
R E S E A R C H Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Zhang et al. BMC Medical Genomics          (2023) 16:151 
https://doi.org/10.1186/s12920-023-01579-8

BMC Medical Genomics

†Min Zhang and Jiaxing Li contributed equally to this work and share 
the first authorship.

*Correspondence:
Guangzhen Zhong
zhongguangzhen@bjcyh.com
1Department of Research Ward, Beijing Chao-Yang Hospital, Capital 
Medical University, Beijing, China
2Department of Urology, Beijing Chao-Yang Hospital, Capital Medical 
University, Beijing, China
3Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, 
Beijing, China

Abstract
Background  ST-elevated myocardial infarction (STEMI) is the leading cause of mortality worldwide. The mortality 
rate of heart attacks has decreased due to various preventive factors and the development of early diagnostic 
resuscitation measures, but the long-term prognosis remains poor. The present study aimed to identify novel serum 
biomarkers in STEMI patients and explored a possible new mechanism of STEMI from an immune molecular angle 
with bioinformatics analysis.

Methods  Gene expression profiles were obtained from Gene Expression Omnibus (GEO) database. Differential 
gene analysis, machine learning algorithms, gene set enrichment analysis, and immune cell infiltration analysis were 
conducted using R software.

Results  We identified 146 DEGs (differentially expressed genes) in the integrated dataset between the STEMI and 
CAD (coronary artery disease) groups. Immune infiltration analysis indicated that eleven cell types were differentially 
infiltrated. Through correlation analysis, we further screened 25 DEGs that showed a high correlation with monocytes 
and neutrophils. Afterwards, five genes consistently selected by all three machine learning algorithms were 
considered candidate genes. Finally, we identified a hub gene (ADM) as a biomarker of STEMI. AUC curves showed 
that ADM had more than 80% high accuracy in all datasets.

Conclusions  In this study, we explored a potentially new mechanism of STEMI from an immune molecular 
perspective, which might provide insights into the pathogenesis of STEMI. ADM positively correlated with monocytes 
and neutrophils, suggesting its potential role in the immune response during STEMI. Additionally, we validated the 
diagnostic performance of ADM in two external datasets, which could help to develop new diagnostic tools or 
therapeutic strategies.
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Introduction
ST-elevated myocardial infarction (STEMI), the most 
acute manifestation of coronary artery disease (CAD), 
is typically caused by atherosclerotic plaque rupture 
and subsequent occlusive coronary thrombus formation 
[1, 2]. Over the past decade, the mortality rate of heart 
attacks has decreased due to various preventive factors 
and the development of early diagnostic resuscitation 
measures, but the long-term prognosis remains poor [3]. 
Thus, it is imperative to investigate the pathogenesis of 
heart attacks and develop more effective prevention and 
treatment strategies.

The necrotic myocardium in the infarct area triggers 
an inflammatory response immediately after acute myo-
cardial infarction. Moreover, the inflammatory response 
is involved in the pathological process of post-infarction 
heart failure. The inflammatory response promotes mor-
phological and functional recovery in the early stage after 
acute myocardial infarction and largely avoids serious 
complications such as myocardial rupture and malig-
nant arrhythmia. However, the overactivation of inflam-
matory response could lead to myocardial infarction 
area enlargement and aggravated ventricular remodel-
ling, which is related to complications such as heart fail-
ure, ventricular enlargement, and cardiac insufficiency 
after myocardial infarction. Therefore, it is necessary to 
explore the role of the inflammatory response during 
myocardial infarction.

With the development of new technologies such as 
gene microarray and next-generation sequencing, great 
progress has been made in the identification and vali-
dation of new diagnostic and therapeutic biomarkers. 
The integration and analysis of multiple datasets might 
provide different insights. In this study, we identified a 
candidate diagnostic biomarker related to immune cell 
infiltration based on three machine learning algorithms 
in integrated metadata, and then validated the diagnos-
tic performance of ADM in two external datasets, which 
could help us understand the molecular mechanism and 
biological functions of MI.

