoking and immune cell infiltration
To assess the impact of smoking on immune status in 
patients with esophageal carcinoma, we used ssGSEA to 
calculate the immune infiltration for each patient. Inter-
estingly, we found that several immune cells were differ-
entially enriched in smoking-related subgroups. Among 
them, 14 out of 23 immune cell types were downregu-
lated in the high-risk group, including activated B cells, 
CD8 + T cells, dendritic cells, eosinophils, immature B 
cells, MDSCs, monocytes, natural killer cells, regulatory 
T cells, T follicular helper cells, type 1 helper cells, type 
17 helper cells and type 2 helper cells (Fig. 7A). We then 
evaluated the correlation between the smoking-related 
risk score and each type of immune cell, and no signifi-
cant association was observed (Fig. 7B). Additionally, the 
expression of PD-L1 in the low- and high-risk groups was 
comparable (Fig. 7C).
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Fig. 2 Identification of smoking-related ncRNAs in patients with esophageal carcinoma. A Heatmap and volcano plot showing the smoking-related 
differentially expressed lncRNAs in patients with esophageal carcinoma. B Heatmap and volcano plot showing the smoking-related differentially 
expressed miRNAs in patients with esophageal carcinoma. C The smoking-related ceRNA and miRNA regulatory network in esophageal carcinoma
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Discussion
Tobacco smoking is a well-known risk factor for the 
occurrence and progression of many human cancers, 
including lung, bladder, head and  neck, pancreatic and 
esophageal cancer [19–21]. To date, over 70 types of 
tobacco carcinogens have been described, including poly-
cyclic aromatic hydrocarbons, nitrosamines, aromatic 
amines, aldehydes, various hydrocarbons, and other 
organics [22]. Recently, the altered RNA modifications 
induced by recurrent chemical stimulation have received 
much attention, especially for ncRNA in cancers. In 
this study, we comprehensively explored the impacts of 
tobacco smoking on prognosis, the underlying alteration 

of ncRNA, and its correlation with the immune microen-
vironment in esophageal carcinoma based on the TCGA 
database.

Historically, Doll and Hill’s research exerted a crucial 
role in the initial understanding of tobacco-related risks 
and laid the foundation for future research in the 1950s 
[23]. Although substantial efforts have been devoted to 
this limitation, tobacco smoking remains a significant 
problem, with an estimated 1.1 billion smokers across 
the 195 countries and territories that are assessed by the 
global burden of diseases, injuries, and risk factors [24]. 
Hence, it is necessary to evaluate the effect of tobacco 
smoking on human diseases, including cancers. A 

Fig. 3 Functional prediction of smoking-related ncRNAs in patients with esophageal carcinoma. A GO and KEGG analyses of smoking-related 
lncRNAs in esophageal carcinoma. B GO and KEGG analyses of smoking-related miRNAs in esophageal carcinoma
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Fig. 4 Construction of a smoking-related prognostic model in patients with esophageal carcinoma. A The LASSO Cox regression analysis was 
constructed from 19 candidates derived from univariate Cox regression, and the tuning parameter (λ) was calculated based on the partial likelihood 
deviance with tenfold cross-validation. Then, an optimal log λ value is indicated by the dotted line in the plot. B The ROC curve for validation of 
the efficiency of the smoking-related risk score. C Kaplan‒Meier analysis with log-rank test for survival analysis in smoking-related subgroups. 
The median was defined as the cutoff value. D The risk plot of survival time and risk score. E The proportion of survival status in smoking-related 
subgroups
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multivariable Mendelian randomization analysis demon-
strated strong evidence for an independent causal effect 
of smoking on oral/oropharyngeal cancer [25]. Yang et al. 
found that smoking at diagnosis increased mortality risk 
compared with reformed smokers in the head and neck, 
lung squamous cell carcinoma, and pancreatic adeno-
carcinoma [26]. In this study, we found that heavy smok-
ing was an independent risk factor for overall survival in 
esophageal carcinoma, with an HR of 3.167. Therefore, 
it is essential to further elucidate the smoking-related 
molecular mechanism.

The ncRNA modification is dynamic and thereby 
allows rapid responses to environmental events. Wang 
et  al. revealed that PM2.5 induced a series of altered 
miRNAs in human endothelial cells [27]. Moreover, 27 
lncRNAs and 32 miRNAs were differentially expressed 

between patients with or without H. pylori infection 
[28]. To explore whether tobacco smoking can modify 
the expression patterns of ncRNAs in esophageal carci-
noma, we profiled smoking-related ncRNAs. A total of 
195 differentially expressed lncRNAs and 73 differen-
tially expressed miRNAs were identified. Of these, hsa-
miR-372-3p has been previously found to inhibit the 
proliferation and metastasis of osteosarcoma cells [29]. 
Recently, ceRNA has promoted our understanding of 
cancers. We then constructed a smoking-related RNA 
regulatory network to exhibit the potential molecular 
regulation. Moreover, functional annotation revealed 
that several cancer-related pathways were enriched. 
Additionally, we generated a smoking-related risk score 
and found that patients with low scores had a better 
prognosis than those with high scores. These findings 

Fig. 5 The association between smoking-related ncRNAs and overall survival in patients with esophageal carcinoma. A Univariate Cox regression 
analysis. B Multivariate Cox regression analysis
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Fig. 6 The expression patterns of smoking-related signatures in distinct subgroups. A A heatmap visualizing the expression of the 16 
smoking-related signatures in distinct subgroups. B Comparison of the 16 smoking-related signatures between normal controls and esophageal 
carcinoma patients
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indicated that smoking could participate in the occur-
rence or progression of esophageal carcinoma by modi-
fying ncRNA patterns.

Previous studies have demonstrated that tobacco 
smoking profoundly impacts immunity [30]. For 
instance, nicotine, one of the primary constituents of 
tobacco smoking, was reported to modulate molecules 
of the innate immune response in epithelial cells and 

macrophages during infection with M. tuberculosis [31]. 
Matthew C Madison et al. found that electronic cigarettes 
could disrupt lung lipid homeostasis and innate immu-
nity independent of nicotine [32]. Furthermore, m6A-
related lncRNAs could affect the prognosis and tumor 
immune microenvironment in patients with lung ade-
nocarcinoma. To investigate whether tobacco smoking 
could affect tumor immunity via ncRNAs, we assessed 

Fig. 7 The immune landscape of immune cell types in smoking-stratified groups. A Comparison of the fractions of immune cells between 
smoking-related high- and low-risk subgroups. B Correlation between the fractions of immune cells and smoking-related risk score. C Comparison 
of PD-L1 expression in smoking-related high- and low-risk subgroups
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the association between 23 immune cell types and smok-
ing-related risk scores. As a result, 14/23 immune cells 
were downregulated in patients with high risk, indicating 
that tobacco smoking could suppress tumor immunity 
via ncRNA modification. However, the smoking-related 
risk score presented no correlation with immune cells or 
the expression of PD-L1.

It should be noted that our study has several limita-
tions. First, our research is a single-center design based 
on the TCGA database, and external validation seems 
more meaningful. Second, our current findings are 
derived from bioinformatic analysis, and further experi-
mental research is needed.

Conclusion
In this study, we identified a series of smoking-related 
ncRNAs and constructed an RNA regulatory network, 
providing a landscape of smoking-related molecular 
mechanisms. We further generated a smoking-related 
risk score and revealed that tobacco smoking could sup-
press tumor immunity via ncRNA alterations.
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