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Abstract
Background & aims We aimed to assess the performance of European-derived polygenic risk scores (PRSs) for 
common metabolic diseases such as coronary artery disease (CAD), obesity, and type 2 diabetes (T2D) in the South 
Asian (SAS) individuals in the UK Biobank. Additionally, we studied the interaction between PRS and family history (FH) 
in the same population.

Methods To calculate the PRS, we used a previously published model derived from the EUR population and 
applied it to the individuals of SAS ancestry from the UKB study. Each PRS was adjusted according to an individual’s 
genotype location in the principal components (PC) space to derive an ancestry adjusted PRS (aPRS). We calculated 
the percentiles based on aPRS and stratified individuals into three aPRS categories: low, intermediate, and high. 
Considering the intermediate-aPRS percentile as a reference, we compared the low and high aPRS categories and 
generated the odds ratio (OR) estimates. Further, we measured the combined role of aPRS and first-degree family 
history (FH) in the SAS population.

Results The risk of developing severe obesity for SAS individuals was almost twofold higher for individuals with high 
aPRS than for those with intermediate aPRS, with an OR of 1.95 (95% CI = 1.71–2.23, P < 0.01). At the same time, the risk 
of severe obesity was lower in the low-aPRS group (OR = 0.60, CI = 0.53–0.67, P < 0.01). Results in the same direction 
were found in the EUR data, where the low-PRS group had an OR of 0.53 (95% CI = 0.51–0.56, P < 0.01) and the high-
PRS group had an OR of 2.06 (95% CI = 2.00-2.12, P < 0.01). We observed similar results for CAD and T2D. Further, we 
show that SAS individuals with a familial history of CAD and T2D with high-aPRS are associated with a higher risk of 
these diseases, implying a greater genetic predisposition.

Conclusion Our findings suggest that CAD, obesity, and T2D GWAS summary statistics generated predominantly 
from the EUR population can be potentially used to derive aPRS in SAS individuals for risk stratification. With future 
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Background
Several genome-wide association studies (GWAS) for 
more than 5000 traits in GWAS Catalog [1] have been 
conducted to date, and very few of the GWASs have had 
significant success translating into the clinical setting [2]. 
Hence, it is a significant milestone to translate GWAS 
findings to clinical settings, particularly for traits with 
high heritability. One of the drawbacks of the GWAS 
findings is that the identified genome-wide significant 
SNPs do not have such a large effect size in most cases. 
However, a current approach of combining those SNPs 
to a single score known as a polygenic risk score (PRS) 
has become popular to enhance the accuracy of predict-
ing individuals at risk and has thus shifted the focus of 
the genetic community towards the use of GWAS find-
ings again [3]. PRS can be a precious tool for risk strati-
fication, particularly in identifying groups of people with 
extremely high or low genetic risk of developing a spe-
cific disease or trait. Moreover, based on our recent work 
and others, it has become clear that for certain traits, 
high PRS, along with rare disease-causing variants, can 
further increase the individuals’ risk of developing a dis-
ease compared to carriers without a high PRS [4–7].

Identifying the risk SNPs using GWAS requires a con-
siderable sample size as even most disease-related SNPs 
have relatively small effect sizes. So far, most of the 
larger GWASs have been mainly conducted in individu-
als with European (EUR) ancestries. One of PRS limita-
tions is that it may not be transferable between different 
ancestries [8]. Due to both potential gene-environment 
interactions and population structure the application of 
EUR GWAS derived PRS can be problematic in non-EUR 
populations as it often results in shifted PRS distribution 
[8]. This lack of portability of PRS is due to differences 
in linkage disequilibrium (LD), risk variants, effect sizes, 
and allele frequencies. Further, methods to genotype or 
impute the missing SNPs initially developed with samples 
of EUR ancestry can increase those differences [9]. The 
critical demand to advance polygenic prediction in non-
European populations is not being met, as South Asian 
(SAS) groups, which form the largest ancestry group 
encompassing 23% of the world’s population [10], remain 
significantly underrepresented in existing GWAS studies. 
This underscores the imperative to substantially increase 
their participation in genetic research [11].