Materials and methods
Data collection
Acute myocardial infarction (AMI) gene expression 
data were collected from the Gene Expression Omnibus 
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). 
The GSE59867, GSE60993, GSE61144, and GSE62646 

datasets were downloaded. GSE59867 and GSE62646 
datasets were derived from the same platform (GPL6244 
platform of Affymetrix Human Gene 1.0 ST Array), so we 
merged the two datasets as a metadata cohort. GSE60993 
(derived from the GPL6884 platform) and GSE61144 
datasets (derived from the GPL6106 platform) were used 
as the external validation. The details of all datasets are 
listed in Table 1.

Differentially expressed genes screening and gene 
enrichment analysis
We applied the “limma” package to correct the back-
ground and normalize each dataset. Batch effects 
between metadata cohort were eliminated using the 
“removeBatchEffect” function of the “limma” package. 
Differentially expressed genes (DEGs) betweenSTEMI-
and control samples were identified using the “limma” 
package with a threshold set as |log2 (Fold Change [FC])| 
> 0.5 and a false discovery rate (FDR) < 0.05. Then, based 
on the DEGs, we explored Gene ontology (GO) and the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis using the “clusterProfiler” package [4].

Evaluation of immune cell infiltration
Immune cell infiltration levels were quantified with the 
CIBERSORT algorithm using the “CIBERSORT” package 
(http://cibersort.stanford.edu/). The correlation analysis 
of infiltrating immune cells was visualized by the “cor-
rplot” package and the “ggplot2” package.

Screening of hub diagnostic biomarkers based on machine 
learning algorithms
Three machine learning algorithms, the least absolute 
shrinkage and selection operator (LASSO) [5], the sup-
port vector machine recursive feature elimination (SVM-
RFE) [6] and random forests (RFs) [7] were utilized to 
screen for hub diagnostic biomarkers. LASSO is an 
acknowledged method that performs well in handling 
high-dimensional data. In this study, we implemented 
the LASSO model using the ‘glmnet’ package (https://
cran.r-project.org/web/packages/glmnet/index.html), 
and selected the optimal lambda value through cross-val-
idation. SVM-RFE is capable of selecting the most critical 
features, even in datasets with a large number of features, 
without sacrificing model accuracy. SVM-RFE was imple-
mented using the “rfe” function of the “caret” package, 
and we used 10-fold cross-validation to search for the 

Table 1  Basic information of datasets
Datasets Platforms Cell Type Control Group STEMI Group Applications References (PMID)
GSE59867 GPL6244 peripheral blood 46 111 Discovery 25,984,239 [24]

GSE60993 GPL6884 peripheral blood 7 7 Validation 26,025,919 [25]

GSE61144 GPL6106 peripheral blood 10 7 Validation 26,025,919 [25]

GSE62646 GPL6244 peripheral blood 14 28 Discovery 23,185,530 [26]

https://www.ncbi.nlm.nih.gov/geo/
http://cibersort.stanford.edu/
https://cran.r-project.org/web/packages/glmnet/index.html
https://cran.r-project.org/web/packages/glmnet/index.html
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optimal number of features. The random forests model 
unites the advantages of multiple decision trees to form 
a composite model that is more reliable, less susceptible 
to overfitting, and capable of processing both categorical 
and continuous data. Random forests were fitted using 
the ‘randomForest’ package. Subsequently, we obtained 
the hub genes by taking the intersection of the genes 
derived from the three machine learning models.

Gene set enrichment analysis
The “gseKEGG” function of the R package “ClusterPro-
filer” was conducted to perform GSEA. Significantly 
enriched KEGG pathways associated with hub genes 
were identified [4].

Statistical analysis
All statistical analyses were performed using R software 
(version 4.2.1; Rstudio, Boston, MA). Comparisons of 
two groups of continuous variables were performed by 
Student’s t-test or Mann-Whitney U test. For multiple 
comparisons, one-way analysis of variance (ANOVA) 
and Kruskal-Wallis tests were used for parametric and 
non-parametric data, respectively. Receiver operating 
characteristic (ROC) curves and the area under the ROC 
curve (AUC) were used to evaluate the diagnostic perfor-
mances of biomarkers. Correlations were analyzed using 
Spearman correlation. P < 0.05 was considered statistical 
significance.

