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Abstract 

Bi‑allelic variants in the mitochondrial arginyl-transfer RNA synthetase (RARS2) gene have been involved in early‑onset 
encephalopathies classified as pontocerebellar hypoplasia (PCH) type 6 and in epileptic encephalopathy. A variant 
(NM_020320.3:c.‑2A > G) in the promoter and 5’UTR of the RARS2 gene has been previously identified in a family with 
PCH. Only a mild impact of this variant on the mRNA level has been detected. As RARS2 is non‑dosage‑sensitive, this 
observation is not conclusive in regard of the pathogenicity of the variant.

We report and describe here a new patient with the same variant in the RARS2 gene, at the homozygous state. This 
patient presents with a clinical phenotype consistent with PCH6 although in the absence of lactic acidosis. In agree‑
ment with the previous study, we measured RARS2 mRNA levels in patient’s fibroblasts and detected a partially pre‑
served gene expression compared to control. Importantly, this variant is located in the Kozak sequence that controls 
translation initiation. Therefore, we investigated the impact on protein translation using a bioinformatic approach 
and western blotting. We show here that this variant, additionally to its effect on the transcription, also disrupts the 
consensus Kozak sequence, and has a major impact on RARS2 protein translation. Through the identification of this 
additional case and the characterization of the molecular consequences, we clarified the involvement of this Kozak 
variant in PCH and on protein synthesis. This work also points to the current limitation in the pathogenicity prediction 
of variants located in the translation initiation region.
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Introduction
Pontocerebellar hypoplasia (PCH) is a class of rare neu-
rodegenerative disorders with a pre-natal onset and char-
acterized by degeneration or hypoplasia of the pons and 
the cerebellum. PCH is further classified into 17 subtypes 
currently based on the underlying neuropathological 
features and genetic causes and new subtypes are regu-
larly described [1–5]. These subtypes have an autosomal 
recessive inheritance, with typical restricted development 
thereby leading to severe intellectual and motor function 
impairments, epilepsy and frequently death during child-
hood [6–9]. Among the genetic causes, variants in t-RNA 
splicing endonuclease (TSEN) complex genes have been 
prevalently reported [10–14]. TSEN54, TSEN2, TSEN34, 
and CLP1 genes encode members or associated factors 
of this TSEN complex and variants in those genes have 
been associated with 6 PCH subtypes: PCH2A (OMIM 
#277470), PCH2B (OMIM #608753), PCH2C (OMIM 
#608754), PCH4 (OMIM #225753), PCH5 (OMIM 
#610204) and PCH10 (OMIM #615803). Further, RNA 
processing defects due to variants in EXOSC3, EXOSC8 
and EXOSC9 contribute to pathogenesis of PCH1 [15–
17]. Hence, defects in RNA metabolism or protein trans-
lation can be considered as a common mechanistic factor 
behind most PCH subtypes.

PCH6 is usually considered as a mitochondrial dis-
ease due to variants in the gene encoding for mitochon-
drial arginyl-transfer RNA (tRNA) synthetase (RARS2). 
RARS2 protein is involved in the addition of arginine 
to tRNA, thus allowing translation of mitochondrial 
proteins. Splice site, nonsense, or missense variants 
on RARS2 gene have been reported in more than 50 
cases, with PCH estimated to be present in half of them 
[18–23].

There are two main overlapping clinical conditions 
associated with biallelic pathogenic RARS2 variants: (i) 
PCH6 that was initially described and (ii) early onset 
epileptic encephalopathy without typical PCH on MRI 
[18, 24, 25]. In the former case, the main clinical fea-
tures include hypotonia, microcephaly, developmental 
delay, atrophy of cerebellum and cerebrum as well as 
high lactate blood-levels. They can be present at birth 
with hypotonia, lethargy and poor sucking but can also 
appear during the first months of life, and even though 
epilepsy is often present, it is not always the first symp-
tom [18, 19, 21]. In the latter case, on the contrary, the 
main clinical features are seizures occurring in the first 
weeks of life leading to severe neonatal developmental 
delay and epileptic encephalopathy [23]. It is worth not-
ing that in some cases, the neurodevelopment can be 
normal for several months allowing the patients to learn 
to walk and even to say some words, before a slowing and 

a regression of cognitive development with loss of mile-
stones [23].