Despite ongoing efforts to increase global genetics 
research diversity, it will take still some time to attain suf-
ficient GWAS sample sizes to identify population-specific 
risk SNPs. As mentioned earlier, PRS is a potent tool to 

identify the sub-populations at risk. However, this inabil-
ity to use it across populations with different ancestries is 
an important research topic. Several studies were being 
performed to study the portability of EUR-derived PRSs 
into other ancestries and an SAS specific PRS has been 
developed for CAD using previously published GWAS 
statistics [10]. However, the majority of them had limited 
success [12–14]. The PRS derived from EUR performed 
poorly in African population [15] and similar results were 
observed in a Latino/Hispanic population for some traits 
[16]. While EUR-derived PRSs showed similar results 
for quantitative traits like blood count and anthropo-
metric features, it performed poorly for blood pressure 
traits [17]. Others have shown a connection between PRS 
and genetic ancestry [12, 18]. In other words, the stud-
ies show that applying PRSs derived from the EUR pop-
ulation directly on other ancestries might not be ideal. 
However, few studies used an approach to developing an 
ancestry-adjusted PRS (aPRS) that is mainly derived from 
EUR and can be transferred to other ethnicities [19]. For 
example, a study showed a compromised solution where 
they found a minimal decrease in the prediction power of 
the PRS in SAS compared to EUR [20].

Recently, it has been shown that in breast cancer, the 
PRS derived from EURs with an ancestry correction per-
formed well in the SAS population [14]. However, it is 
still unclear to what extent populations of EUR and SAS 
ancestry share the same genetic underpinnings of such 
cardiometabolic/lifestyle traits, and such an assessment 
is still missing. It is of utmost importance to perform this 
assessment because compared to other ethnicities, SAS 
individuals have an increased susceptibility to coronary 
artery disease (CAD), obesity, and type 2 diabetes (T2D) 
[21]. The interplay between PRS and family history (FH) 
in predicting the risk of various diseases has been a topic 
of interest in recent years [5, 22–24]. Although previous 
studies have examined the independent effects of FH and 
PRS, there is a lack of systematic research on the relative 
contributions and overlap of these factors across different 
types of familial risk in SAS.

Here, we systematically assessed the portability of the 
aPRS derived from EUR ancestry for obesity, CAD, and 
T2D to the SAS population and the interplay of FH and 
PRS in the same individuals. Hence, we used a published 
list of SNPs derived from the PGS catalog [25], then gen-
erated the aPRS and applied it to the EUR and SAS sam-
ples from the UK Biobank (UKB).

GWAS recruiting more SAS participants and tailoring the PRSs towards SAS ancestry, the predictive power of PRS is 
likely to improve further.

Keywords Type 2 diabetes, Family History, South Asians, Polygenic risk, Coronary artery disease
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Methods
Data source
The UKB is a prospective study that collects data over 
a long period and recruits volunteers aged between 40 
and 69, mostly from Scotland, Wales, and England, total-
ing over 500,000 individuals. All participants have pro-
vided written consent and collected data is available for 
research purposes. The UK Biobank Axiom Array was 
used to generate genotyping data, which included around 
850,000 variants and the imputation of over 90  million 
variants [26].

Study cohort
CAD and T2D diagnoses were based on self-reported 
illness codes and international Classification of Dis-
eases (ICD)-10 and ICD-9 diagnosis codes, and Office of 
Population Censuses and Surveys (OPCS-4) procedure 
codes [3]. CAD was defined using ICD-10 codes (I21.X, 
I22.X, I23.X, I24.1, or I25.2), ICD-9 codes (410.X, 411.0, 
412.X, or 429.79), OPCS-4 codes (K40.[1–4], K41.[1–4], 
K45.[1–5], K49.[1–2], K49.[8–9], K50.2, K75.[1–75.4], 
or K75.[8–0.9]), and self-reported illness codes 1075. 
T2D was defined using ICD-10 code E11.X, and self-
reported illness codes 1223. Diagnosis of obesity was 
based on body mass index (BMI), with individuals having 
a BMI > 25 considered obese.

We then estimated genetic ancestries (EUR, and SAS) 
by projecting the samples in the 1000 genome project 
(1KGP) principal component (PC) spaces, while consid-
ering 1KGP superpopulations as a reference. The UKB 
conducted quality control for the genetic data, and the 
UKB processed files were used in downstream analysis. 
We analyzed individuals of EUR and SAS ancestry, and 
samples with discordant genotypic versus reported sex, 
sex chromosome aneuploidy, and high heterozygosity 
or missing genotype rates were considered as outliers 
(coded as “YES” in the fields 22,001, 22,019, and 22,027 
respectively) and excluded from further analysis. We 
included only individuals who are unrelated up to the 
second degree, and from each pair of related individu-
als, one member was randomly retained (kinship coeffi-
cient > 0.0884, according to the UKB).

