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Abstract 

Background Osteosarcoma, as the most common primary bone malignancy, is urgent to be well-studied on the bio-
markers and therapeutic targets to improve the five-year survival rate. Transcriptomic analysis using single-cell RNA 
or bulk RNA sequencing has been developed to detect biomarkers in various cancer types.

Methods and results We applied Scissor to combine single-cell RNA-seq data and bulk transcriptome data of osteo-
sarcoma, providing cell-level information and sample phenotypes to identify the survival-associated cell subpopula-
tions. By investigating the differences between the survival-associated cell subpopulations, we identified CCL21, 
CCL22, CCL24, CXCL11, CXCL12, CXCL13, GNAI2, and RAC2 in the proliferating cells that are significantly associated 
with osteosarcoma patient outcome. Then we assigned the risk score for each sample based on the cell proportion-
normalized gene expression and validated it in the public dataset.

Conclusions This study provides the clinical insight that chemokine signaling pathway genes (CCL21, CCL22, CCL24, 
CXCL11, CXCL12, CXCL13, GNAI2, and RAC2) in proliferating cells might be the potential biomarkers for treatment 
of osteosarcoma.

Keywords Osteosarcoma, Chemokine signaling pathway, Proliferating cells, Biomarker

Introduction
Osteosarcoma is the most common primary bone malig-
nancy, deriving from primitive bone-forming mesenchy-
mal cells [1]. The two main age groups of osteosarcoma 
patients are 10–14-year-old teenagers and adults older 
than 65 years old [1]. Although the therapeutic methods 
for various types of cancer have been significantly devel-
oping, the 5-year survival rate of 60% has not improved 
since the mid-1980s [2]. One main reason is that bio-
markers and targets for osteosarcoma have yet to be well 
studied [3]. Therefore, it is critical to identify biomarkers 
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with clinical insights to guide treatment and improve the 
survival rate of osteosarcoma patients.

Taking advantage of RNA sequencing (RNA-seq) for 
bulk tissues, some research groups have discovered some 
clues for biomarkers of osteosarcoma. For example, the 
overexpression of FGFR1 and downregulation of CHM 
may be the treatment target for osteosarcoma patients 
[4]. In addition to the protein-coding genes, some non-
coding genes have been revealed as potential markers, 
such as microRNA miR-214-3p [5] and long non-coding 
RNA SNHG3 [6].

However, sequencing data of bulk tissues considers 
the whole tissue’s averaged properties, disregarding the 
influence of the various cell types for the complex intro-
tumoral heterogeneity and the tumor microenvironment 
in osteosarcoma. Recently, single-cell RNA-seq (scRNA-
seq) was developed to allow zoom-in pictures of diverse 
cell types and cross-talk between cells in a heterogeneous 
tissue ecosystem [7]. Yet scRNA-seq is practical in small 
sample sizes, which brings difficulties in identifying the 
specific phenotype-associated cell subpopulations and 
biomarkers. Leveraging the phenotype information of the 
bulk RNA-seq study with large cohorts to guide the iden-
tification of the subpopulation and biomarkers showed 
an excellent insight into detecting the highly disease-rele-
vant cell subsets [8].

In this study, we applied the integration of scRNA-seq 
data and bulk RNA expression data to explore the bio-
markers associated with patient prognosis and play a vital 
role in the development of osteosarcoma. According to 
the different gene expression patterns of cell types, we 
identified the proliferating cells and the corresponding 
differentially expressed genes associated with patient sur-
vival outcomes. To deconvolute the bulk gene expression 
that measured the average level of the mixture of multiple 
cells, we used the differentially expressed genes in each 
cell type as markers to infer the cell proportions of each 
cell type of bulk samples. The cell proportion-normalized 
gene expression could be the potential biomarker to pre-
dict the patient survival outcome. With the cross-valida-
tion by the public datasets, our results detected a group 
of potential biomarkers in the chemokine signaling path-
way of proliferating cells that are closely related to patient 
survival outcomes, which may improve the diagnostics 
and prognosis of osteosarcoma.

Materials and methods
Single‑cell RNA‑seq dataset collection and processing
The scRNA-seq dataset was downloaded from NCBI 
Gene Expression Omnibus (GEO) database under the 
accession number GSE152048 [7]. Cells that with lower 
than 200 or higher than 5,000 expressed genes were 
removed. We further discarded cells with mitochondria 

content higher than 10%. Finally, 105,740 cells were 
obtained for the downstream analysis. Batch effects 
within the samples were removed using the integration 
process of the Bioconductor/R package Seurat (v4.0.6) 
[9]. First, normalize the expression using the function 
NormalizeData with the default parameters (normaliza-
tion.method = "LogNormalize", scale.factor = 10,000). 
Then, use the FindVariableFeatures with default param-
eters to identify the top 2,000 variable genes and per-
form principal component analysis. The first 30 principal 
components were used to determine the clusters with 0.5 
resolution settings, obtaining 19 clusters—the first 30 
principal components to were used to visualize the whole 
dataset.

