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Abstract 

Background RNA methylation modification plays an important role in cancers. This study sought to examine 
the association between m6A/m5C/m1A-related genes and hepatocellular carcinoma (HCC).

Methods Gene expression and clinical data of HCC patients were obtained from the TCGA database. Unsupervised 
consensus clustering was performed according to the expression of m6A/m5C/m1A-related genes in HCC. The 
relationships among prognosis, clinicopathological features and molecular subtypes were analyzed. Least absolute 
shrinkage and selection operator (LASSO) regression analysis was used to establish the m6A/m5C/m1A-related gene 
prognostic signature. Furthermore, the prognostic signature was validated based on the ICGC dataset. RT‒qPCR 
was used to detect the expression of the model genes in HCC. Clinicopathological features, functional enrichment, 
gene mutations, immune cell infiltration, and immunotherapy response in different risk groups were analyzed. A nom-
ogram based on risk score and stage was constructed to predict HCC patient prognosis.

Results Two m6A/m5C/m1A-related molecular subtypes were identified in HCC, and the prognosis of cluster 
C1 was worse than that of cluster C2 (p < 0.001). Highly expressed genes in cluster C1 are significantly correlated 
with G3-4, T3-4, stage III-IV (p < 0.05). An m6A/m5C/m1A-related prognostic signature was established and validated. 
The RT‒qPCR results showed that the risk signature genes were significantly upregulated in liver cancer tissue 
(p < 0.05). The prognosis of HCC patients in the high-risk group was worse than that of those in the low-risk group 
(p < 0.05). Multivariate Cox analysis indicated that the risk score was an independent factor predicting prognosis 
in HCC patients. ssGSEA revealed that the risk score correlated with the tumor immune microenvironment in HCC. 
Gene mutation analysis showed that the tumor mutation burden of patients in the high-risk group was much higher 
(p < 0.05), and the prognosis of HCC patients with high risk scores and high mutation burden was the worst (p = 0.007). 
A nomogram combining risk scores with clinicopathological features showed performed well in predicting HCC 
prognosis.

Conclusions The m6A/m5C/m1A-related genes could predict the prognosis and tumor microenvironment features 
of HCC and can be important biomarkers relevant to the immunotherapy response.
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Background
Hepatocellular carcinoma (HCC) is one of the most com-
mon malignant tumors in the world. In 2020, there were 
approximately 906,000 newly diagnosed cases of HCC 
worldwide and 830,000 deaths from HCC, making it the 
sixth most common cancer and the third leading cause 
of cancer-related death [1, 2]. HCC has insidious, rapid 
onset and an extremely high degree of malignancy [3]. 
The 5-year survival rate is less than 18% [1, 4], which seri-
ously affects public health. Considering the limitations of 
HCC treatment, new therapeutic targets are needed to 
improve the prognosis of HCC patients. Therefore, it is 
urgent to find a prognosis-related diagnostic model that 
could provide new directions for developing feasible tar-
geted therapy approaches and improving the survival and 
prognosis of patients.

Epigenetic modifications include chemical modifica-
tions of DNA, RNA and proteins characterized by altered 
gene expression and function without any changes in 
the gene sequence. In addition to well-established DNA 
and protein epigenetic modifications, reversible RNA 
methylation has led to the third wave of studies in the 
epigenetic field. The main forms of RNA methylation are 
N6-methyladenosine (m6A), 5-methylcytosine (m5C) 
and N1-methyladenosine (m1A). m6A is the most abun-
dant internal RNA modification in eukaryotic cells.