Polygenic risk score analysis
PRSs were calculated using panels of SNPs identi-
fied in the previous studies [3, 27] and the effect sizes 
were downloaded from PGS catalog [21] using the ids 
PGS000027, PGS000013, PGS000014 for BMI, CAD 
and T2D respectively. PRSice-2 was used to generate the 
PRS, which account automatically for allele-flipping and 
removing ambiguous SNPs [28]. Strand-ambiguous SNPs 
are the ones with A/T or C/G alleles. Since many GWAS 
studies do not report the strand assignments, it is a stan-
dard practice in PRS calculations to exclude ambiguous 

SNPs. Since we already obtained the list of SNPs for the 
PRS calculation, we utilized the ‘–no clumping’ and ‘–no 
regress’ parameters along with the other default param-
eters, to bypass the time-consuming steps of regression 
and clumping. PRS values were standardized using the 
mean and standard deviation for the whole data.

Adjustment of PRS
Based on an previously applied approach [5, 19] to 
reduce the variation in the PRS distribution due to 
genetic ancestry, we calculated an adjusted PRS (aPRS). 
A linear regression model was fitted using the PRS as the 
outcome variable and the first four PC derived from UKB 
as covariates (PRS ~ PC1 + PC2 + PC3 + PC4). A predicted 
PRS was calculated based on this model. Finally, the aPRS 
was calculated by subtracting the predicted PRS from the 
raw PRS and standardized using the mean and standard 
deviation.

Statistical analysis
To investigate the association of aPRS and disease risk, 
we used logistic regressions with the occurrence of the 
disease as an outcome, i.e., separate logistic regressions 
for CAD, T2D, and obesity, respectively. All analyses 
were done for SAS and EUR populations separately.

First, we used aPRS as a continuous variable and 
adjusted the model for age, sex, and the first four PCs 
corresponding to the model

 

logit (P (Y = 1)) = β0 + βaPRSaPRS + βsexsex

+βageage +
4∑

k=1
βPCk

PCk

with Y = 1 corresponding to the occurrence of the dis-
ease (CAD, T2D or obesity). Adjusted odds ratios (ORs) 
were calculated as OR = exp (βaPRS).

Second, we categorized the aPRS into three groups: low 
aPRS, intermediate aPRS, and high aPRS. We used the 
percentiles of the aPRS distribution in the SAS and EUR 
populations, respectively. SAS individuals were assigned 
to the “low” aPRS group if their aPRS fell below the 20th 
percentile (“< 20%”) of the aPRS distribution in the SAS 
population and to the “high” aPRS group if their aPRS fell 
above the 80th percentile (“> 80%”) of the aPRS distri-
bution in the SAS population. The remaining SAS indi-
viduals were assigned to the “intermediate” aPRS group 
(“20%-80%”). The same was done for EUR individuals 
based on the aPRS distribution in the EUR population.

Then we replaced the continuous aPRS variable in the 
logistic regression by the aPRS group using the “interme-
diate” aPRS group as the reference category, i.e., we used 
the model
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logit (P (Y = 1)) = β0 + βaPRSlow
aPRSlow

+βaPRShigh
aPRShigh + βsexsex

+βageage +
4∑

k=1
βPCk

PCk

with aPRSlow = 1 , if the individual is in the low aPRS 
group and 0 otherwise (analogous for aPRShigh ). 
Adjusted ORs for disease occurrence when being in the 
low or high aPRS group compared to the intermediate 
aPRS group were calculated as OR = exp

(
βaPRSlow

)
 and 

OR = exp
(
βaPRShigh

)
 respectively.

Finally, to determine the combined effect of aPRS 
and family history (FH), we reclassified the three aPRS 
groups into six groups based on FH status. FH was 
defined as positive (and encoded as FH = pos ) or nega-
tive (encoded as FH = neg) whether the individual has FH 
of the corresponding disease in parents or siblings. For 
example, individuals with high aPRS and positive family 
history are encoded as aPRShighFHpos. We then fitted the 
logistic regression model

 
logit (P (Y = 1)) = β0 + βaPRSlowFHposaPRSlowFHpos

+βaPRSlowFHnegaPRSlowFHneg

+βaPRSintFHposaPRSintFHpos

+βaPRShighFHnegaPRShighFHneg

+βaPRShighFHposaPRShighFHpos

+βsexsex + βageage +
4∑

k=1
βPCk

PCk.

