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Abstract 

Background NF-κB signaling pathway participate closely in regulating inflammation and immune response in many 
cancers. Long non-coding RNAs (lncRNAs) associated with NF-κB signaling have not been characterized in cervical 
cancer. This study revealed the linkage between tumor microenvironment and NF-κB signaling-associated lncRNAs 
in cervical cancer.

Materials and methods The expression profiles of cervical cancer samples from The Cancer Genome Atlas (TCGA) 
database were downloaded. NF-κB signaling-associated lncRNAs were screened as a basis to perform molecular 
subtyping. Immune cell infiltration was assessed by ESTIMATE, Microenvironment Cell Populations (MCP)-counter 
and single sample gene set enrichment analysis (ssGSEA). The key NF-κB signaling-associated lncRNAs were identified 
by univariate analysis, least absolute shrinkage and selection operator, and stepAIC.

Results Three molecular subtypes or clusters (cluster 3, cluster 2, and cluster 1) were categorized based on 27 prog-
nostic NF-κB signaling-associated lncRNAs. Cluster 2 had the worst prognosis, highest immune infiltration, as well 
as the highest expression of most of immune checkpoints. Three clusters showed different sensitivities to immuno-
therapy and chemotherapy. Six key NF-κB signaling-associated lncRNAs were screened to establish a six-lncRNA risk 
model for predicting cervical cancer prognosis.

Conclusions NF-κB signaling-associated lncRNAs played an important role in regulating immune microenvironment. 
The subtyping based on NF-κB signaling-associated lncRNAs may assist in the selection of optimal treatments. The 
six key NF-κB signaling-associated lncRNAs could act as prognostic biomarkers in prognostic prediction for cervical 
cancer.

Keywords Cervical cancer, NF-κB signaling, Tumor microenvironment, Immunotherapy, Risk model, Long non-
coding RNAs

Introduction
Cervical cancer is the fourth diagnosed cancer type in 
females, contributing to 604,127 (3.1% of all cancers) 
new cancer cases and 341,831 (3.4% of all cancers) new 
cancer deaths worldwide in 2020 [1]. The main risk 
factor of cervical cancer is chronic infection by human 
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papilloma virus (HPV) [2]. Tobacco smoke is also an 
important risk factor for invasive cervical cancer and 
cervical intraepithelial neoplasia of grade 3/carcinoma 
in  situ [3]. HPV vaccines have been developed as an 
effective strategy for preventing HPV especially for 
human papillomavirus type 16 and 18. However, due to 
a long-time latency from HPV infection to malignancy, 
still a number of cervical cancer patients can develop.

The application of chemotherapy to radiation therapy 
(CRT) reaches a markedly improvement in disease-free 
and overall survival [4]. Nevertheless, CRT functions 
weak in the patients with late stages (stage III/IV) or 
lymph node metastases. Currently, various strategies 
such as adoptive T-cell therapy and immune check-
point inhibition (ICI) have been developed to treat 
advanced cervical cancer [5, 6]. The efficiencies of 
immunotherapy vary greatly across individuals because 
of complicated tumor microenvironment (TME) [7, 8]. 
Therefore, it is essential to exploit efficient biomarkers 
for predicting the prognosis as well as the efficiency to 
clinical therapy in cervical cancer patients. Currently, 
the most widely used and studied biomarkers for cer-
vical cancer are HPV DNA in cervical epithelial cells 
and p16INK4a protein and Ki-67 detected by immu-
nohistochemistry [9]. A large number of reports have 
described biomarkers for cervical cancer, but studies is 
insufficient. Under realistic pressure, research efforts 
have been made to personalize cancer markers as indi-
cators of specific cancer events [10].

Critical role of nuclear factor kappa B (NF-κB) in 
promoting tumor cell proliferation, inhibiting apopto-
sis, and triggering epithelial-mesenchymal transition 
(EMT), and inducing metastasis has been revealed 
[11]. Elevated NF-κB activity contributes to increased 
levels of pro-inflammatory cytokines that lead to 
pro-tumorigenic microenvironment. Thus, NF-κB 
signaling pathway is considered as a potential thera-
peutic target for cancer therapy [12]. The regulation 
of NF-κB signaling pathway has been discovered to be 
linked with long non-coding RNAs (lncRNAs) such as 
NKILA, MALAT1, and HOTAIR [13]. The exploration 
of lncRNAs in the regulation of NF-κB signaling accel-
erates the discovery of new therapeutic interventions. 
Consequently, it is of a great value to explore the 
potential lncRNAs related to NF-κB signaling path-
way and cervical cancer progression. In this study, 
we identified different molecular subtypes based on 
NF-κB signaling-associated lncRNAs and the subtypes 
manifested different prognosis and response to immu-
notherapy. This study built a risk model with six key 
NF-κB signaling-associated lncRNAs for effectively 
predicting cervical cancer prognosis.