Based on the canonical cell markers, we assigned 19 
clusters into 17 different cell types, including fibroblasts 
(FBLN1), myeloid cells (CD74, CD14, FCGR3A), chon-
droblasts cells (SOX9, ACAN, PTH1R), osteogenic cell 
(IFITM5), proliferating cells (MKI67, TOP2A, PCNA), 
osteoclasts (ACP5, CTSK, MMP9), T cells (CD3, IL7R, 
CD8A, CD4, NKG7), peripheral monocyte cell (S100A8, 
FCN1), endothelial cells (PLVAP), osteocyte (DMP1), 
pericytes (RGS5, ACTA2), osteoblastic cells (IBSP), mac-
rophage (SPI1), inflammation osteoblastic cells (IFT3, 
IFT1, IFT2, RSAD2), mesenchymal stem cells (MME, 
THY1, CXCL12, SFRP2), dendritic cells (IRF8, GZMB, 
JCHAIN), and mast cells (TPSAB1, CPA3, TPSB2, 
MS4A2).

Bulk RNA expression datasets collection
One bulk RNA expression dataset was downloaded 
from the GEO database under the accession number 
GSE21257 [10]. The clinical information of 53 samples 
and probe ID conversion were retrieved from the matrix 
file using a self-code Python script. The sample clinical 
information included age, gender, histological subtype, 
tumor location, huvos grade, survival time, and survival 
status.

The other bulk RNA expression dataset was collected 
from the project Therapeutically Applicable Research To 
Generate Effective Treatments (TARGET) Osteosarcoma 
of The Cancer Genome Atlas Program (TCGA). The gene 
expression and the survival information of 88 samples 
were downloaded using the Bioconductor/R packages 
TCGAbiolinks (v2.20.1) [11].

Identification of survival‑associated cell subpopulations 
and the corresponding specific expressed genes
The Bioconductor/R package Scissor (v2.0.0) [8] was 
used to identify the survival-associated cell subpopu-
lations. Following the instruction of Scissor, we pre-
pared the expression matrix of the bulk RNA dataset 
(GSE21257), the corresponding single cell expression 
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matrix (GSE152048), and the survival information of the 
samples in the bulk RNA-seq data with default param-
eters of Scissor to identify cells that were positive- and 
negative-associated with prognosis. To verify the reliabil-
ity of positive- and negative- results, we also performed 
the “Reliability significance test”.

FindMarkers function of the Seurat package was used 
to identify the differentially expressed genes between 
the different cells within one cell type. The differentially 
expressed genes with adjusted P-value < 0.05 and |log-
2FoldChange|> 1 were assigned as significantly differen-
tially expressed genes.

Functional enrichment analysis
The enrichment analysis of the differentially expressed 
genes was performed using the Bioconductor/R pack-
age clusterProfiler (v4.3.1) [12], on GO [13], KEGG 
[14–16], and WikiPathway [17]. Functions with adjusted 
P-value < 0.05 were considered the significantly enriched 
functions.

Cell proportion inferring in bulk expression datasets
The integrated expression of cell markers from different 
cell types and the top 20 differentially expressed genes 
identified by FindMarkers was defined as the signature of 
cell type expression. We used CIBERSORTx web-server 
[18] to deconvolute the bulk expression matrix into pro-
portions of different cell types.

Survival Analysis and risk score calculation
For each cell type, we extracted the expression of genes in 
each function pathway and normalized the expression by 
dividing the cell proportion. Then we used the Cox Pro-
portional-Hazards Model of the Bioconductor/R pack-
age survminer (v0.4.9) to evaluate the beta values of each 
gene. The summed-up weighted gene expression in each 
function pathway was used to represent the risk score. 
The average of the risk scores was used as the threshold 
to distinguish the high- and low-risk samples.

Visualization
All the visualization were performed using ggplot2 
(v3.3.5) (https:// github. com/ tidyv erse/ ggplo t2), clus-
terProfiler (v4.3.1), Seurat (v4.0.6), ggpubr (v0.4.0.999) 
(https:// github. com/ kassa mbara/ ggpubr), survminer 
(v0.4.9) (https:// github. com/ kassa mbara/ survm iner), 
enrichplot (v1.12.3) (https:// github. com/ YuLab- SMU/ 
enric hplot), and EnhancedVolcano (v.13.2) (https:// 
github. com/ kevin blighe/ Enhan cedVo lcano) in the R 
environment (v4.0.0).