For some of these variants, the consequence on the 
enzyme activity or RARS2 mRNA levels have been inves-
tigated and an impact at the transcriptional level has 
been detected multiple times [21, 23]. Most of patho-
genic variants that have been reported are missense and 
some of them are recurrent [23, 26]. Despite the numer-
ous reported variants, it hasn’t been possible to establish 
precise genotype–phenotype correlation [19, 23, 27].

The identification of disease-causing non-coding var-
iants is a challenging task based on in silico and func-
tional genome annotations. Li et al. reported a variant 
in the promoter and 5’ untranslated region (UTR) of 
RARS2 gene (NM_020320.3: c.-2A > G) as a potential 
cause of PCH in a single family with two affected sib-
lings [28]. The authors investigated the impact of this 
variant on the promoter activity and identified a ~ 40% 
decrease in mRNA levels. RARS2 has a null pLI score 
(i.e. the probability of being Loss of function Intolerant; 
gnomAD v.2.1.1) but a LOEUF score of 0.92, indicat-
ing that this gene is slightly intolerant to loss-of-func-
tion variants and is not among the dosage sensitive 
genes [29]. This observation is not unusual for reces-
sive genes, and is consistent with the healthy status of 
the parents of the RARS2 patients who are carriers of 
a severe loss-of-function allele (i.e., likely null) [19, 30]. 
Consequently, a decrease of about 50%, or less, in the 
quantity of the RARS2 transcript’s level is not likely to 
be sufficient to cause a clinical condition and further 
characterization of the identified variant is needed to 
fully demonstrate causality.

This variant has also been reported in an infant with a 
compatible neurological phenotype although as a com-
pound heterozygous and with limited clinical informa-
tion [31]. In the present study, we identify a new PCH 
case with a homozygous variant in the 5’UTR of the 
RARS2 gene. We demonstrate that this variant, previ-
ously described by Li et al., does not only impact gene 
transcription but also has an important and direct 
effect on protein production, hence confirming its 
pathogenicity. We also further compare the clinical 
severity, and discuss this finding in light of the bioinfor-
matics predictions and previously described, clinically 
relevant, variants located in the Kozak sequence.

Materials and methods
Patient recruitment and sequencing
The family included in this study was referred to the 
departments of pediatric neurology and genetics of 
the Necker Enfants Malades Hospital. High-resolution 
karyotype, array-comparative genomic hybridization 
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(aCGH) (Agilent 60 K) was performed. Informed con-
sents have been obtained both from the participants 
and the legal representatives of the children. Sequenc-
ing was performed with a custom gene panel includ-
ing 72 genes involved in early-onset cerebellar atrophy 
or PCH as previously described [32]. Briefly, genomic 
DNA libraries were generated using SureSelectXT 
Library PrepKit (Agilent) and the Ovation Ultralow 
System V2 (NuGen) according to the suppliers’ recom-
mendations. All exons and 25 base pairs intronic flank-
ing sequences of the 72 selected genes were captured 
by hybridization with biotinylated complementary 
120-bp RNA baits designed with SureSelect SureDe-
sign software. Paired-end sequences were mapped on 
the human reference genome (NCBI build37/ hg19 ver-
sion) using the Burrows-Wheeler Aligner. Downstream 
processing was carried out with the Genome Analy-
sis Toolkit (GATK), SAMtools, and Picard. Sanger 
sequencing was performed on the patient and parents’ 
blood samples using the 3500xL Genetic Analyzer 
(Applied Biosystems).

Fibroblast culture, RNA extraction and quantitative RT‑PCR
All human cell culture and storage protocols were per-
formed with approval from French Research Ministry 
(DC 2015–2595) and the family provided written con-
sent. Human primary fibroblasts were cultured in Dul-
becco’s modified Eagle medium (DMEM) (11965092, 
Gibco) supplemented with 10% Fetal Bovine Serum 
(FBS) (16000044, Gibco) and 1% Penicillin–Strepto-
mycin in a humidified incubator (5% CO2 , 37 °C). Total 
RNA extraction was performed from cell culture pel-
let using TriZol (ThermoFischer, 15596026) accord-
ing to the supplier’s instructions. The purification of 
the RNA was done with the RNeasy Mini Kit (Qiagen, 
74104). Reverse transcription of the total RNAs was 
performed using SuperScript II reverse transcriptase 
(ThermoFisher, 18064022) according to the manufac-
turer’s recommendations. Quantitative PCR was per-
formed with the SYBR Green PCR Master Mix reagent 
(ThermoFisher, 4364346) on an Applied Biosystems 
One Step Plus real-time PCR system (Applied Biosys-
tems, 4376600). GAPDH was chosen as a reference 
gene to normalize the results between different tissues 
and cell line. The relative mRNA levels of RARS2 were 
determined by the ΔΔCt method.