The reference category is then given by individuals with 
intermediate aPRS and without positive FH. The adjusted 
OR for the occurrence of disease of individuals with, e.g., 
high aPRS and positive FH compared to the reference 
category is then estimated by OR = exp

(
βaPRShighFHpos

)

.

Model performance
For assessing the performance of the different models, 
the area under the curve (AUC) was used. The R pack-
age pROC was used to compute the AUC with 95% con-
fidence intervals (CIs), and AUC. We randomly divided 
the data into (75%) training and (25%) testing datasets. 
Logistic regression models were fitted on the training 
data set, and model prediction and AUC calculations 
were made using the testing data set by applying the cor-
responding models. Additionally, we measured the area 
under Precision-Recall (PR) curve (AUPRC) using the R 
package PRROC to address the challenge of imbalanced 
datasets. Since case-controls ratios for T2D, and CAD 
were substantially higher in the SAS than EUR samples, 
for additional validation of our models we performed 
down sampling for SAS population to achieve the same 

case-control ratios. While for obesity, case-control ratio 
was roughly the same between both populations.

Survival analysis
To calculate the cumulative lifetime risk based on aPRS 
strata and FH status, a Cox proportional hazard model 
was used. Again, separate models were fitted for each 
phenotype (CAD, T2D, and obesity) respectively. The 
occurrence of the disease was considered as the event 
variable. At the same time, age served as the time scale, 
i.e., the age at diagnosis was considered as event time 
for observed cases and the age at the most recent visit 
for censored control. Adjusted survival curves were pro-
duced considering the aPRS group, age, sex, FH, and the 
first four ancestry PCs. We used the Schoenfeld individ-
ual test to test the proportional hazard assumption for 
each variable. R packages survival and survminer were 
used to perform Cox proportional hazard models and 
test the proportional hazard assumption, and R 4.2.2 was 
used for all statistical calculations.

Results
UK biobank dataset description
We identified a total of 24,156 CAD cases among indi-
viduals of EUR ancestry and 822 SAS cases, with a mean 
age of 61.51 and 58.71 years at recruitment, respectively. 
The remaining individuals were considered controls. For 
T2D, we identified 25,526 cases among EUR individu-
als and 1,718 cases among SAS individuals, with a mean 
age of 60.39 and 57.42 years, respectively. For obesity 
(BMI > 25), we identified 301,385 EUR and 5,690 SAS 
cases, with a mean age of 55.73 and 53.80 years, in EUR 
and SAS, respectively (Table 1).

In the SAS population, CAD cases were more com-
mon in individuals a positive FH of CAD than individuals 
without FH of CAD with OR 1.98 [1.70–2.31], P < 0.01. 
Moreover, T2D was diagnosed significantly more fre-
quently in individuals with a positive FH of T2D than in 
individuals without FH of T2D (OR = 2.09 [1.86–2.34], 
P < 0.01).

Ancestry correction and PRS distribution within the UKBB 
cohort
When studying individuals of a particular ancestry, it is 
crucial to apply ancestry correction using principal com-
ponents (PCs) derived from the reference population. 
Figure 1 illustrates the effect of this step; while the PRS 
distributions are shifted horizontally for EUR and SAS 
populations, the ancestry correction ensures zero-cen-
tered aPRS distributions for each population. However, 
when using only PRS without ancestry correction, we 
observed a striking difference in the number of individ-
uals assigned to high PRS (where high PRS was defined 
as an individual belonging to a PRS percentile > 80%). 



Page 5 of 11Hassanin et al. BMC Medical Genomics          (2023) 16:164 

Specifically, there were significant variations between 
ethnic groups (EUR and SAS). In cases where matched 
reference controls are available, ancestry correction 
might not be necessary. However, due to the underrep-
resentation of SAS populations in current genetic stud-
ies, it is crucial to explore alternative approaches when 
ancestry-matched reference controls are not accessible. 
This will ensure more accurate and applicable results for 
diverse populations. For example, 18.5% of EUR samples 
(83,955/452,766) had a high PRS, while almost all SAS 
samples (96.2%, 8,331/8,664) showed a high PRS. How-
ever, applying aPRS reduced this variation. For instance, 
20% of EUR samples (90,627/452,766) and 19.2% of SAS 
samples (1,659/8,664) had a high aPRS, leading to a more 
comparable distribution of PRS across ethnic groups. 
Similar results have been observed for CAD and obesity 
as well (Table 2). Our findings are in line with a previous 
study where they showed that ancestry correction is cru-
cial to place an individual in the correct aPRS percentile 
for disease risk prediction [20].