A large number of scholars have previously con-
ducted research regarding the mechanism of m6A/
m5C/m1A-related genes in HCC. LY6/PLAUR domain 
1 (LYPD1) can promote tumorigenesis, ALKB Homolog 
5 (ALKBH5) mediated m6A demethylation leads to 
posttranscriptional repression of LYPD1, and dys-
regulation of the ALKBH5/LYPD1 axis leads to HCC 
progression [5]. Wang et al. [6] found that high expres-
sion level of circ-KIAA1429 in hepatoma cells and 
KIAA1429 acts as an oncogene to promote HCC inva-
sion and migration by altering the methylation of m6A 
in Inhibitor of DNA binding 2(ID2) and GATA-binding 
protein(GATA3) mRNAs [7]. YTH N6-methyladeno-
sine RNA binding protein F3 (YTHDF3) can increase 
the stability of zinc finger e-box binding home-
obox 1 (Zeb1) mRNA and participate in the occurrence 
and development of liver cancer [6]. Methyltrans-
ferase-like 3 (METTL3) and Methyltransferase-like 
14 (METTL14) are the two core molecules. However, 
METTL3 and METTL14 exert opposing regulatory 
roles in HCC [8]. Hepatitis B virus X-interacting protein 
(HBXIP) interference suppressed the malignant behav-
ior of HCC and suppressed the Warburg effect in HCC 
cells. METTL3 is upregulated in HCC tissues and posi-
tively regulated by HBXIP. HBXIP-mediated METTL3 
promotes metabolic reprogramming and proliferation, 

invasion and metastasis of HCC cells [9]. The expres-
sion of ubiquitin-specific peptidase 48 (USP48) is sig-
nificantly reduced in HCC, and methyltransferase-like 
14 (Mettl14)-induced m6A modification is involved in 
the regulation of USP48 in HCC by maintaining USP48 
mRNA stability, thereby inhibiting the development 
of HCC [10]. YTH N6-methyladenosine RNA binding 
protein 1 (YTHDF1) can promote the occurrence and 
development of liver cancer through various pathways. 
Significant overexpression of YTHDF1 in HCC tissues 
is associated with a poor prognosis, and YTHDF1 defi-
ciency inhibits HCC autophagy, growth and metasta-
sis [11]. YTHDF1 can accelerate translational export 
of FZD5 mRNA in an m6A-dependent manner and 
function as an oncogene through the WNT/β-catenin 
pathway [12]. The m6A demethylase FTO promotes 
hepatocellular carcinoma tumorigenesis by mediat-
ing pyruvate kinase M2 (PKM2) demethylation [13]. 
NOP2/Sun RNA methyltransferase 2 (NSUN2) is an 
RNA methyltransferase responsible for m5C modi-
fication of multiple RNAs. The H19 lncRNA is a spe-
cific target of NSUN2 modifiers. m5C-modified H19 
lncRNA may promote tumorigenesis and development 
by recruiting the G3BP1 protein [14]. NOP2/Sun RNA 
methyltransferase 4 (NSUN4) is significantly upregu-
lated in tissues and cells of HCC patients and is closely 
related to the occurrence and development of HCC 
[15]. Aly/REF export Factor (ALYREF) is significantly 
upregulated in liver cancer tissues and liver cancer cell 
lines and is significantly associated with poor prognosis 
in HCC [16]. TRNA methyltransferase 6 non-catalytic 
subunit (TRMT6) and TRNA methyltransferase 61A 
(TRMT61A) form the m1A methyltransferase complex, 
which is highly expressed in advanced HCC tumors and 
negatively correlates with HCC survival [17]. Emerging 
reports confirm that dysregulation of RNA methylation 
contributes to a variety of human diseases, particularly 
hepatocellular carcinoma. However, no study has com-
prehensively analyzed the relationship between these 
several forms of RNA methylation and HCC.

Therefore, based on the existing research on RNA 
methylation in HCC, we collected m6A/m5C/m1A-
related genes that are closely correlated with the 
occurrence and development of HCC. We aimed to 
explore the relationship between the expression lev-
els of m6A/m5C/m1A-related genes and prognosis of 
HCC patients. Furthermore, we tried to construct and 
validate a m6A/m5C/m1A-related gene prognostic 
signature and explore its relationship with the clinico-
pathological features, immune microenvironment and 
immunotherapy of HCC, in order to provide individu-
alized strategies for clinical treatment of HCC.
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Methods
Data sources
We extracted 10 m6A/m5C/ m1A-related genes that are 
closely related to the occurrence and development of 
HCC, and the information on m6A/m5C/m1A-related 
genes were listed in Table  1. HCC RNA-sequencing 
(RNA-seq) data and clinical data (Table S1) were down-
loaded from the TCGA database (https:// portal. gdc. 
cancer. gov/). Moreover, we downloaded HCC RNA-
sequencing (RNA-seq) data and clinical data (Table S2) 
from the ICGC database (https:// dcc. icgc. org/) as exter-
nal validation data.