Western blotting
Protein extraction, quantification, separation in gel elec-
trophoresis and transfer were performed using standard 
procedure [3]. Nitrocellulose membranes were blocked 

in Odyssey-TM Blocking Buffer (927–50003, LICOR) for 
1 h and further incubated overnight at 4 °C with the fol-
lowing primary antibodies diluted in OdysseyTM Block-
ing Buffer: anti-RARS2 (1:16000, ab230274, Abcam), 
Anti-β Actin (1:10000, AM4302, Invitrogen). After three 
washes with 0.2% PBST, the membranes were then incu-
bated for 1  h at room temperature with IRDye-coupled 
(1:10000, 925–68070, 926–32211, LICOR) secondary 
antibodies. After three washes with 0.2% PBST, the mem-
branes were processed with Odyssey CLx imaging system 
(LICOR) and the quantification analysis was performed 
with Image Studio Lite Ver 5.2, with the default param-
eters and using β Actin for normalization. Detection and 
quantification of RARS2 protein level in patient and con-
trol was repeated in two independent experiments with 
comparable results (Supplementary Fig. 1D-F).

Bioinformatic analysis
We used three complementary bioinformatic predic-
tive tools to assess the pathogenicity of the non-coding 
genetic variants: NCBoost [33], DeepSEA [34] and 
TITER [35].

NCBoost is a pathogenicity score for non-coding vari-
ants based on supervised learning on manually curated 
sets of pathogenic and non-pathogenic variants in non-
coding regions [33]. NCBoost exploits a diverse range of 
features including: interspecies sequence conservation, 
recent and ongoing natural selection signals in humans 
and epigenetic features. The output of this score gives 
the likeliness that the genomic position is intolerant to 
variation without precising its impact on transcription or 
translation.

DeepSEA is a deep learning-based algorithm frame-
work that predicts the chromatin effects of sequence 
alterations with single-nucleotide sensitivity. The model 
has been trained to predict chromatin features like tran-
scription factors binding, DNAse I hypersensitive sites 
and histone marks [34]. DeepSEA was used in the con-
text of this work to evaluate the transcriptional conse-
quences of genetic variants.

TITER is a deep learning-based framework designed 
to predict translation initiation sites and translation effi-
ciency by taking into accounts the putative START codon 
and features of the 200 nucleotides surrounding it [35]. 
TITER has been trained using global translation initia-
tion sequencing (GTI-seq) and quantitative translation 
initiation sequencing (QTI-seq) data. Its main purpose is 
to identify the effective Translation Initiation Site (TIS) 
by scoring several putative START codons, both in the 
5’UTR and in the coding sequence, based on the anno-
tated START codon.
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Results
Case report
The proband was the first child of distantly related Turk-
ish parents and was delivered at full term following a 
pregnancy monitored for an increased nuchal translu-
cency. At birth, physical examination was normal: weight 
was 3,320  g (28th percentile(p)), length 50  cm (28th p) 
and head circumference 33.5 cm (17th p) (see Table 1).

In early infancy (4–5  months), he showed develop-
mental delay (HP:0012758) with generalized hypotonia 
(HP:0001290). Brain CT scan revealed global cerebellar 
hypoplasia (prominent on the vermis) with a supraten-
torial myelination delay (HP:0012448). The brain MRI 
performed at 2 years of age found cerebellar hypoplasia 
without atrophy, an arachnoid cyst (HP:0100702) of the 
posterior fossa, and myelination abnormalities.

He presented with a first epileptic seizure (HP:0001250) 
at 16  months and a treatment was introduced. Due to 
recurrent episodes of focal and bilateral tonic clonic sei-
zures (HP:0002266 and HP:0002069) as well as status 
epilepticus (HP:0002133), a triple-therapy treatment was 
needed at 4 years and 6 months. At 3 years and 6 months, 
growth parameters were weight 16  kg (- 2 SD), height 
94 cm (- 1 SD) and head circumference 48 cm (- 2 SD). 
He presented with axial hypotonia (HP:0009062) and 
peripheral hypertonia (HP:0002509) with extrapyramidal 
muscular rigidity (HP:0007076) prominent in the lower 

limbs and dystonia (HP:0001332). He also presented 
with orofacial dyskinesias (HP:0002310) and glossoptosis 
(HP:0000162).