Performance of aPRS on SAS individuals and association 
with disease development
Our analysis revealed that the models incorporating both 
adjusted polygenic risk scores (aPRS) and covariates have 
improved performance compared to the models based 
solely on covariates. This was evident from the higher 
AUC values for all three conditions -  obesity, coronary 
artery disease (CAD), and type 2 diabetes (T2D) - when 
aPRS was included in covariates models. Specifically, for 
obesity, the AUC increased from 0.56 (95% CI, 0.55–0.57) 
to 0.63 (95% CI, 0.62–0.86); for CAD, it rose from 0.76 
(95% CI, 0.75–0.78) to 0.79 (95% CI, 0.77–0.8); and for 
T2D, it increased from 0.67 (95% CI, 0.66–0.68) to 0.69 
(95% CI, 0.68–0.7) (Fig. 2). These improvements in AUC 
values suggest that incorporating aPRS into the mod-
els enhances their ability to discriminate between cases 
and controls for obesity, CAD, and T2D. Following the 
downsampling process outlined in the methods section, 
we did not identify any substantial differences in the per-
formance of the model Supplementary Fig. 1.

Additionally, we observed improvements in the Area 
Under the Precision-Recall Curve (AUPRC) values for 
all three conditions when aPRS was incorporated into 
the models. The detailed AUPRC values can be found 
in Supplementary Fig. 2, which highlights the enhanced 
precision-recall balance achieved by including aPRS in 
the models. This further supports the conclusion that 
aPRS is a valuable addition to the models for predicting 
the risk of obesity, CAD, and T2D. AUROC and AUPRC 
values are provided in Supplementary Fig. 2. The models 
performance in EUR and SAS showed similar trends for 
AUROC Supplementary Fig. 3 and AUPRC Supplemen-
tary Fig. 4.Ta
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Disease association with aPRS categorization in South 
Asians
Our investigation into the performance of aPRS on 
SAS individuals revealed an increasing in the risk of 

developing coronary artery disease (CAD) based on 
aPRS categorization. Individuals with a low aPRS dem-
onstrated significantly reduced odds of developing CAD, 
with an odds ratio (OR) of 0.56 (95% CI: 0.45–0.7), indi-
cating a lower risk than the reference group. Conversely, 
those with a high aPRS exhibited an elevated CAD risk, 
with an OR of 1.72 (95% CI: 1.44–2.05).

Similarly, in the SAS population, the association 
between aPRS categorization and obesity risk showed 
similar results. Individuals in the high aPRS group had 
an OR of 1.95 (95% CI = 1.71–2.23) compared to those in 
the intermediate aPRS group. Regarding type 2 diabetes 
(T2D), the high aPRS group in the SAS population had 
an OR of 1.55 (95% CI, 1.36–1.77) (Fig.  3). While com-
paring with the EUR individuals a similar trend has been 
observed Supplementary Fig. 5.

Association of CAD and T2D with family history and aPRS
Individuals with a positive FH and high aPRS showed a 
higher risk of developing CAD than those with no FH 

Table 2 Comparison of the distribution of high (a) PRS (defined 
as PRS percentile > 80%). Coronary artery disease (CAD), type 2 
diabetes (T2D), European (EUR), South Asian (SAS), Adjusted (a) 
polygenic risk scores (PRS)

Ancestry 
correction

EUR samples 
with High PRS

SAS samples 
with High 
PRS

T2D PRS 83,955 (18.5%) 8331 (96.2%)

adjusted PRS 
(aPRS)

90,627 (20%) 1659 (19.2%)

CAD PRS 89,438 (19.8%) 2,848 (32.9%)

adjusted PRS 
(aPRS)

90,440 (20%) 1,846 (21.3%)

Obesity PRS 85,853 (19%) 6433 (74.3%)

adjusted PRS 
(aPRS)

90,794 (20.1%) 1492 (17.2%)