Copy number variation and differential expression analysis 
of m6A/m5C/m1A‑related genes in HCC
The copy number variation frequency information of 
TCGA HCC samples were downloaded from the UCSC 
Xena website (https:// xena. ucsc. edu/). We used the 
“limma” package to distinguish differentially expressed 
genes (DEGs) with p values < 0.05. Then, we constructed 
a PPI network associated with m6A/m5C/m1A genes 
using the STRING website (https:// string- db. org/) for 
analysis of interacting genes. Furthermore, the correla-
tion analysis based on each DEG was performed using 
the R software "reshape2" package and "igraph" packages.

The m6A/m5C/m1A‑related molecular subtypes 
identification
We used the R software "ConsensusClusterPlus" and 
"limma" packages to classify HCC patients according to 
the expression of m6A/m5C/m1A-related genes. Using 
the R software "survival" package, we analyzed the prog-
nosis of patients with different molecular subtypes. Fur-
thermore, the "limma" package was used to analyze the 
relationship between molecular subtypes and clinico-
pathological characteristics.

Establishment and validation of m6A/m5C/m1A‑related 
gene prognostic signature
The R software "survival" R package was used to per-
form univariate Cox analysis on HCC patients in TCGA 
to study the effect of m6A/m5C/m1A-related genes on 
prognosis. Then, using the R software package "glmnet", 
the prognostic genes screened by univariate Cox analysis 
were used to construct a prognostic signature by LASSO 
Cox regression analysis. An individualized risk score was 
obtained based on the expression level of the prognostic 
genes and the estimated regression coefficients in LASSO 
Cox regression analysis. The risk score for each HCC 
patient was calculated by the following formula:

HCC patients were divided into high- and low-risk 
groups according to the median risk score, and Kaplan‒
Meier analysis was performed to compare 1-, 2-, and 
3-year overall survival. The R packages "survival", "sur-
vminer" and "time ROC" were used to conduct a receiver 
operating characteristic (ROC) curve analysis across time 
periods of 1-, 2-, and 3- years. The distribution and sur-
vival of patients are displayed by the "bioRiskPlot" func-
tion according to the risk score. Principal component 
analysis (PCA) was used to assess the samples in each 
risk group based on their similarities and differences. 
Patients in the ICGC cohort were separated into low- and 
high-risk groups based on the median risk score from the 
TCGA cohort. Then, the ICGC cohort was used to vali-
date the prognostic signature.

Prognostic signature genes mRNA expression analysis 
via RT‒qPCR
Tissue microarray of human liver cancer and paired 
adjacent normal tissues (MecDNA-HLivH060PG02) 
was purchased from Shanghai Outdo Biotech Company 

Risk Score =
n

i=1
(Expi ∗ Coei)

Table 1 Information of m6A/m5C/m1A-related genes in HCC

Gene symbol ENSG Chromosome ChromStart ChromEnd Modification 
type

NSUN4 ENSG00000117481 chr1 46340177 46365152 m5C

METTL14 ENSG00000145388 chr4 118685368 118715433 m6A

NSUN2 ENSG00000037474 chr5 6599239 6633291 m5C

YTHDF3 ENSG00000185728 chr8 63168553 63212786 m6A

METTL3 ENSG00000165819 chr14 21498133 21511375 m6A

FTO ENSG00000140718 chr16 53703963 54121941 m6A

ALKBH5 ENSG00000091542 chr17 18183078 18209954 m6A

ALYREF ENSG00000183684 chr17 81887844 81891586 m5C

TRMT6 ENSG00000089195 chr20 5937235 5950558 m1A

YTHDF1 ENSG00000149658 chr20 63195429 63216234 m6A

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://dcc.icgc.org/
https://xena.ucsc.edu/
https://string-db.org/
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(Shanghai, China). The study was approved by the Eth-
ics Committee of Shanghai Outdo Biotech Company. 
The tissue microarray contains 30 paired cancer and 
non-cancerous liver tissues. To validate gene expres-
sion, quantitative real-time PCR (qRT-PCR) analyses 
were performed. β-Actin served as an internal reference. 
Primer sequences are listed in Table S3.