Materials and methods
Data acquisition and preprocessing
We accessed the expression profiles and clinical informa-
tion of cervical cancer from The Cancer Genome Atlas 
(TCGA) database (https:// portal. gdc. cancer. gov/ proje 
cts/ TCGA- CESC) [14] through Sangerbox platform [15]. 
Tumor samples were retained and samples without sur-
vival information were eliminated. ENSG was matched to 
Gene Symbol. The clinical information of TCGA dataset 
was shown in Table S1. Gene transfer format (GTF) file 
(v32) from GENCODE (https:// www. genco degen es. org/) 
was downloaded. LncRNAs and mRNAs in TCGA data-
set were annotated according to the GTF file. The gene 
sets in NF-κB signaling pathway were downloaded from 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database (https:// www. genome. jp/ kegg/) [16].

Identification of NF‑κB signaling pathway‑associated 
lncRNAs
To identify the potential lncRNA regulators of NF-κB 
signaling pathway, according to previous studies, we 
developed an integrated pipeline [17, 18]. All the mRNAs 
were ranked based on their correlation with a specific 
lncRNA (adjusted by tumor purity calculated by ESTI-
MATE algorithm [19]). Gene set enrichment analy-
sis (GSEA) in “fgsea” R package was used to investigate 
enrichment of genes of NF-κB signaling pathway. For 
all lncRNAs, enrichment score of NF-κB signaling path-
way (TES) was measured. According to the permuta-
tion test framework, lncRNAs with significant TES were 
determined as the NF-κB signaling pathway-associated 
lncRNAs.

For lncRNA and mRNA expression matrix, 
LNC(i) = (lnc1, lnc2, …, lncn) and M(j) = (m1, m2, …, 
mn) were used to define lncRNA i and mRNA j within n 
patents, respectively. Tumor purity across n patients was 
defined as P = (p1, p2, …, pn) applying “ESTIMATE” R 
package. After removing the effects of tumor purity, the 
first-order partial correlation coefficient (PCC) was cal-
culated between lncRNA i and mRNA j:

Rmp, Rlncp, and Rlncm referred to the Pearson cor-
relation coefficients between mRNA j and tumor purity 
p, lncRNA i and tumor purity p, lncRNA i and mRNA j, 
respectively. Then, the P-value of PCC(ij) labeled as P(ij) 
was determined as follow:n was defined as the number of 
samples, and pnorm was the normal distribution function. 
For lncRNA i, the rank index (RI) of mRNA j was calcu-
lated as follows: RI ij = −ln(P ij ∗ sign(PCC(ij))).

Sign function refers to an odd mathematical function to 
extract the signs of PCC(ij). All mRNAs were ranked and 
subjected to GSEA according to the descending order of 
RI. The genes of NF-κB signaling pathway signaling were 
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mapped to the list of ordered genes. For lncRNA i, “fgsea” 
R package calculated the enrichment score (ES) and 
P-value (adjusted by FDR), which were integrated into a 
TES: TES(i) = (1− 2Pi) ∗ sign(ESi).

The range of TES was from -1 to 1. The lncRNAs 
with |TES|> 0.99 and false discovery rate (FDR) < 0.05 
were determined as NF-κB signaling pathway-asso-
ciated lncRNAs (abbreviated as NF-κB-associated 
lncRNAs).

Identification of molecular subtypes based 
on NF‑κB‑associated lncRNAs
The expression profiles of NF-κB-associated lncRNAs 
were the input in conducting unsupervised consensus 
clustering performed by ConsensusClusterPlus R pack-
age [20]. PAM algorithm and Spearman correlation were 
used as a distance for conducting 500 times of bootstraps 
with each one including 80% of TCGA samples. Cluster 
number k was between 2 and 10. Cumulation distribu-
tion function (CDF) curves and consensus matrix deter-
mined the optimal cluster number.