Fig. 1 The distribution of PRSs before and after ancestry corrections across the various diseases. European (EUR), South Asian (SAS), coronary artery dis-
ease (CAD), type 2 diabetes (T2D), and adjusted polygenic risk scores (aPRS).
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and intermediate aPRS (Fig. 4). In SAS, those with both 
positive FH and high aPRS had a more than three-fold 
increased chance of developing CAD compared to those 
with intermediate aPRS and no FH, while individuals 
with a low aPRS and no FH showed a reduced chance of 
developing CAD with an OR of 0.63 (95%,0.48–0.91). No 
significant interaction was observed between FH status 
and PRS p = 0.11, respectively) (Fig.  4). Notably, in both 
SAS and EUR, individuals with negative FH and high 
aPRS had comparable risks of developing CAD as those 
with positive FH and intermediate aPRS (2-fold risk) 
Supplementary Fig. 6. The same trend was also shown in 
T2D.

Cox-proportional hazard analysis
For the cox-proportional hazard, the Schoenfeld tests 
conducted on each covariate and the global test do not 
yield statistically significant results. Consequently, we 
can reasonably conclude that the assumption of propor-
tional hazards is not violated Supplementary Table 1.

The cumulative CAD incidence among SAS with posi-
tive FH increased from 46% with low aPRS to 75% with 
high aPRS by age 70 (Fig.  5). Notably, SAS individu-
als with an intermediate aPRS and a positive FH had a 
cumulative CAD incidence by age 70 (65%) comparable 
to those with a high aPRS and a negative FH (63%). The 
cumulative incidence of T2D among SAS individuals 
ranges from 58% with a negative FH and low aPRS to 95% 
with a positive FH and high aPRS (Fig. 5). The cumulative 

Fig. 2 Comparison of different models and their corresponding AUCs among South-Asian (SAS) population. Ancestry adjusted PRS (aPRS), First degree 
family history (FH) and covariates (age, sex, first four principal components). European (EUR), coronary artery disease (CAD), type 2 diabetes (T2D).
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incidence of T2D among individuals with high aPRS of 
SAS ancestry (95%) was higher than EUR individuals 
(70%) in the corresponding aPRS groups Supplementary 
Fig. 7.

Discussion
Extending the previous studies, we aimed to assess the 
performance of EUR-derived PRSs in the SAS population 
and explore the relationship between PRS and FH in con-
tributing to the burden of CAD, T2D, and obesity. The 
results of this study, utilizing UK Biobank data, suggest 
that an aPRS derived from a large-scale GWAS of car-
diometabolic diseases in individuals of European (EUR) 
ancestry could potentially identify those with an elevated 
risk of disease predisposition in the South Asian (SAS) 

population, albeit with a reduced performance observed 
in the EUR ancestry group. Additionally, the aPRS may 
identify SAS individuals with increased risk for T2D and 
CAD independent of their FH.  Among high aPRS indi-
viduals with positive FH, we noticed an increased cumu-
lative incidence in individuals of SAS ancestry compared 
to EUR individuals stratified by PRS (Fig. 5).

It has been shown that the UKB is a valuable resource 
for evaluating the utility of PRS, as it provides both phe-
notypic and genotypic data [29]. While most UKB partic-
ipants have EUR ancestry, the dataset involves more than 
20,000 participants of self-reported non-EUR.

However, a major challenge with using PRS in clini-
cal settings is that the distribution of genetic variants 
can vary widely among different ethnic populations [8]. 
This can result in inaccurate disease risk predictions and 
hinder the validation of PRS in diverse populations (see 
Fig. 1). The observed dissimilarity between the distribu-
tions for EURs and SASs highlights the need to adjust for 
the correct ancestral background to accurately assign an 
individual to their respective percentile within the refer-
ence distribution.

We have used population structure adjustment [20] to 
address this issue, accounting for the genetic differences 
between different populations when calculating PRS. By 
adjusting for population structure, we minimized the 
impact of genetic variability on the accuracy of PRS pre-
dictions and facilitate the validation of PRS in diverse 
populations.

The generalizability of the study’s findings is subject 
to limitations stemming from several factors. The study 
participants were recruited exclusively within the UK, 
including individuals of EUR and SAS ancestry. Thus, 
healthcare access and non-genetic risk factors may be 
more comparable among these ethnic groups as they 
would be expected using two cohorts recruited in EUR 
and SAS separately. Nevertheless, it is important to 
acknowledge that socioeconomic determinants, lifestyle 
choices, and health disparities may differ across various 
ethnic groups, even living in the same region. Although 
certain risk variants are likely specific to certain popula-
tions, the findings indicating the similar performance of 
the PRS across ancestry groups suggest that non-EUR 
groups, including SAS, may share some of the identified 
risk variants found in EUR-based GWAS for cardiometa-
bolic disorders.