Different metabolic diseases were tested (including 
glycogenosis, neurolipidosis, mucopolysaccaridosis, 
glycoproteinosis, mucolipidosis, CDG) but the results 
were negative. The mitochondrial function was normal 
even though the complex I activity was near the lower 
range. The lactate blood level was above the normal at 
2.40  mmol/l (for a normal value < 1.8  mmol/l) whereas 
the pyruvate blood level was normal (0.13  mmol/l 
for a normal value < 0.17  mmol/l). Therefore, the 
lactate:pyruvate ratio was slightly elevated at 18 (for a 
normal value between 6 and 14).

At 6  years, the brain MRI found a pontocerebellar 
hypoplasia (HP:0001321) with a dragonfly-like cerebel-
lar pattern (Fig. 1B and C, white arrows) associated with 
attenuated pons (Fig.  1A-C). A supra-tentorial atrophy 
was also detected without lactate peak (Fig. 1D).

At 7  years, he had microcephaly (head circumference 
at—2 SD, HP:0000252) and still presented with a severe 
neurodevelopmental delay without progression nor 
regression. He still had no voluntary grasping and only 
few spontaneous movements. He had spastic hyper-
tonia of the four limbs (HP:0002509), prominent in the 
lower limbs and axial hypotonia with a permanently 
open mouth (HP:0000194). He never learnt to walk or 

Table 1 Clinical comparison between our Patient and the two siblings previously reported by Li et al. [28]

CASE A CASE B CASE C
Publication Ours Li et al., 2015 (Pt 10) [28] Li et al., 2015 (Pt 11)[28]

Patient (sex, age at study) A (M, 17 y, died) Pt 10 (M, 4,5 years) Pt 11 (F, 18 months)

Epilepsy generalized tonic clonic seizure partial epilepsy NA

Seizures onset 16 months 9 months NA

First seizure type generalized tonic clonic seizure not specified NA

Subsequent seizures focal to bilateral tonic clonic seizure, status 
epilepticus

refractory partial epilepsy NA

Pharmacoresistant Yes Yes NA

Developmental concern 
(age of the first symp‑
toms)

4–5 months 9 months 6 months (hypotonia)

Regression (age) No, never learnt to walk nor to stand with‑
out assistance

Yes (9 months): loss of milestones No, but did not gain milestones in infancy

Neurological examination Spastic hypertonia of the 4 limbs, promi‑
nent in lower limbs and axial hypotonia. 
Permanently open mouth

4.5 years: axial hypotonia, distal 
hypertonia, cannot sit nor stand, 
amblyopia

at 18 months: hypotonia, can sit with sup‑
port, abnormal abduction of the eyes

Microcephaly Yes No Yes

Movement disorder Orofacial dyskinesias, myoclonus, dystonia dysconjugate eye movements abnormal abduction of the eyes

MRI pontocerebellar hypoplasia, dragonfly‑
like cerebellar pattern, no lactate peak (at 
6 years)

PCH, prominent subarachnoid 
space overlying frontotemporal 
convexities

cerebellar hypoplasia

Metabolic abnormalities lactate: 2.40 mmol/l (N < 1.8 mmol/l) pyru‑
vate: 0.13 mmol/l (N: < 0.17 mmol/l)

NA NA
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to stand without assistance and had skeletal muscle 
atrophy (HP:0003202) and musculotendinous retrac-
tions (HP:0031462) caused by limited mobilization. 
He underwent several orthopedic surgeries includ-
ing posterior arthrodesis at the age of 12  years for spi-
nal deformities (HP:0008443). Since childhood, he had 
recurrent respiratory infections (HP:0002205) and deglu-
tition impairments (HP:0002015) leading to feeding dif-
ficulties (HP:0011968). He had recurrent pneumonia 
(HP:0006532) in a context of dysphagia and gastroe-
sophageal reflux (HP:0002020) and a percutaneous endo-
scopic gastrotomy tube was inserted at the age of 8 years 
(HP:0011471). He was hospitalized at the age of 17 years 
for respiratory failure (HP:0002878) in a context of acute 
infectious pneumonia (HP:0011949) requiring oxygen 
and antibiotherapy. A decision to limit treatment was 
made and the patient died a few days later.