Assessment of immune characteristics
ESTIMATE, Microenvironment Cell Populations (MCP) 
-counter, and single sample GSEA methodologies were 
applied to assess immune cell infiltration. ESTIMATE 
algorithm calculated immune score, stromal score and 
ESTIMATE score [19]. MCP-counter analyzed the esti-
mated proportion of 10 immune-related cells [21]. Single 
sample GSEA assessed the enrichment of 22 immune-
correlated cells through GSVA R package [22]. In addi-
tion, TIDE algorithm was used for immunotherapy 
response prediction based on T cell status and infiltra-
tion of immunosuppressive cells. Gene signatures of 
interferon-γ and cytolytic activity (CYT) were obtained 
from previous studies [23, 24].

Establishment of a risk model based on NF‑κB‑associated 
lncRNAs
Firstly, univariate Cox regression analysis screened the 
lncRNAs significantly related to overall survival under 
P < 0.05 (defined as prognostic NF-κB-associated lncR-
NAs). TCGA dataset was randomly assigned into testing 
and training sets at a ratio of 1:1. Least absolute shrink-
age and selection operator (Lasso) regression analysis 
[25] and stepwise Akaike information criterion (stepAIC) 
[26] were employed to decrease the number of prognos-
tic NF-κB-associated lncRNAs and retain the key lncR-
NAs. The NF-κB-related risk model was determined as:
Riskscore =

∑n
i=1

(Coef i ∗ Expi) , where coefficients 
(coef ) were obtained from Lasso, i indicates genes, 
and exp indicates the expression levels of genes. The 
performance of the risk model was evaluated using 

Kaplan–Meier survival analysis and receiver operation 
characteristic (ROC) curve analysis.

Statistical analysis
All statistical analysis was performed in R software 
(v4.2.0). ANOVA was used to examine the difference 
among three groups. Wilcoxon test was used to exam-
ine the difference between two groups. Log-rank test was 
conducted in survival analysis and Cox regression analy-
sis. P < 0.05 was determined to have statistical difference.

Results
Identification of molecular subtypes based on lncRNAs 
associated with NF-κB signaling pathway.

The lncRNAs related to NF-κB signaling pathway were 
identified referring to a pipeline developed by Li et  al. 
[17]. The process could be briefly described as follow-
ing steps (see the details in the Materials and Methods). 
Firstly, mRNA and lncRNA expression profiles of cervi-
cal cancer samples in TCGA dataset were included. Then 
tumor purity was calculated for each sample and mRNAs 
were ranked by their correlation with lncRNAs. Next, 
GSEA was used to judge whether the genes of NF-κB 
signaling pathway signaling were enriched. Finally, TES 
was calculated for all lncRNAs, and the lncRNAs with 
TES > 0.99 and FDR < 0.05 were determined as NF-κB-
associated lncRNAs. A total of 149 lncRNAs were finally 
screened and the GSEA results of partial lncRNAs were 
visualized in Figure S1.

Subsequently, we performed univariate Cox regres-
sion to identify prognosis-related lncRNAs, and found 
that 27 NF-κB signaling pathway-associated lncRNAs 
were significantly linked to the overall survival in TCGA 
dataset (P < 0.05) (Figure S2). Based on these 27 lncR-
NAs, we clustered samples into different clusters through 
unsupervised consensus clustering. Cluster number k = 3 
was determined as the optimal according to CDF curve 
and consensus matrix (Fig.  1A-C). Ultimately, samples 
were assigned into three molecular subtypes or clusters 
(cluster 1–3). Three clusters had distinguished survival, 
with that cluster 1 showed the worst prognosis while 
cluster 2 showed the longest overall survival (P = 0.0013, 
Fig.  1D). Cluster 2 had significantly higher enrichment 
score of NF-κB signaling pathway than other two clus-
ters (P < 0.0001, Fig. 1E), suggesting that NF-κB signaling 
pathway may play an oncogenic role in cervical cancer.