Identification of independent prognostic factors
The R software “survival” package was used for univari-
ate and multivariate analyses. In this analysis, variable 
factors included age, gender, grade, stage and risk score. 
Furthermore, we used the “limma” and “ggpubr” pack-
ages to analyze the relationship between risk scores and 
clinicopathological features.

Functional enrichment and immune microenvironment 
analysis
HCC patients were divided into two groups according to 
the median risk score. DEGs were screened between the 
high- and low-risk groups (FDR < 0.05, |log2FC|≥ 1). On 
this basis, the "clusterProfiler" software package was used 
for GO and KEGG analysis [18–20]. The "GSVA" package 
was used for single-sample gene set enrichment analysis 
(ssGSEA) to calculate the scores of infiltrating immune 
cells and the activity of immune-related pathways in 
high- and low-risk groups of HCC patients. We further 
used the R software "limma" package to analyze the dif-
ferential expression of immune checkpoints between 
high and low risk groups.

Gene mutation analysis
We further downloaded the HCC simple nucleotide vari-
ation data from the TCGA GDC database (https:// portal. 
gdc. cancer. gov/) and then used the R software "maftools" 
to analyze the gene mutations of the high- and low-risk 
groups and draw a waterfall diagram. Furthermore, we 
analyzed the relationship between risk group and tumor 
mutation burden.

Development and validation of a nomogram
We used the "rms" package to construct a prediction 
nomogram based on the clinical features and prognostic 
signature risk score. In the nomogram scoring approach, 
each variable was given a score, and the total score was 
computed by adding the scores for all variables in each 
sample. The calibration plots of the nomogram were used 
to highlight the predictive value by comparing the pre-
dictions vs. actual outcomes in terms of 1-, 2-, and 3-year 
survival. Area under the curve of ROC was used to evalu-
ate the ability of different prognostic factors to predict 
the 1-, 2-, and 3-year survival of HCC patients.

Statistical analyses
R version 4.1.0 was used for all statistical analyses. The 
level of statistical significance was set at p < 0.05.

Results
The landscape of m6A/m5C/m1A‑related genes in HCC
Figure  1 illustrates our study process. We investigated 
copy number variation (CNV) in m6A/m5C/m1A-
related genes and discovered that CNV was prevalent 
in all genes. ALKBH5, METTL3, YTHDF3, YTHDF1, 
FTO, NSUN2 and ALYREF exhibited noticeable acquired 
CNV, but FTO, NSUN4, and METTL14 had reduced 
CNV (Fig. 2a). Figure 2b depicts the position of the m6A/
m5C/m1A-related genes on their respective chromo-
somes. Based on TCGA data including 376 HCC and 
50 normal liver tissues, we compared the expression 
levels of 10 m6A/m5C/m1A-related genes and finally 
found 9 DEGs (p < 0.05). ALKBH5, METTL3, YTHDF3, 
YTHDF1, FTO, NSUN2, NSUN4, ALYREF and TRMT6 
were significantly upregulated in HCC tissues vs. normal 
tissues (Fig.  2c). The PPI network revealed the interac-
tion of m6A/m5C/m1A-related genes (Fig. 2d). Figure 2e 
shown the correlation network of m6A/m5C/m1A-
related genes.

Cluster analysis based on the expression of m6A/m5C/
m1A‑related genes in HCC
To better understand the expression characteristics of 
m6A/m5C/m1A-related genes in HCC, we used a con-
sensus clustering method to classify HCC patients based 
on the expression levels of 10 m6A/m5C/m1A-related 
genes. Our results indicated that k = 2 appeared to be 
the best choice to classify all HCC patients into the clus-
ter C1 (n = 157) and cluster C2 (n = 213) (Fig. 3a-c). The 
Kaplan‒Meier curve revealed that the overall survival/
prognosis of the cluster C2 was significantly better than 
that of the cluster C1 (p < 0.001) (Fig.  3d). DEGs of the 
two molecular subtypes were identified (Fig. 3e). Accord-
ing to the DEGs expression of subtypes, we analyzed the 
correlation between molecular subtypes and clinico-
pathological features. Highly expressed genes in cluster 
C1 are significantly correlated with G3-4, T3-4, stage III-
IV (p < 0.05) (Fig. 3f ).