Results
Screening and functional enrichment analyses of DEGs
Differential expression analysis was conducted between 
60 control samples (stable coronary artery disease) and 
139 STEMI samples in the metadata cohort (GSE59867 
and GSE62646 datasets). The metadata cohort before 

and after the batch correction is shown in Figure S1. 
Based on the filtering criteria, a total of 146 DEGs were 
obtained, including 71 upregulated genes and 75 down-
regulated genes (Fig.  1A). Subsequently, we performed 
functional enrichment analyses further to elucidate the 
biological functions and characteristics of DEGs. Fig-
ure  1B-C displayed the GO and KEGG analysis results, 
respectively. The GO annotations of DEGs consisted of 
several immune processes, including positive regulation 
of response to external stimulus, regulation of innate 
immune response, regulation of lymphocyte medi-
ated immunity, regulation of natural killer cell medi-
ated immunity, immune receptor activity, MHC class I 
receptor activity, and so on. KEGG analysis of DEGs also 
related with immune cell-related signaling pathway, such 
as Natural killer cell mediated cytotoxicity, Antigen pro-
cessing and presentation, B cell receptor signaling path-
way, NF-kappa B signaling pathway.

The landscape of immune cell infiltration in STEMI
The immune response is important in many cardiac 
pathophysiological processes, including acute myocardial 
infarction [8]. Thus, we used the CIBERSORT algorithm 
to quantify the proportion of immune cell infiltration 
between STEMI and control samples to explore the 
immune features. The results indicated that infiltration 
abundance of T cells CD8, T cells CD4 naïve, T cells 
CD4 memory resting, and NK cells resting in STEMI 
samples were significantly lower compared to control 
samples, while STEMI samples had a higher infiltration 
proportion of T cells regulatory (Tregs), Monocytes, 
Neutrophils in contrast to controls (Fig.  2A). Next, we 
conducted the correlation analysis between infiltrating 
immune cells in STEMI samples (Fig.  2B). Neutrophils 
correlated positively with Monocytes (0.47) and Mast cell 

Fig. 1  Screening and functional enrichment analysis of DEGs. (A) Volcano plot of DEGs. Red and blue dots represented upregulated and downregulated 
genes, respectively. (B) GO analyses. (C) KEGG analyses.
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resting (0.47), while negatively with T cells CD8 (-0.41) 
and Tregs (-0.31). Monocytes were positively related to 
Neutrophils (0.46), T cells CD4 memory activated(0.39), 
Dendritic cells activated (0.38) and Mast cells resting 
(0.37), while they were negatively related to T cells CD8 
(-0.55), T cells CD4 memory resting (-0.43) and NK cells 
resting (-0.41). Tregs cells are negatively correlated with 
most cell types, including Monocytes (-0.25), Dendritic 
cells activated (-0.33) and Neutrophils (-0.31).

Screening of immune cell-associated differential genes
During the initial hours of acute myocardial infarction, 
a large number of neutrophils infiltrate ischemic myo-
cardial tissue. Subsequently, macrophages derived from 
monocytes are recruited to the site of infarcted myocar-
dium and engulf cell debris and apoptotic neutrophils. 
Therefore, we conducted a correlation study between 
monocytes and neutrophils - both of which had a high 

infiltration proportion in STEMI samples - and the 146 
DEGs identified in STEMI samples. Differential genes 
with an absolute correlation coefficient greater than 0.5 
and a P value less than 0.05 were selected. Out of the 63 
DEGs related to monocytes, there were 45 positively cor-
related genes and 18 negatively correlated genes (Fig. 2C). 
There were  27 differential genes related to Neutrophils, 
with 25 positive correlations and 2 negative correlations 
(Fig.  2D). After taking the intersection, we obtained 25 
differential genes related to immune cells (Fig. 2E).