Differentially expressed genes (DEGs) and clinical features 
for three NF‑κB‑associated clusters
Limma package was subjected to conduct differential 
expression analysis between each NF-κB-associated 
cluster in TCGA-CESE database and other samples 
in the dataset, DEGs was screened with log2(1.2) & p 
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value < 0.05 as the threshold value. In the TCGA-CESE 
database, 301 DEGs existed between cluster 1 sam-
ple and the remaining sample, and 120 DEGs existed 
between cluster 2 sample and samples except this clus-
ter, and 307 DEGs existed between cluster 3 samples 
and samples that do not belong to this cluster (Figure 
S3A). Only 1 of these 3 types of DEGs was identical 
(Figure S3B). Clinical features, including age, grade, 
T, N, M stage and stage did not show significant dif-
ferences among the 3 NF-κB-associated clusters. The 
distribution of immune subtypes in the three NF-κB-
associated clusters was significantly different. Although 
the main immune subtypes were C1 and C2, the pro-
portion of C1 in cluster 1 was significantly higher than 
that in cluster 2 and cluster 3, and the proportion of C1 

distributed in cluster 3 was significantly higher than 
that in cluster 2 (Figure S3C).

Immune characteristics of three NF‑κB‑associated clusters
To clarify the TME in different clusters, we applied three 
methodologies including ESTIMATE, MCP-counter, and 
ssGSEA to evaluate immune cell infiltration. ESTIMATE 
result showed that three clusters had different immune 
and stromal infiltration, where cluster 2 had the highest 
infiltration of immune cells and stromal cells (P < 0.0001, 
Fig. 2A, B). MCP-counter and ssGSEA revealed that most 
of immune cells were differently enriched in three clus-
ters, and cluster 2 had the highest enrichment of most of 
immune cells, for instance, monocytes, CD4 T cells, reg-
ulatory T cells, CD8 T cells, myeloid-derived suppressor 

Fig. 1 Identification of molecular subtypes based on NF-κB-associated lncRNAs in TCGA dataset. A-B CDF curves and the area under CDF curves 
when cluster number k = 2 to 10. C Consensus matrix when k = 3. D Kaplan–Meier survival curve of cluster 1, cluster 2, and cluster 3. Log-rank test 
was conducted. E The enrichment score of NF-κB signaling pathway of three clusters. ANOVA was conducted. ns not significant. ****P < 0.0001
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cells (MDSCs), macrophages (Fig. 2C, D). The heat map 
of ESTIMATE, MCP-counter, and ssGSEA results were 
shown in Fig. 2E. It could be evidently observed that clus-
ter 2 was highly infiltrated of immune cells. Addition-
ally, we evaluated the levels of IFN-γ, the scores of T cell 
receptor (TCR), cytolytic activity (CYT), B cell receptor 
(BCR) by ssGSEA. The results showed that cluster 2 had 
the highest scores of IFN-γ, CYT, TCR, and BCR (Fig. 2E-
H), indicating that cluster 2 had a potentially activated 
immune response. Moreover, cluster 2 also showed the 
highest expression levels of most of immune checkpoint 
genes (Fig. 3).

The predicted response of three NF‑κB‑associated clusters 
to immunotherapy and chemotherapy
Different TME can lead to different response to immu-
notherapy. In the above section, three clusters showed 
different immune characteristics. To find out if they 
had different response to immunotherapy, we employed 
TIDE algorithm for the evaluation. Both cluster 1 and 
cluster 2 showed significantly higher TIDE score than 

cluster 3 (Fig. 4A), indicating that they had a higher pos-
sibility to escape from immunotherapy. Although cluster 
2 had high infiltration of T cells, malfunctioned T cells 
deterred their anti-tumor response (Fig.  4A). Cluster 1 
was lacking T cell infiltration, and had the highest T cell 
exclusion as well as high infiltration of immunosuppres-
sive cells including MDSC, cancer-associated fibroblasts, 
and M2 macrophages (Fig.  4A). TIDE analysis revealed 
that cluster 3 was the most responsive to immunother-
apy, with an estimated proportion of 48% in positive 
response (Fig. 4A).

Furthermore, we assessed the potential response of 
three clusters to chemotherapeutic drugs by pRRo-
phetic R package. As a result, cluster 2 showed the low-
est estimated IC50 of seven chemotherapeutic drugs 
(cisplatin, sunitinib, imatinib, parthenolide, bexarotene, 
roscovitine, and salubrinal), while cluster 1 and cluster 3 
showed no obvious difference (Fig. 4B). The result indi-
cated that cluster 2 may benefit more from these seven 
chemotherapeutic drugs compared with other two 
clusters.