Gene panel sequencing results
To define an aetiologic diagnosis for the neurological dis-
order of the affected individual, we used a custom gene 
panel as a primary test that includes the most common 
genes involved in early-onset cerebellar atrophy and 
PCH, as described in Chemin et  al. [32]. Using a deep 
sequencing with a mean targeted coverage of 430X and 
close to 100% of the targeted DNA covered at 30X, we did 
not identify rare and potentially damaging coding vari-
ants in known PCH genes. Re-analysis of this panel result 
assessed a homozygous variant (NM_020320.3: c.-2A > G) 
in the 5’UTR of the RARS2 gene (Fig. 2). This variant is 
located two bases upstream of the START codon in the 
Kozak sequence. The analysis of the affected nucleotide  
with GERP and PhyloP did not support a strong con-
servation across the evaluated species with negative 
conservation scores of -2.32 and -0.87287, respec-
tively. This variant had been previously reported in 
a homozygous state in two siblings presenting with 
pontocerebellar hypoplasia [28]. Sanger sequencing con-
firmed that the parents were both heterozygous carriers 
of this variant.

In silico analysis of conservation, transcription 
and translation efficacy
In order to further evaluate the pathogenicity potential of 
this variant, we used three complementary bioinformat-
ics tools (Methods). NCBoost evaluates the conservation 
of sequence across species and within humans [33] and 
ranked the pathogenicity potential of the altered genomic 
position among the top 17% (i.e. score of 0.122, rank-per-
centile of 0.831 for this chromosome) of all cis-proximal 
non-coding genomic positions for chromosome 6. To 
estimate the functional impact of this variant at the chro-
matin level, we used DeepSEA [34] to predict an impact 
on transcription and TITER [35] to predict consequences 
on translation.

The DeepSEA functional significance score of the vari-
ant is 5.4e-03, which suggests a significant alteration at 
the transcriptional level, in line with previous observa-
tions [28]. More specifically, DeepSEA predictions point 
at a severe alteration of the binding of the factors YY1 
and REST/NRSF that would severely hinder transcrip-
tion. YY1, a transcription factor with both activator and 
repressor activities is widely involved in development 
[36] and REST/NRSF (RE1-silencing transcription fac-
tor/Neuron-restrictive silencer factor) is a transcriptional 
repressor which plays a key role in non-neuronal cells but 
is also involved in neural cell survival [37].

Then, we used TITER to further investigate a potential 
additional effect of this variant on the efficacity of the Kozak 
sequence. The scores for the wild-type sequence and in 
presence of the NM_020320.3:c.-2A > G variant are nearly 
identical, 3.4433 and 3.3865 respectively. Thus, this variant 
is not predicted by TITER to alter translation efficiency.

RARS2 transcript and protein levels in fibroblasts
According to the Ensembl genome browser, there is only 
one reliable transcript that is well supported by mRNA 
sequences (with Transcript Support level 1 label), cod-
ing for the 578 amino-acids/65 kDa RARS2 protein and 
no additional Kozak sequence is detected. The impact of 
the Kozak variant on this transcript was studied by real-
time PCR performed on mRNA extracted from fibroblast 

Fig. 1 Patient brain MRI at 6 years. A Sagittal T1‑weighted image showing pontocerebellar hypoplasia. B and C Coronal T1 and T2 weighted images 
with the "dragonfly‑like" cerebellar pattern (flattening and severely reduced size of the cerebellar hemispheres with relative sparring of the vermis) 
indicated by the white arrows. D MR spectroscopy showing no lactate peak
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cultures for both the patient and a control. RARS2 mRNA 
levels in the patient cells were significantly decreased 
by ~ 54% ( p = 0.0027 , Fig.  3A). This change is compa-
rable with the ~ 30% and ~ 50% decreases previously 
detected in peripheral blood from siblings carriers of the 
same variant [28]. With this partially preserved RARS2 
transcription in mind, we investigated the impact on the 
protein levels, using Western blot. Strikingly, protein lev-
els were extremely decreased in the patient’s fibroblasts, 
with only a faint residual band quantified and normalized 
as a ~ 93% decrease compared to control samples (Fig. 3B, 
C).

Discussion
We report here a new patient harboring a previously 
described non-coding variant, NM_020320.3:c.-2A > G, 
in a homozygous state, in the RARS2 gene. Although 
this variant is located in the Kozak sequence, an impact 
on protein levels was not previously investigated. Using 
in silico predictions and in vitro analyses, we studied the 
effects of this single nucleotide variant. Our results iden-
tified a combined effect at the transcriptional and trans-
lational levels showing that the protein levels are almost 
abolished in patient’s fibroblasts.