Hub genes identification based on three machine learning 
algorithms
Following that, we employed three machine learning 
algorithms to narrow down the candidate hub genes 
based on the 25 immune-related differential genes 
obtained from the previous step. According to LASSO 
logistic regression algorithm, we received 22 candidate 

Fig. 2  The landscape of immune cell infiltration in STEMI. (A) The proportion of immune cell infiltrated in STEMI and control samples. (B) Correla-
tions among immune cells. (C) Correlations between Monocytes and DEGs (abs(cor) > 0.5 & P < 0.05). (D) Correlations between Neutrophils and DEGs 
(abs(cor) > 0.5 & P < 0.05). (E) Intersected genes between C and D. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant
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genes based on the optimal value of lambda (the optimal 
lambda value was 0.00257) (Fig.  3A, B). Next, nine sig-
nature genes were uncovered by the SVM-RFE analysis 
(Fig. 3C, D). Using the RF model, we identified 16 genes 
with importance greater than 2, as shown in Fig. 3E. Ulti-
mately, our findings resulted in the identification of five 
hub genes that were consistently identified by all three 
machine learning algorithms: ADM, MERTK, PPARG, 
RORA, and SYNE2 (Fig. 3F).

Expression and diagnostic efficacy of hub genes
Initially, we explored the expression levels of five piv-
otal genes in the metadata cohort (Fig. 4A). The STEMI 
group showed high expression levels of ADM, MERTK, 
and PPARG, while RORA and SYNE2 were prominently 
expressed in the control group. It’s interesting that the 
abundance of monocytes and neutrophils has a posi-
tive relationship with ADM, MERTK, and PPARG, but a 

negative relationship with RORA and SYNE2 (Fig. 2C, D). 
The AUCs for all five genes were greater than 0.8 (Fig. 4B-
F). The specific cutoff values, sensitivity, and specificity 
values are shown in Supplementary Table  1. Moreover, 
the combined ROC curve for five genes reached an AUC 
value of 0.941 (95% CI: 0.903–0.974) (Figure S2).

Validation of hub genes
We applied two external datasets to validate the poten-
tial diagnostic markers. The expression levels of ADM in 
STEMI samples were found to be significantly elevated 
compared to the control samples in both the GSE60993 
(P < 0.01) (Fig.  5A) and GSE61144 (P < 0.01) (Fig.  5B) 
cohorts. After that, we analyzed the diagnostic power 
of ADM. The AUC of ADM was 0.939 in the GSE60993 
cohort (Fig.  5C) and 0.886 in the GSE61144 cohort 
(Fig.  5D), revealing ADM’s robust diagnostic perfor-
mance. Additionally, we evaluated the ADM levels and its 

Fig. 3  Hub genes identification based on three machine learning algorithms. (A, B) LASSO logistic regression model was applied to screen hub genes, 
and partial likelihood deviance with 10-fold cross-validation was utilized to calculate the best lambda. The accuracy (C) and the error (D) of the feature 
selection in the SVM-RFE algorithm for hub gene selection. (E) Random forest algorithm showed the top 16 genes with an importance greater than 2. (F) 
Venn diagram of hub genes screened by three machine learning algorithms.
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Fig. 5  Validation of candidate diagnostic markers. (A) Expression of hub genes in GSE60993 cohort. (B) Expression of hub genes in GSE61144 cohort. (C) 
ROC curves of ADM in the GSE60993 cohort. (D) ROC curves of ADM in the GSE61144 cohort. *P < 0.05; **P < 0.01; ns, not significant

 

Fig. 4  Expression and diagnostic efficacy of hub genes. (A) Expression of hub genes in metadata cohort. (B-F) Diagnostic efficacy of hub genes in the 
prediction of STEMI in metadata cohort. ****P < 0.0001
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diagnostic effectiveness in the GSE59867 and GSE62646 
datasets, which formed the metadata cohort. Our results 
showed that ADM demonstrated outstanding diagnostic 
accuracy (Figure S3).