Fig. 2 Immune characteristics of NF-κB-based three clusters in TCGA dataset. A Immune score and stromal score calculated by ESTIMATE. B 
The enrichment score of 10 immune-related cells calculated by MCP-counter. C The enrichment score of 22 immune-related cells calculated 
by ssGSEA. D The heat map of immune infiltration patterns in three clusters. E–H The scores of IFN-γ, CYT, TCR, and BCR in three clusters. ANOVA 
was conducted. ns, not significant. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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Establishing a risk model based on NF‑κB‑associated 
lncRNAs
In the previous section, we identified a total of 149 NF-κB-
associated lncRNAs, and we attempted to establish a 
risk model based on these lncRNAs. TCGA dataset was 
divided into training set and testing set at a ratio of 1:1. We 
screened a total of 10 prognostic lncRNAs in the training 
set through univariate Cox regression analysis (P < 0.05). 
Then we further compressed the number of lncRNAs using 
Lasso regression and stepAIC. Lasso regression retained 9 
lncRNAs under the optimal lambda value (Figure S4A, B). 
StepAIC screened 6 lncRNAs as the final key prognostic 
lncRNAs for establishing the risk model (Figure S4C). The 
formula of risk model was defined as: risk score = — 0.4 42* 
AC0 20916.1 + 0.933*AC079313.1 + 0.333*AC245128.3—
0.861*AL135818.1 + 1.27*LINC02818 + 2.104*RASA2_IT1.

We validated the performance of the 6-lncRNA risk 
model in the testing, training sets and TCGA dataset. 
Risk score was calculated for each sample. Group-
ing of high risk and low risk was performed according 
to the median value as a cut-off to stratify samples. 

Kaplan-Meier survival curve presented that high-risk 
and low-risk groups had markedly different overall 
survival in training set, testing set and TCGA dataset 
(P = 0.00054, P = 0.0017, and P < 0.0001, respectively, 
Fig.  5). ROC curve analysis exhibited that the risk 
model was effective in predicting the survival at 1, 3, 
and 5  years, with AUC scores over than 0.70 (Fig.  5). 
Moreover, the risk model also showed a good perfor-
mance in distinguishing high-risk and low-risk groups 
in samples with different clinical characteristics 
including age, T1, T2, N0, N1, M0, AJCC stage I-IV, 
G1 and G2 (Figure S5).

Biological and immune characteristics of two risk groups
To dig out the biological difference of high-risk and 
low-risk groups, we used GSEA to analyze the enrich-
ment of KEGG pathways. We found that immune-
related pathways were strikingly enriched in low-risk 
group including autoimmune thyroid disease, intesti-
nal immune network for IgA production, and primary 
immunodeficiency (P < 0.05 and FDR < 0.25, Fig.  6A). 

Fig. 3 The expression of immune checkpoint genes in three clusters in TCGA dataset as shown in box plot (A) and heat map (B). ANOVA 
was conducted. ns, not significant. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001



Page 7 of 14Feng et al. BMC Medical Genomics          (2023) 16:169  

Fig. 4 Estimating the response of three clusters to immunotherapy and chemotherapy in TCGA dataset. A TIDE analysis predicted T cell status, 
enrichment of immunosuppressive cells, and proportion of responders to immunotherapy. B Estimated IC50 of cisplatin, sunitinib, imatinib, 
parthenolide, bexarotene, roscovitine, and salubrinal. ANOVA was conducted. ns not significant. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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Fig. 5 The performance of the six-lncRNA risk model in TCGA dataset. A Kaplan–Meier survival curve and ROC curve of the risk model 
in the training set. B Kaplan–Meier survival curve and ROC curve of the risk model in the testing set. C Kaplan–Meier survival curve and ROC curve 
of the risk model in whole TCGA dataset. Log-rank test was conducted
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Fig. 6 Biological pathways and immune characteristics of high-risk and low-risk groups in TCGA dataset. A GSEA on high-risk vs. low-risk groups. 
B Immune score and stromal score calculated by ESTIMATE. C The enrichment score of 10 immune-related cells calculated by MCP-counter. D The 
enrichment score of 22 immune-related cells calculated by ssGSEA. E The heat map of immune infiltration patterns in two risk groups. Wilcoxon test 
was conducted. ns not significant. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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Immune analysis by ESTIMATE, MCP-counter, and 
ssGSEA indicated that low-risk group had higher 
immune cell infiltration than high-risk group, and most 
of immune cells were differently enriched in two risk 
groups (Fig. 6B-E). The above results suggested that two 
risk groups had distinguishing TME.