Codes available
All the processing codes used in this paper were avail-
able on the zenodo.org (10.5281/zenodo.7982216).

Results
Cell atlas of human osteosarcoma
We performed scRNA-seq analysis on the public osteo-
sarcoma dataset to obtain the osteosarcoma’s cell type 
composition profile. After removing the low-quality 
cells and doublets, we finally obtained a single-cell 
transcriptome from 105,740 cells. We then removed the 
batch effects, as severe batch effects were observed in 
the dataset (Figure S1).

After the batch effects canceling, we identified 19 
clusters and assigned them to 17 cell types according 
to the canonical markers (Fig. 1A-B). Compared to the 
original study [7], six more cell types were identified. In 
our identification: (1) the fibroblasts highly expressed 
FBLN1; (2) the myeloid cells expressed CD74, CD14, 
and FCGR3A; (3) the chondroblastic cells highly 
expressed SOX9, ACAN, and PTH1RP; (4) the osteo-
genic cell expressed IFITM5; (5) the proliferating cells 
expressed MKI67, TOP2A, and PCNA; (6) the osteo-
clasts expressed ACP5, CTSK, and MMP9; (7) the T 
cells expressed CD3, IL7R, CD8A, CD4, and NKG7; 
(8) the peripheral monocyte cell expressed S100A8 
and FCN1; (9) the endothelial cells expressed PLVAP; 
(10) the osteocyte expressed DMP1, (11) the pericytes 
expressed RGS5 and ACTA2; (12) the osteoblastic cells 
expressed IBSP; (13) macrophage expressed SPI1; (14) 
the inflammated osteoblastic cells expressed IFT3, 
IFT1, IFT2, and RSAD2; (15) the mesenchymal stem 
cells expressed MME, THY1, CXCL12, and SFRP2; 
(16) the dendritic cells expressed IRF8, GZMB, and 
JCHAIN; (17) the mast cells expressed TPSAB1, CPA3, 
TPSB2, and MS4A2. The expression profiles of these 
markers in the cell populations were demonstrated in 
Fig. 1C and Figure S2.

The endothelial cells were relatively isolated from 
other cell types in the Uniform Manifold Approxima-
tion and Projection (UMAP) de-dimension plot, which 
showed similar features to the previous study [7]. The 
cluster 11 and 17 both represented osteoblastic cells, 
but the composition of the samples was different in 
them. In cluster 11, the predominant samples were 
BC5 and BC6, which were conventional tumor samples. 
In contrast, in cluster 17, the dominant samples were 
BC20 and BC22, which are chondroblasts tumor sam-
ples, indicating the heterogeneity of osteoblastic cells.

https://github.com/tidyverse/ggplot2
https://github.com/kassambara/ggpubr
https://github.com/kassambara/survminer
https://github.com/YuLab-SMU/enrichplot
https://github.com/YuLab-SMU/enrichplot
https://github.com/kevinblighe/EnhancedVolcano
https://github.com/kevinblighe/EnhancedVolcano
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Fig. 1 Distinct clusters of cells in osteosarcoma. A Stacked bar-plot showed the cell compositions of different samples in each cluster. B UMAP plot 
of the de-dimensional osteosarcoma scRNA-seq dataset. C Feature plots for marker genes of each cell cluster
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Survival‑associated cell subpopulation profile 
in osteosarcoma
Using the Scissor, we identified 1,981 scissor + cells 
associated with worse survivals and 622 scissor- cells 
associated with good survivals (Fig.  2A), which has 
been processed reliability test according to the Scissor 
instruction and proved reliable (p < 0.0001). The scis-
sor + cells occupied a more significant proportion of 
the associated cells (Fig.  2B, scissor + vs. scissor-: 76% 
vs. 24%) and were observed as distributed in 13 dif-
ferent cell types, dominated most cancer cells, includ-
ing pericytes, endothelial cells, and osteogenic cell 
(Fig. 2B). The scissor- cells were observed as distributed 
in 10 different cell types, dominated by myeloid cells 
and peripheral monocyte cells (Fig.  2B). However, few 
immune cells (T cells and macrophages) were identi-
fied as significantly associated with prognosis. There 
was a comparable number of scissor + cells and scissor- 
cells in osteoblastic cells, indicating different subtypes 
within the osteoblastic cells.