Construction of a prognostic signature based on the TCGA 
cohort
We used univariate Cox analysis to screen out prog-
nostic m6A/m5C/m1A-related genes for subsequent 
analysis. A total of 6 genes were identified (Fig. 4a). Fur-
thermore, we used the TCGA dataset as the training set 
(n = 370). LASSO regression analysis was performed on 
6 prognostic m6A/m5C/m1A-related genes to further 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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Fig. 1 Flow chart of this study
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select the best prognostic indicators (Fig.  4b-c). Finally, 
4 prognostic genes (METTL3, YTHDF1, NSUN4, and 
TRMT6) were retained with the least partial likeli-
hood deviation. We developed a risk score model based 
on the following formula: risk score = (0.02* expression 
of METTL3) + (0.43* expression of YTHDF1) + (0.46* 
expression of NSUN4) + (0.40* expression of TRMT6). A 
total of 370 HCC patients in the training set were divided 
into high- and low-risk groups based on the median risk 
score, and the difference in OS between the high- and 
low-risk groups was statistically significant (p = 0.002, 
Fig. 4d). The areas under the ROC curve of the risk signa-
ture for the 1-, 2-, and 3-year periods were 0.739, 0.649, 
and 0.664, respectively (Fig. 4e). Compared with patients 
in the low-risk group, patients in the high-risk group 
showed shorter survival time and higher risk of death 
(Fig.  4f-g). PCA and t-SNE (Fig.  4h-i) showed that the 
patients were well divided into two risk groups.

Validation of the prognostic signature in an external 
cohort
A total of 232 HCC patients in the ICGC database were 
used as the external validation cohort. According to the 
median risk score in the training set, 192 patients in the 
ICGC cohort were assigned to the high-risk group, and 
40 patients were assigned to the low-risk group. There 
was a significant difference in OS between the high- and 
low-risk groups (p = 0.008, Fig.  5a). Time-dependent 
ROC analysis was used to assess the sensitivity and speci-
ficity of the prognostic model, and areas under curves for 
1-, 2- and 3-year survival were 0.630, 0.671, and 0.689, 
respectively (Fig. 5b). Compared with patients in the low-
risk group, patients in the high-risk group had a higher 
risk of death and shorter survival time (Fig. 5c-d). PCA 
and t-SNE (Fig. 5e-f ) showed that the patients were well 
divided into two risk groups.

Independent prognostic value of the prognostic signature
We used univariate and multivariate Cox regression anal-
yses to assess whether the risk score of the m6A/m5A/
m1A-related gene prognostic signature could serve as an 
independent prognostic factor. Univariate Cox regres-
sion analysis showed the risk score was an independent 
factor for predicting poorer survival (HR = 2.995, 95% 
CI: 1.903–4.713, Fig.  6a). Multivariate analysis showed 
that the risk score was a prognostic factor after adjust-
ment for other confounding factors (HR = 2.577, 95% CI: 

1.613–4.117, Fig.  6b). Additionally, we drew a heatmap 
to analyze the relationship between m6A/m5C/m1A-
related genes and clinical characteristics in the TCGA 
cohort (Fig. 6c) and found that the risk score was corre-
lated with grade and stage in HCC patients (p < 0.05).

Validation of the expression of the 4 prognostic genes
The expression levels of 4 prognostic genes were deter-
mined using RT‒qPCR in 30 HCC and 30 neighboring 
normal tissues. As shown in Fig. 7a-d, TRMT6, NSUN4, 
METTL3 and YTHDF1 were significantly overexpressed 
in HCC tissues (p < 0.05).

Functional enrichment analysis based on the different risk 
groups
To further explore differences in gene function and 
pathways between risk groups, we employed the 
"limma" R package to extract DEGs with FDR < 0.05 and 
|log2FC|≥ 1. In the TCGA cohort, a total of 187 DEGs 
were identified between the low- and high-risk groups. 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analyses were performed based on 
these DEGs. The results showed that DEGs were associ-
ated with small molecule catabolic process, steroid meta-
bolic process, carboxylic acid catabolic process, organic 
acid catabolic process, olefinic compound metabolic pro-
cess, retinol metabolism (Fig. 8a-b).