Potential immunotherapy response in the two risk groups
TIDE analysis revealed that risk score was nega-
tively correlated with T cell dysfunction, but posi-
tively correlated with T cell exclusion, MDSC, and 
CAF (Fig.  7A). Two risk groups showed differences 
in T cell dysfunction, T cell exclusion, MDSC, CAF, 
and M2 macrophages (Fig.  7B). Tumor mutation bur-
den (TMB) also has guiding significance for immuno-
therapy response. According to our analysis, there was 
a significant negative correlation between risk score 
and TMB, and the TMB corresponding to the low-
risk group was significantly higher than that of the 
high-risk group (Fig. 7C). These results indicated that 
immunotherapy may work better at low-risk samples.
The clinical value of the risk score in combination with 
other clinical characteristics.

Univariate Cox regression analysis showed that risk 
group, T stage, N stage, and AJCC stage were risk fac-
tors while multivariate Cox regression analysis showed 

that only the former three were independent risk fac-
tors (Fig.  8A, B). Therefore, we included T stage, N 
stage and risk score to construct a nomogram for effec-
tively predicting survival time. Risk score was shown to 
have the most influence to survival (Fig.  8C). Calibra-
tion curve exhibited that the predicted overall survival 
by nomogram was almost consistent with the actual 
one (Fig.  8D). Moreover, compared with other clinical 
characteristics, the nomogram presented the highest 
AUC (Fig.  8E), suggesting the highest efficiency of the 
nomogram in predicting prognosis for cervical cancer 
patients.

Discussion
Numerous evidences have revealed the role of NF-κB 
signaling in inflammation, immunity, and cancer [27–29]. 
NF-κB signaling is suggested as a promising therapeu-
tic target for cancer treatment. NF-κB inhibitors hinder 
cancer cell growth through suppressing of IκB kinase 
(IKK) beta activity and decreasing the nucleus translo-
cation of NF-κB [30]. To further understand the mecha-
nism of NF-κB signaling in cervical cancer and facilitate 
the exploration of NF-κB-targeted therapies, our study 
focused on the lncRNA regulators of NF-κB signaling 
and explored their influence in cancer prognosis and 
immune microenvironment.

Fig. 7 The predictive value of risk score in immunotherapy. A The relation of risk score with TIDE score, T cell status, and immunosuppressive 
cells, × sign in the square means no significant correlation. B The scores of TIDE, T cell dysfunction, T cell exclusion, MDSC, CAF, and M2 
macrophages. C The relation of risk score with TMB. Wilcoxon test was conducted. ns not significant. **P < 0.01, ***P < 0.001, ****P < 0.0001
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We dug out a total of 149 NF-κB-associated lncRNAs 
through a pipeline referring to the previous study [17], 
and identified three molecular subtypes or clusters (clus-
ter 1, cluster 2, and cluster 3) based on the expression 
patterns of NF-κB-associated lncRNAs. Cluster 2 showed 
the shortest overall survival and highest enrichment 
score of NF-κB signaling. The activation of NF-κB signal-
ing is proved to be associated with immune cell infiltra-
tion, angiogenesis and metastasis [31], which may result 
in the poor prognosis of cluster 2. Cluster 1 had a better 
prognosis than cluster 2, but there was no significant dif-
ference on the enrichment of NF-κB signaling, suggesting 
the complicated role of NF-κB signaling in cancer espe-
cially in immune modulation.

Three NF-κB-associated clusters exhibited distin-
guished immune infiltration and proportion of different 
immune cells. Cluster 2 had the highest immune infil-
tration as well as stromal infiltration. MCP-counter and 
ssGSEA displayed consistent results that many immune 
cells were differently enriched in three clusters, where 
cluster 2 had the highest enrichment most of immune 
cells such as MDSCs, CD4 T cells, CD8 T cells, acti-
vated dendritic cells, regulatory T cells, macrophages. In 

addition, cluster 2 also showed the highest enrichment of 
IFN-γ, CYT, TCR and BCR, and these indicators are asso-
ciated with active immune response. The results seemed 
controversial that cluster 2 had the worst prognosis but 
the most activated immune response. However, in addi-
tion to anti-tumor immune cells, immunosuppressive 
cells including regulatory T cells, M2 macrophages, and 
MDSCs were also highly infiltrated in cluster 2, which 
may lead to the attenuated immune response in cluster 2.