Considering the transcriptome differences between 
scissor + cells, background cells (non-survival-associated 
cells), and scissor- cells, we found the SPARC, which is 
highly expressed in highly metastatic tumors [19], signifi-
cantly up-regulated in scissor + cells when compared to 
scissor- cells. The same up-regulated was also observed 
in comparing background cells and scissor- cells, i.e., 
the SPARC expression was lower in the scissor- cells 
(Fig. 2C). In addition to the overall comparison, we also 
compared the differences between scissor + and scis-
sor- cells in each cell type. In the proliferating cells, the 
SPARC was identified as having the same tendency as 
in the overall comparison, indicating the differential 
expression in proliferating cells (Fig.  2D). In the scis-
sor + dominated cell type, fibroblasts, we identified FOS, 
JUNB, IER3, and GADD45B were down-regulated while 
TAGLN, ACTA2, MYL9, PRSS23, IFI27, and ISG15 were 
up-regulated (Figure S3A). In another scissor + domi-
nated cell type, osteogenic cells (Figure S3B), JUNB 
was also down-regulated. The deduction of JUNB was 

reported to cause increasing proliferation and tumori-
genicity in wild-type murine fibroblasts [20], which was 
consistent with our findings.

Next, we investigated the functions of the differentially 
expressed genes. The differentially expressed genes were 
enriched in immune-related pathways, including the 
TGF-beta signaling pathway, cytokines and inflammatory 
response, and allograft rejection (Fig. 2C). The overview 
of proinflammatory and profibrotic mediators was shared 
by both overall and proliferating cells enriched pathways. 
The cytoplasmic ribosomal proteins were shared by the 
proliferating cells and chondroblasts cells (Fig. 2C). The 
survival-associated genes within the proliferating cells 
were highly related to chemokine activity, cytokine activ-
ity, and CCR chemokine receptor binding pathways 
(Fig. 2E, Figure S4A, B), indicating the chemokine-related 
function activities were highly enriched in proliferating 
cells which contributed to better survival outcome.

Deconvolution of the cell composition in bulk RNA 
expression data
To investigate the cell composition of the bulk RNA 
expression data, we referred to the CIBERSORTx algo-
rithm to predict the proportion of different cell types 
in each sample based on RNA expression data. Mac-
rophage, osteoclasts, proliferating cells, and fibroblasts 
occupied the most significant proportion of the samples, 
while osteocyte, T cells, mast cells, and peripheral mono-
cyte cells existed less in the samples (Fig. 3A).

Cell proportions are distributed in different sam-
ples, indicating the differences in sample extraction and 
types (Fig.  3B). As the gene expression in bulk tissue 
represented the average expression of varying cell types 
weighted by cell proportions [18], determining the cell 
proportion should be an essential process in the tran-
scriptome study.

Regarding the sample phenotypes, we also observed 
significant differences in cell proportion (Fig.  3C). 
The proportion of pericytes was the most fluctuated, 
showing the significant difference between genders 

Fig. 2 Survival-associated cell subpopulations, genes, and pathways. A UMAP plot of the identified survival-associated cell subpopulations. 
Scissor + (red) cells represent associating with worse survival; Scissor- (blue) cells represent associating with better survival. B Stacked bar-plot 
of the survival-associated cell distribution in each cell type. Y-axis represents the cell count number; X-axis represents cell types. The pie chart 
(top right) represents the global ratio of scissor + and scissor- cells. C-D The volcano plots of differentially expressed genes in overall cells (C), 
and proliferating cells (D). From left to right are considering scissor + vs. scissor-, scissor + vs. background, and background vs. scissor-. The red dot 
represents significantly differentially expressed genes with adjusted P value < 0.05 and |log2FoldChange|> 1. Dots in grey, green, and blue represent 
non-significantly differentially expressed genes. E Functional enrichment analysis of the differentially expressed genes. The dot-plot on the left panel 
describes the top five enriched items in WikiPathway. The network on the right panel represents the connection between the WikiPathways. The 
shared pathways were colored according to cell types. The connection represents the shared gene between the two pathways. In the left dot-plot, 
the enrichments gene ratio was proportional to the circle size, and the color represents different significance. In the right network plot, the circle 
size is proportional to the pathway size, and the color orange represents overall enrichment results; the color green represents T cell enrichments 
results; the color blue represents Proliferating cell enrichment results; the color purple represents chondroblatic cells enrichments results

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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Fig. 3 Diversity of cell proportions in osteosarcoma bulk transcriptome data. A Heatmap showed the cell proportion in the osteosarcoma bulk 
transcriptome data. The sample phenotype annotations, including histological subtype, tumor location, huvos grade, and age, were shown 
on the top of the heatmap. B Stacked bar-plot of the cell proportions in the osteosarcoma bulk transcriptome data. C Boxplots of cell proportions 
grouped by different sample phenotypes. From left to right are gender, histological subtype, and huvos grade. The x-axis represents cell types; 
the y-axis represents cell proportion. Significant symbol: *: P < 0.05, **: P < 0.01
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(P-value = 4.7e-02), histological subtypes (P-value = 3.1e-
02), and huvos grades (P-value = 2.9e-02).