Comparison of the immune microenvironment 
between high‑ and low‑risk groups
We used the ssGSEA method to compare the enrich-
ment scores of 8 immune cell activities and 10 immune-
related pathways between the high- and low-risk groups. 
The levels of B cells, neutrophils, DCs, Th2 cells and TIL 
expression levels were significantly increased in the low-
risk group (Fig. 9a). The high-risk subgroup generally had 
lower activity for all immune pathways, except the MHC 
I pathway (Fig. 9b). High-risk group patients showed sig-
nificant overexpression of HAVCR2, PDCD1, CTLA4, 
CD274, and TIGIT (p < 0.05) (Fig. 9c).

Mutation analysis
Gene mutation analysis showed that the frequency of 
gene mutations was higher in the high-risk group than 
in the low-risk group (Fig.  10a-b). Patients in the high-
risk group had increased TMB compared with those in 
the low-risk group (p < 0.05) (Fig.  10c). Patients in the 

(See figure on next page.)
Fig. 2 Expression and interaction of m6A/m5C/m1A-related genes. a Frequencies of CNV gain, loss, and no CNV among m6A/m5C/m1A-related 
genes. b Locations of CNV alterations in m6A/m5C/m1A-related genes on 23 chromosomes. c Heatmap of the genes concerning m6A/m5C/m1A 
between HCC tissues and normal tissues. d The PPI network indicated the interaction of genes concerning m6A/m5C/m1A (interaction score = 0.4). 
e Relevant network of the genes concerning m6A/m5C/m1A. CNV, copy number variation; HCC, hepatocellular carcinoma. PPI, protein–protein 
interaction. p values: *p < 0.05, ** p < 0.01, and *** P < 0.001
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Fig. 2 (See legend on previous page.)



Page 8 of 17Xiao et al. BMC Medical Genomics          (2023) 16:177 

Fig. 3 Identification of m6A/m5C/m1A-related subtypes. a A total of 370 HCC patients were classified into two subtypes based on consensus 
cluster analysis. b CDF for k = 2 to 9. c Relative changes in the areas under the CDF curve for k = 2 to 9. d OS of different m6A/m5C/m1A-related 
subtypes. e Identification of DEGs between the two subtypes. f The relationship between m6A/m5C/m1A-related subtypes and clinicopathological 
features in HCC. CDF, cumulative distribution function; OS, overall survival; DEGs, differentially expressed genes; HCC, hepatocellular carcinoma
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high-TMB group had worse OS than those in the low-
TMB group (p < 0.05) (Fig.  10d). The survival/prognosis 
of patients with high TMB in the high-risk group was 
significantly worse than that of patients with low TMB 
(Fig. 10e).

Development of a nomogram to predict survival
We established a nomogram containing the risk score and 
clinicopathological characteristics to predict overall sur-
vival (Fig.  11a). Calibration curves of the nomogram for 

predicting 1-, 2- and 3-year OS suggested that the perfor-
mance of the proposed nomogram was ideal (Fig.  11b). 
In predicting the survival/prognosis of patients, the 1-, 2- 
and 3-year ROC AUCs of the nomogram were better than 
those of clinicopathological features (Fig. 11c-e).

Discussion
Nonmutational epigenetic reprogramming is consid-
ered to be an important cancer hallmark, and epige-
netic modification is closely related to the occurrence 

Fig. 4 Establishing a prognostic signature based on m6A/m5C/m1A-related genes. a Univariate Cox regression analysis of m6A/m5C/
m1A-related genes. b-c LASSO regression analysis and partial likelihood deviance of the prognostic genes. d OS analysis of different risk groups. 
e ROC curves about the prognostic signature predictive power. f Distribution of survival status in high- and low- risk groups. g Risk score curve 
about the high- and low-risk groups. h PCA and (i) tSNE results of the prognostic signature. LASSO, least absolute shrinkage and selection operator; 
OS, overall survival; ROC, receiver operating characteristic; PCA, principal component analysis; tSNE, t-distributed stochastic neighbor embedding
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Fig. 5 Validation of the prognostic signature based on the ICGC cohort. a OS analysis of risk groups. b ROC curves about the signature predictive 
power. c Risk score curve about the high- and low-risk groups. d Distribution of patients’ survival status. e PCA and (f) tSNE results of risk groups. 
ICGC, international cancer genome consortium; OS, overall survival; ROC, receiver operating characteristic; PCA, principal component analysis; tSNE, 
t-distributed stochastic neighbor embedding
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and development of tumors [21]. Recent studies have 
demonstrated that RNA modifications may affect RNA 
metabolism, splicing, stability and translation, thereby 
affecting gene expression [22, 23]. RNA methylation is 
an important epigenetic modification that does not alter 
gene sequence but may play an essential role in multiple 
biological processes, such as gene expression, genome 
editing, and cell differentiation. With advances in RNA 
detection, various forms of RNA methylation, including 
m6A, m5C, m1A,, can be assessed.