Signaling pathways associated with the candidate 
diagnostic markers
GSEA was conducted to seek out signaling pathways 
linked with the candidate diagnostic markers in the 
STEMI group. ADM was positively correlated with Sul-
fur metabolism, Other glycan degradation, and so on 
(Fig. 6A), while ADM showed a negative association with 
immune-related pathways such as Primary immunodefi-
ciency and Graft-versus-host disease (Fig. 6B). The GSEA 
results for the remaining four pivotal genes are presented 
in Figure S4.

Expression changes during myocardial infarction recovery
Finally, we investigated the expression changes of ADM 
at different times after myocardial infarction. In the 
GSE59867 cohort, peripheral blood samples at four time 
points (admission (1st day, n = 111), discharge (4–6 days, 
n = 101), 1 month after MI (30 days, n = 95), and 6 months 
after MI (180 days, n = 83) were collected (Fig.  7A). On 
the first day of MI, expression levels of ADM were sig-
nificantly elevated relative to control samples (P < 0.001). 
Over time, the expression of ADM gradually decreased. 
The ADM expression level in STEMI patients contin-
ued to be elevated compared to the control group one 
month after AMI (P = 0.00073). Six months after AMI, 

the expression level of ADM returned to the same level as 
the control group (P = 0.1).

The samples in the GSE62646 cohort have three time 
points: admission (1st day, n = 28), discharge (4–6 days, 
n = 28), and 6 months after MI (180 days, n = 28) (Fig. 7B). 
Consistent with the results from the GSE59867 cohort, 
ADM expression significantly increased on the first day 
of MI (P < 0.001), then gradually declined. At 6 months, it 
returned to control levels (P = 0.17).

Furthermore, in the GSE59867 dataset, patients were 
divided into HF (heart failure, n = 9) and non-HF group 
(n = 8) based on NT-proBNP level and LVEF (left ventric-
ular ejection fractions) at 6 months post-MI. To examine 
the relationship between ADM levels and heart failure 
after myocardial infarction, we analyzed the expression 
levels of ADM on the first day of myocardial infarction 
between two groups. Compared to the non-HF group, 
the expression level of ADM in the HF group was signifi-
cantly higher (P = 0.021) (Fig. 7C).

Discussion
In this study, we first merged datasets from the same 
platform to minimize possible batch effects and identi-
fied 146 DEGs in the integrated dataset. Immune infil-
tration analysis indicated that eleven cell types were 
differentially infiltrated, suggesting their potential patho-
physiological roles in STEMI. In comparison to the con-
trol group, the STEMI samples had increased infiltration 
of Tregs, monocytes, and neutrophils. Through correla-
tion analysis, we further screened 25 DEGs that showed 

Fig. 6  Gene set enrichment analysis in metadata cohort. (A) Significantly enriched pathways in high expressions of ADM. (B) Significantly enriched 
pathways in low expressions of ADM.
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a high correlation with monocytes and neutrophils. Five 
genes consistently selected by all three machine learn-
ing algorithms were considered candidate genes. We 
then validated the five candidate genes in terms of their 
expression and diagnostic efficacy in two external data-
sets to further identify the candidate genes. ADM had 
more than 80% high accuracy in all datasets. At last, we 
evaluated the expression levels of ADM during myocar-
dial infarction recovery and the differential expression 
of ADM in the heart failure group and non-heart failure 
group.

The immune system plays a vital role in pre-infarction 
atherosclerosis, the acute phase of infarction, and the 
later phase of myocardial remodeling [8, 9]. Functional 
enrichment analysis of DEGs between the STEMI and 
control groups was mainly enriched in several immune 
processes and immune cell-related pathways. Previous 

studies have demonstrated that multiple cell types are 
involved in different stages of healing in myocardial 
infarction, including neutrophils and macrophages [10]. 
Various inflammatory signals and cell debris massively 
recruit neutrophils within the first few hours following 
ischemia [10]. Consequently, monocyte-derived macro-
phages are recruited to infarcted myocardium to phago-
cytose cell debris and apoptotic neutrophils [11].