More than 50 patients carrying biallelic variants in 
the RARS2 gene have been described with a wide range 
of clinical manifestations [18–23]. The most common 

features are developmental delay, seizures, progressive 
microcephaly, elevated lactate, atrophy/hypoplasia of 
cerebellar hemispheres and cerebral atrophy [24]. The 
clinical case described here presented with a phenotype 
very similar to previously reported patients harboring 
homozygous deleterious variants[18] or the cases identi-
fied by Li et al. with the same variant (NM_020320.3:c.-
2A > G) [28], although in the absence of clear lactic 
acidosis. The overall clinical similarity, with the func-
tional work, are definitive arguments to define this vari-
ant as a causative and suggest that this type of severe 
loss-function allele is associated with a PCH phenotype. 
An additional patient carrying the same allele was previ-
ously described [31]. For this case, compound heterozy-
gous variants in RARS2 were detected with the Kozak 
variant (i.e., NM_020320.3:c.-2A > G) inherited from 
the mother, and a frameshift variant inherited from the 
father. However, the young age of the patient (i.e., less 
than a year old) and the possible contribution of other 
variants to the neurological phenotype are important 
limitations to interpret the impact of the Kozak variant 
for this specific case.

Interestingly, a recent report showed that even though 
RARS2 is involved in protein translation in the mito-
chondria, the alteration of the energy metabolism may 
not be as central to the phenotype as previously reported 
[27]. The authors showed that at the cellular level, 

Fig. 2 IGV (Integrative Genomics Viewer) track of the variation. The variant NC_000006.11:g.88299677 T > C (NM_020320.3:c.‑2A > G) has been 
detected in a homozygous state in the Patient. The reverse complement sequence is shown
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mitochondrial energetic metabolism defects are not con-
sistently detected. Key clinical features include severe 
neurodevelopmental disorder with early onset-encepha-
lopathy, intractable epilepsy and progressive neurological 
impairment. They also report some common craniofa-
cial dysmorphism including epicanthus, faint eyebrows, 
a high nasal bridge, a bulbous and high nose tip, cupid 
lips, prominent ears and bilateral frontal depression. The 
Dragonfly pattern on MRI can also be found in PCH1B, 
2A, 2B, 2C, 4, 5, and 9 in addition of PCH6 [38]. Even 
though the seizures are common in this phenotype, the 
severity is variable and the patients can present with early 
onset epileptic encephalopathy, even without PCH [22, 
23, 39–43]. This gene has also recently been involved in 
a Finnish cohort of hereditary ataxia [44]. So far, no clear 

genotype–phenotype correlation could be established. 
A recent review of the different RARS2-related clini-
cal manifestations showed that, even though more than 
60% of reported variants are missense, a vast majority of 
these variations (i.e. ~ 85%) are predicted to or have been 
proved to alter splicing or gene expression [23]. Conse-
quently, investigation of the gene but also the protein lev-
els in patient’s cells are likely to have a critical importance 
to decipher the clinical consequences of these variants.

Nucleotides flanking the START codon are necessary 
to allow its proper identification as the translation initia-
tion site (TIS) by the small subunit of the ribosome. In 
eukaryotes, the conserved motif allowing the fixation of 
the small unit of the ribosome is the Kozak consensus 
sequence: 5’-GCC RCC AUG GCG-3’, with the initiation 