A large number of studies have shown that RNA meth-
ylation modification was associated with the develop-
ment of various malignant tumors. Cui et al. [24] found 
that m6A is involved in the regulation of glioma stem cell 
(GSC) self-renewal and differentiation. Knocking down 
the expression of the methyltransferase METTL3 and 
METTL14 proteins in cells can induce the mRNA expres-
sion of the proto-oncogenes ADAM19, EPHA3 and KLF4 
in GSCs and promote the growth, self-renewal and dif-
ferentiation of GSCs. Liu et  al. [25] found that m6A 

Fig. 6 Correlation analysis between risk score and clinicopathological features. a Univariate and (b) multivariate Cox regression analyses. c 
Relationship between risk score and clinicopathological features
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Fig. 7 Validation of the expression of the prognostic signature’s genes. The expression of (a) TRMT6, (b) NSUN4, (c) METTL3 and (d) YTHDF in liver 
cancer and normal tissues. *p < 0.05, **p < 0.01, and ***p < 0.001

Fig. 8 Functional enrichment analysis. a GO and (b) KEGG analysis about DEGs in the low- and high-risk groups. DEGs, differentially expressed 
genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genomes



Page 13 of 17Xiao et al. BMC Medical Genomics          (2023) 16:177  

methylation of EphA2 and VEGFA can promote angio-
genesis in colorectal cancer. Wu et al. [26] found that pro-
tein arginine methyltransferase 5 (PRMT5) contributes 
to doxorubicin resistance in breast cancer by enhancing 
nuclear translocation of the RNA demethylase ALKBH5. 
In addition, a number of studies have confirmed that 
m6A modification is closely related to tumor immuno-
therapy [27–29], chemo-radiotherapy [30], and targeted 
therapy [31, 32] resistance. Hu et al. [33] found that m5C 
RNA methyltransferase NSUN2 involved in the prolif-
eration, invasion and migration of gastric cancer cells. 
Wang et  al. [34] found that overexpression of ALYREF 
can promote bladder cancer cell proliferation through 
PKM2-mediated glycolysis. The known demethylases 

for m1A modification include ALKBH3 and ALKBH1; 
methyltransferase enzymes include the TRMT fam-
ily; and RNA-binding proteins include YTH family pro-
teins [35, 36]. A large number of studies have shown that 
m1A also closely related to tumor proliferation, inva-
sion, metabolism, and immune microenvironment. In 
most studies, m1A writers TRMT6 and eraser ALKBH3 
are associated with poorer prognosis in multiple cancers 
[37–40] In this study, we comprehensively analyzed the 
relationship between RNA methylation types and HCC. 
In this study, two different molecular subtypes were 
identified based on the expression of m6A/m5C/m1A-
related genes. The overall survival and prognosis of HCC 
patients in the two subtypes were significantly different. 

Fig. 9 Correlation analysis between risk score and immune microenvironment. Boxplots show the scores of immune cells (a) and immune-related 
functions (b) in different risk groups. c Expression of immune checkpoints in differential risk groups. *, P < 0.05; **, P < 0.01; ***, P < 0.001
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Also, the clinicopathologic features of different molecular 
subtypes were significantly different. The risk prognosis 
model based on m6A/m5C/m1A related genes showed 
that patients in the high-risk group had a significantly 
worse prognosis. Our results further confirmed that 
RNA modification is widely involved in the occurrence 
and development of liver cancer and affects the prognosis 
of patients.