Treg cells are essential for inducing and maintain-
ing immune homeostasis and tolerance, and any dis-
ruption in the generation or function of these cells can 
trigger aberrant immune responses and pathological con-
ditions [12]. Treg cells were mobilized to the infarcted 
mouse myocardium, regulating fibroblast phenotype 
and function via its anti-inflammatory properties dur-
ing the early stage after myocardial injury [13, 14]. A 
study using a rat model of MI demonstrated that a rise in 

Fig. 7  Expression levels during myocardial infarction recovery. (A) Expression levels of ADM in the GSE59867 cohort. (B) Expression levels of ADM in 
GSE62646 cohort. (C) Expression levels of ADM between the non-HF group and HF group in the GSE59867 cohort. 
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Treg cell numbers prevented ventricular remodeling and 
improved cardiac function following MI, through its anti-
inflammatory effects and direct protection of heart mus-
cle cells [15]. Weirather et al. reported that therapeutic 
activation of Treg cells resulted in M2-like macrophage 
differentiation in the healing heart tissue, accompanied 
by myofibroblast activation and increased expression of 
monocyte/macrophage-derived proteins that promoted 
wound healing [16].

Our study found elevated expression of Tregs, mono-
cytes, and neutrophils in STEMI samples, which is in line 
with previous research. As there were relatively few genes 
linked to Tregs in our hub gene screening, we selected 
differentially expressed genes associated with both 
monocytes and neutrophils. ADM was positively corre-
lated with monocytes and neutrophils, with correlation 
coefficients of 0.575 and 0.557, respectively.

ADM, also known as adrenomedullin, is expressed in a 
variety of tissues, including the vascular system and the 
heart [17]. Because of its small size (6 kDa), it can easily 
diffuse between the blood and interstitial fluid [18]. The 
mature and biologically active hormone ADM is pro-
duced through proteolytic cleavage of the full-length pre-
cursor protein ProADM [19]. ADM has potent protective 
functions in various pathological conditions as an endog-
enous peptide, owing to its anti-oxidant, anti-inflamma-
tory, anti-apoptotic, and proliferative properties [20, 21]. 
Trincot et al. reported that [22] adrenomedullin drives 
reparative cardiac lymphangiogenesis and function via 
Cx43 to preserve cardiac function and reduce edema. 
It has been reported that elevated expression of ADM 
is found in cardiomyocytes exposed to simulated isch-
emia, suggesting paracrine effects that could decrease 
cardiomyocyte apoptosis [19]. A study report reveals that 
Bio-ADM serves as a useful predictor and biomarker of 
impaired hemodynamics in cardiogenic shock patients. 
Elevated levels of Bio-ADM may indicate the develop-
ment of refractory shock and organ dysfunction [23]. 
In our study, the expression levels of ADM significantly 
increased during an acute myocardial infarction and 
decreased gradually over time. The AUCs of ADM for 
all datasets were greater than 0.8, exhibiting the strong 
diagnostic power of ADM. In addition, we analyzed the 
expression levels of ADM on the first day of myocar-
dial infarction between the non-HF and HF groups. The 
HF group exhibited a significantly higher level of ADM 
expression than the non-HF group, which suggested that 
patients with high levels of ADM expression during a 
heart attack were more likely to develop heart failure.

Our study also has some limitations. This research 
is a bioinformatics analysis. The specific mechanisms 
by which ADM interacts with monocytes and neutro-
phils during STEMI, as well as the downstream effects 
of this interaction on myocardial damage and long-term 

prognosis should be further explored. Additionally, inves-
tigations into the potential therapeutic benefits of target-
ing ADM or its downstream effects could open up new 
avenues for improving the clinical outcomes of STEMI 
patients.

Conclusion
In this study, we identified a candidate diagnostic marker 
(ADM) in STEMI peripheral blood from an immune 
molecular perspective, which might provide a potentially 
new mechanism of STEMI. ADM positively correlated 
with monocytes and neutrophils, suggesting its potential 
role in the immune response during STEMI. Moreover, 
ADM was confirmed as an excellent diagnostic marker 
by expression level and diagnostic efficacy in another two 
external datasets. The findings might help to develop new 
diagnostic tools or therapeutic strategies for STEMI.
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