Cell proportion‑normalized gene expression predicted 
the survival outcome of patients with osteosarcoma
We further characterized the prognostic potential of 
pathway genes. For the prognostic potential of the over-
all differentially expressed gene-enriched pathways, we 
determined the risk scores for each patient according 
to the gene expression and regression coefficients in the 
multivariate Cox model. The average value was used to 
classify the patients into low-risk and high-risk groups. 

Some pathways showed promising prognostic abil-
ity (Fig.  4A-D). The TGF-beta signaling pathway, which 
acted as tumor-suppressor functions including cell-cycle 
arrest and apoptosis [21], showed significant differ-
ences in the low-risk and high-risk groups. Besides the 
apoptosis-related pathway, oxidative damage response, 
chemokine activity pathway, and immune receptor 
activity pathway also showed as potential prognostic 
predictors.

In addition to the overall differentially expressed genes 
enriched pathways, we also investigated whether the 
cell-type specific enriched pathways could predict the 

Fig. 4 Kaplan–Meier curves for TGF-beta signaling pathway (A), oxidative damage response pathway (B), chemokine activity pathway (C), 
and immune receptor activity pathway (D) considering overall survival-associated genes. E Kaplan–Meier curves for chemokine signaling pathway 
considering proliferating cells survival-associated genes
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prognostic outcome. We normalized the gene expression 
by the cell proportions. We found that the risk scores of 
the patients in the chemokine signaling pathway of pro-
liferating cells were able to predict the patient outcome 
(Fig.  4E). The TCGA osteosarcoma dataset further con-
firmed the findings (Fig. 4A-E, Figure S5). These results 
suggested that the chemokine signaling pathway in pro-
liferating cells could be used as a prognostic marker for 
osteosarcoma patients.

Discussion
Osteosarcoma is a bone malignancy that attacks both 
teenagers and elders. The undeveloped five-year survival 
rate since the mid-1980s has promoted the exploration of 
diagnostic and therapeutic targets for osteosarcoma. In 
this study, with the leverage of clinical information from 
the bulk RNA project, we used the tool Scissor to guide 
the identification of the patient survival outcome-associ-
ated cell subpopulations and the differentially expressed 
genes in cells. To help reduce the cost of clinical testing 
in the future, we applied the biomarkers detected in the 
single-cell RNA dataset to the bulk RNA dataset, fol-
lowed by normalizing the bulk gene expression using 
the corresponding cell proportions. With the validation 
in the public dataset, CCL21, CCL22, CCL24, CXCL11, 
CXCL12, CXCL13, GNAI2, and RAC2, enriched in the 
chemokine signaling pathway in proliferating cells, were 
determined as the potential biomarkers for treatment of 
osteosarcoma.

Chemokines are a group of small molecules that pro-
mote cell survival and proliferation, guiding the cell 
migration [22]. CCL21, CCL22, and CCL24 are genes 
encoded by C–C motif chemokine ligands, which are 
components of intercellular communication and essen-
tial in the functioning of the tumor microenvironment 
[23]. There have been promising findings showing that 
CC chemokines could be the target of cancer therapies, 
including colon carcinoma [24], lung cancer [25], ovar-
ian cancer [26], and melanoma [27]. Similarly, CXCL11, 
CXCL12, and CXCL13 encoded the C-X-C motif 
chemokine ligands, critical regulators of tumor progres-
sion in many cancers [28–30]. Researchers have reported 
that CXCL12 is associated with the survival outcome in 
the osteosarcoma [31, 32]. Yet, only some studies focused 
on the potential clinical significance of other genes we 
identified in the chemokine signaling pathway, especially 
the predicting ability of the combination of these genes.

In conclusion, this study integrated the single-cell 
sequencing and bulk expression data and revealed that 
the chemokine signaling pathway in proliferating cells is 
associated with the survival outcome of osteosarcoma; 
however, it is essential to recognize the limitation of 

the study. Although we performed the validations using 
the TCGA dataset, no experimental validation was 
involved in this study. Further functional validations 
will be designed and implemented in future research. 
Nevertheless, compared to performing scRNA-seq or 
bulk RNA-seq to seek potential treatment targets for 
osteosarcoma, our study provided new insights into 
discovering survival outcome-associated biological 
pathways and biomarkers as therapeutic targets.
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