NF-κB has been shown to present a pro-tumor effect 
on macrophages and MDSCs. Macrophages are a criti-
cal group of cells in TME and they polarize to different 
status exerting different functions. M1 macrophages are 
main contributors of pro-inflammatory factors, while M2 
macrophages are endowed with anti-inflammatory and 
immunosuppressive characteristics [32]. High infiltration 
of M2 macrophages and a low M1/M2 ratio are associ-
ated with poor prognosis in cancer patients [33]. NF-κB 
signaling is a key regulator in maintaining the function 
of macrophages. For example, c-Rel in NF-κB dimers is 
necessary for the expression of IL12B in macrophages 
and is important for macrophages to master inflam-
matory response according to transient and persistent 

Fig. 8 Construction of a nomogram based on risk score and clinical characteristics. (A-B) Univariate (A) and multivariate (B) Cox regression analysis 
of risk score, age, and clinical stages. (C) A nomogram based on risk score, N and T stages. (D) Calibration curve 1-year, 3-year and 5-year survival. (E) 
ROC curve of the nomogram, risk score and clinical characteristics
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TLR4-induced signals [34, 35]. MDSCs are considered as 
immunosuppressive cells and high infiltration of MDSCs 
is related to poor prognosis in cancer [36]. Lines of evi-
dences have shown that NF-κB plays a supportive role in 
the activation of MDSCs [37, 38]. For example, MDSC 
function is activated by TNFR/TNFR2 signaling through 
an NF-κB-dependent manner [39]. The crosstalk between 
NF-κB and immune cells supports that these NF-κB-
associated lncRNAs may serve important roles in regu-
lating immune response in cervical cancer.

In addition, immune checkpoints are responsible 
for the activation of T cell function. High expression of 
immune checkpoints such as PD-1 and PD-L1 can sup-
press T cell activation [40], which is associated with poor 
prognosis of cancer patients [41]. We found that cluster 
2 had strikingly higher expression of most of immune 
checkpoints such as PD-1 (PDCD1), PD-L1 (CD274), 
LAG3, IDO1, CD40, and CTLA-4, which are possibly 
responsible for the poor prognosis of cluster 2. TIDE 
analysis showed that cluster 3 had the lowest TIDE score 
and the most predicted responders to immunotherapy 
compared with other two clusters. In the response to 
chemotherapeutic drugs, cluster 2 showed higher sensi-
tivity than other two clusters, which meant cluster 2 may 
benefit much from these chemotherapeutic drugs. The 
above results indicated that NF-κB-associated lncRNAs 
may serve important roles in the response to immuno-
therapy and chemotherapy.

Furthermore, to allow a personalized prediction 
for each cervical cancer patient, we identified six key 
NF-κB-associated lncRNAs and established a risk model 
based on the six lncRNAs (AC020916.1, AC079313.1, 
AC245128.3, AL135818.1, LINC02818, and RASA2_IT1). 
Among these 6 lncRNAs, AC245128.3 was found to be a 
prognostic necroptosis-related lncRNA for ovarian can-
cer [42], and AL135818.1 was found to be a prognostic 
necroptosis-related lncRNA for breast cancer [43], and 
the remaining 4 lncRNAs have not been reported to be 
linked with cancer biology, which need further clarifica-
tion in solid experiments. Nevertheless, the six-lncRNA 
risk model manifested a favorable performance in pre-
dicting the prognosis of cervical cancer patients, with 
AUC over 0.70 of 1, 3, and 5 years. The risk score calcu-
lated by the risk model was an independent risk factor. 
Moreover, the nomogram based on risk score and clinical 
stages was superior than the risk score only.

Conclusions
In conclusion, this study firstly identified molecular sub-
types based on NF-κB-associated lncRNAs in cervical 
cancer. Three clusters exhibited distinct prognosis and 
tumor microenvironment as well as response to immuno-
therapy and chemotherapy. Importantly, we constructed 

a risk model based on six key NF-κB-associated lncRNAs 
that could efficiently predict the prognosis for cervical 
cancer patients. The six key NF-κB-associated lncRNAs 
may also provide a direction for the further mechanism 
of NF-κB in regulating immune response.
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