Previous studies have shown that RNA methyla-
tion closely related to the tumor microenvironment. 
Researchers found that ALKBH5 promotes HCC growth, 
metastasis and macrophage recruitment through the 
ALKBH5/MAP3K8 axis [41]. Liu et  al. [42] found that 
METTL3 mediated m6A methylation modification of 
circIGF2BP3 to suppress CD8 + T cell responses and 
promote immune escape in non-small cell lung cancer. 
Gao et  al. [43]found that m1A modification related to 
the immune microenvironment of colon cancer through 

bioinformatics research. An important aspect of our 
study is that we explored the correlation between m6A/
m5C/m1A-related genes and tumor immune microen-
vironment in HCC patients. Interestingly, we found that 
tumor-infiltrating lymphocyte (TIL) and B-cell infiltra-
tion levels were significantly increased in the low-risk 
group. Previous studies have confirmed that the presence 
of TILs and B cells is associated with improved survival 
in HCC patients [44, 45]. Furthermore, except for the 
MHC response pathway, the activation level of immune 
pathways in the high-risk group was lower than that in 
the lower-risk group. Based on these findings, the poor 
survival outcomes of HCC patients in the high-risk group 
may be due to reduced levels of antitumor immunity.

With the further study of tumor immunology and 
molecular biology, immunotherapy provides a new 
direction for the treatment of tumors. This immuno-
therapy includes immune checkpoint inhibitors (ICIs), 

Fig. 10 Gene mutation analysis based on the prognostic signature. Analysis of gene mutation frequencies in the low-risk (a) and high-risk (b) 
groups. c Analysis of TMB differences between the high-risk and low-risk groups. d Survival analysis based on tumor mutation burden. e Survival 
analysis based on TMB combined with the risk score. TMB, tumor mutation burden
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therapeutic antibodies, and cell therapy. Research on 
ICIs for CTLA-4, PD-1, and PD-L1 is booming, and clini-
cal studies have demonstrated safety and efficacy [46, 
47]. We evaluated immune checkpoint-associated gene 
expression in the low- and high-risk groups. The expres-
sion of immune checkpoints was significantly increased 
in the high-risk group. These findings indicated that 
the high-risk group of HCC patients with suppressed 
immune function may benefit from immune checkpoint 
inhibitor therapy. Accumulating evidence suggests that 
tumor mutational burden (TMB) can serve as an impor-
tant prognostic marker in relation to immunotherapy [48, 
49]. We also compared differences in TMB and observed 
that subgroups with low risk scores tended to have lower 

TMB, with a significant survival benefit in patients with 
low TMB compared with those with high TMB. These 
results suggest that the m6A/m5C/m1A-related prognos-
tic signature can be used for individualized treatment of 
HCC patients.

However, our study still has some limitations. First, 
prognostic markers were established and validated using 
retrospective data, and their clinical applicability needs 
to be validated with prospective data. Second, the poten-
tial biological functions and specific molecular mecha-
nisms of these three m6A/m5C/m1A-related genes need 
to be further investigated. Third, the correlation between 
the risk score and tumor immunity was not experimen-
tally demonstrated.

Fig. 11 Establishment and validation of the nomogram based on clinicopathological characteristics and risk score. a Nomogram for risk score 
and clinical characteristics in patients with HCC. b Calibration analysis of the risk score containing nomogram for 1-, 2-, 3- year OS. c 1-year, (d) 
2-year and (e) 3-year ROC analysis for the nomogram. *p < 0.05, **p < 0.01, and ***p < 0.001. HCC, hepatocellular carcinoma; OS, overall survival; ROC, 
receiver operating characteristic curve
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Conclusions
In conclusion, our study further confirmed that m6A, 
m5C and m1A are closely related to HCC. Furthermore, 
in the TCGA and ICGC cohorts, the risk score generated 
by the risk model based on the 4 m6A/m5C/m1A-related 
genes was an independent risk factor for predicting 
the overall survival/prognosis of HCC patients. DEGs 
between the low-risk and high-risk groups were associ-
ated with tumor immunity. The combined analysis of 
RNA methylation-related genes in this study provides a 
new prognostic signature for HCC patients and provides 
an important basis for further research on the relation-
ship between RNA methylation and immune function in 
HCC patients.
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