The findings of our study reveal that a higher PRS was 
associated with an increase in obesity, T2D, and CAD 
cases among individuals of SAS ancestry. However, the 
performance of the EUR-based PRSs was less effective in 
the African (AFR) population, suggesting the existence 
of ancestry-specific differences [30]. Hence, PRSs should 
be evaluated carefully by ancestry groups to assess their 
transferability across ancestries and diseases. Whenever 

Fig. 3 Odds ratio for CAD, and T2D based on the categorization of based 
on the adjusted polygenic risk scores (aPRS) percentile in the South Asian 
(SAS) population of the UK Biobank. Coronary artery disease (CAD), type 2 
diabetes (T2D). If a p-value is less than 0.01, it is flagged with two stars (**)
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Fig. 5 Cumulative incidence of CAD, T2D, and obesity based on the categorization of based on the adjusted polygenic risk scores (aPRS) percentile and 
family history (FH) status in the South Asian (SAS) population of the UK Biobank. Coronary artery disease (CAD), type 2 diabetes (T2D).

 

Fig. 4 Odds ratio for CAD, and T2D based on the categorization of based on the adjusted polygenic risk scores (aPRS) percentile and family history (FH) 
status in the South Asian (SAS) and European (EUR) population of the UK Biobank. Coronary artery disease (CAD), type 2 diabetes (T2D), and adjusted 
polygenic risk scores (aPRS). If a p-value is less than 0.01, it is flagged with two stars (**)
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possible, PRS should be constructed based on GWAS 
based on the same ancestry group [31].

PRS derived from EUR GWAS may not be optimal for 
all diseases in non-EUR populations, but they can still 
offer some value in risk assessments for specific condi-
tions [32]. Postponing implementation until ancestry-
specific GWAS or multi-ancestry meta-analyses become 
available could unintentionally widen health disparities 
across various populations. In the meantime, while larger 
non-European cohorts are being established, our study 
illustrates that employing an adjusted PRS based on a 
EUR GWAS population can provide a limited level of risk 
categorization for metabolic traits in SAS individuals. 
However, additional validation is required to ascertain its 
efficacy.

The increasing availability of data from larger and more 
diverse populations, coupled with technological advance-
ments, has spurred interest in the clinical adoption of 
PRS. Recent research has demonstrated that combin-
ing clinical risk scores with PRS can help identify more 
people at risk of developing T2D, especially in SAS 
populations. Our study provides a potential model for 
laboratories and health systems seeking to utilize a EUR-
derived PRS in SAS populations. Additionally, our study 
contributes to the literature that supports using PRS and 
FH as complementary measures in assessing inherited 
disease susceptibility for T2D and CAD [5].

One of the key findings of our study is the potential 
improvement in risk prediction when combining family 
history with PRS [33]. Several theoretical bases support 
this notion. Family history might reflect the presence of 
rare genetic variants that are not included in PRS as they 
are typically constructed from common genetic variants. 
Additionally, family members often share similar envi-
ronments and lifestyles, which can contribute to disease 
risk and may be captured by family history. This shared 
environment can also influence gene-environment inter-
actions, another potential risk factor for disease. Fur-
thermore, the disease penetrance, or the likelihood that 
an individual carrying a particular genetic variant will 
manifest the disease, can also be impacted by family his-
tory. Integrating PRS and family history can offer a more 
holistic estimate of disease risk, encompassing additional 
genetic and environmental factors. However, the degree 
to which this combination improves risk estimation 
depends on the disease and populations under study.

Conclusion
Taken together, our study provides preliminary evidence 
that EUR-derived PRSs might be useful to identify indi-
viduals at high risk of T2D, obesity, and CAD in the SAS 
populations. With future GWAS recruiting more SAS 
participants and tailoring the PRSs towards SAS ances-
try, the predictive power of PRS is likely to improve 

further. Further, we explored the importance of consid-
ering both polygenic risk and family history in assessing 
disease risk in clinical practice. Such an integration could 
potentially improve risk prediction and provide personal-
ized prevention and management strategies for the com-
mon non-communicable diseases. Further research is 
needed to assess the clinical utility and cost-effectiveness 
of implementing these measures in diverse populations.
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