Fig. 3 RARS2 mRNA levels and protein levels on fibroblasts. A Real‑time PCR performed on the RNA extracted from fibroblasts. The RARS2 mRNA 
level in the Patient’s fibroblasts is only ~ 46% of the Control’s. The statistical analysis was performed using the SciPy (version 1.9.3) package from the 
Python programming language (version 3.9.15). The RARS2 mRNA levels were compared to those of GAPDH by the ΔΔCt method and based on four 
cell culture replicates and then three technical replicates for each genotype. The Welch’s test (corrected t‑test for unequal variances) was performed 
on the log10 of the fold change. B Quantification of the RARS2 protein levels from the Western blot in 3C and showing a 92.98% decrease in the 
Patient’s fibroblasts compared to Control’s. C Western blotting of RARS2 Patient and Control’s cell lysate using RARS2 (green) antibody. β Actin 
serves as a loading control. Two technical duplicates were loaded for the Patient’s cell lysate as well as for the three different Controls’. The Western 
blot displayed here has been cropped and the full‑length version is presented in Supplementary Fig. 1. Pt = Patient, Ctl = Control
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codon in bold and the R at the position -3 representing a 
purine nucleotide [45]. This sequence is highly conserved 
in eukaryotes, especially across vertebrates. In vitro stud-
ies have revealed that the most critical nucleotides are 
the -3R and the + 4G [46]. Variations from the consen-
sus Kozak sequence can have an impact on the efficiency 
of the translation. As an example, if one of these critical 
nucleotides is substituted, the translation decreases five-
fold to ten-fold [47]. In our case, the nucleotide mutated 
is in -2 of the Kozak sequence, which is less documented 
as being a critical position for translation efficiency. 
However, this nucleotide (A or C) which is in contact 
with the translation initiation factor eIF2 is among the 
most conserved among the Kozak consensus sequences 
of the vertebrates [46]. Interestingly, using dinucleotide 
position weight matrix analysis Noderer et al. detected a 
significant influence of the position -2 that could balance 
less favorable nucleotides at another position [48].

The prediction software TITER doesn’t predict a dif-
ference in RARS2 translation efficacy in the presence 
of the Kozak variant, contrasting with the severe effect 
observed in vitro. This difference could be related to the 
sequence upstream of the Kozak sequence in the RARS2 
gene which might be atypical compared to the data-
set that was used to train the neural network underly-
ing TITER’s predictions. Potentially, it can be related to 
RARS2 promoter localization that overlaps with the gene 
START codon and can generate a specially short 5’UTR 
of 30 nt (NM_020320.3) compared to the median 5’UTR 
size in human of ~ 150 nt [49]. Interestingly, a transla-
tion initiation element distinct from the typical Kozak 
has been identified in mRNAs with very short 5’UTR and 
that also regulates transcription [50]. Although not pre-
sent in RARS2 as such, this element illustrates the exist-
ence of non-typical translation initiation site that can 
complexify the prediction analysis of these sequences.

Currently, only a few patients harboring variants in the 
Kozak sequence have been described in the literature and 
for two of them functional work supports pathogenic-
ity in monogenic context. The first one is an heterozy-
gous Kozak variant located in the -6 nucleotide in HBB, 
associated with another pathogenic variant and respon-
sible for beta-thalassemia in an Italian family [51]. The 
second one is a substitution also in the -6 nucleotide in 
the GATA4 gene that is causing atrial septal defects with 
an autosomal dominant heredity [52]. Additionally, mul-
tiple variants have been described as risk or modifier 
alleles. A Kozak variant located in the -5 nucleotide of 
GP1BA, coding a component of the GP Ib-IX-V recep-
tor complex has been considered a susceptibility factor 
for the development of cardiovascular disease [53, 54]. 
The NM_000505.3:c.-4  T > C transition in the Coagula-
tion factor XII (F12) gene is a common polymorphism 

which is considered to be disease-modifier in hereditary 
angioedema [55]. The NM_001154.4:c.-1C > T transition 
in the ANXA5 gene slightly increases the risk of myocar-
dial infarction in men [56]. A variant at the position -2 in 
one isoform of the GRM3 gene (rs148754219) has been 
considered a risk factor for bipolar disorder [57]. Finally, 
The SNP rs11545028 (NM_016373.4:c.-5C > T) in the 
WWOX gene is associated with oral cancer risk [58]. In 
that case, the variant is also located in the gene promoter, 
and impacts transcription and translation.

Most of the 20 Kozak variants reported in the ClinVar 
database (see Supplementary Table 1) are interpreted as 
variants of unknown significance. The likely underrepre-
sentation of the Kozak variants in the medical literature 
could be related to their annotation as “non-coding vari-
ant” when located in the 5’UTR or as missense variants 
when affecting the nucleotides + 4 to + 6.

Altogether, these observations further stress the need 
of improved tools to analyze these regions as they are 
critical for gene regulation and disrupted by disease-
causing variants.

Conclusion
Through the identification of this additional case, 
this study validates the homozygous RARS2 variant 
NM_020320.3:c.-2A- > G as the molecular cause for this 
severe encephalopathy. Then, we clarified the conse-
quence of this variant on transcription and on protein 
synthesis. This work suggests that some variants located 
in the Kozak sequence, including the -2 position, might 
impact protein translation in a more drastic way than 
expected based on current in silico predictions.
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