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Abstract
Background Wilms tumour (WT) is a mixed type of embryonal tumour that usually occurs in early childhood. 
However, our knowledge of the pathogenesis or progression mechanism of WT is inadequate, and there is a scarcity 
of beneficial therapeutic strategies.

Methods High-throughput RNA sequencing was employed in this study to identify differentially expressed genes 
(DEGs) in clinical tumor samples and matching normal tissues. The STRING database was utilized to build a protein-
protein interaction (PPI) network, and the Cytohubba method was used to identify the top 10 highly related HUB 
genes. Then, the key genes were further screened by univariate COX survival analysis. Subsequently, the XCELL 
algorithm was used to evaluate the tumour immune infiltration. RT-PCR, WB, and IF were used to verify the expression 
level of key genes in clinical tissues and tumour cell lines. Finally, the function of the key gene was further verified by 
loss-of-function experiments.

Results We initially screened 1612 DEGs, of which 1030 were up-regulated and 582 were down-regulated. The GO 
and KEGG enrichment analysis suggested these genes were associated with ‘cell cycle’, ‘DNA replication’. Subsequently, 
we identified 10 key HUB genes, among them CCNB1 was strongly related to WT patients’ overall survival. Multiple 
survival analyses showed that CCNB1 was an independent indicator of WT prognosis. Thus, we constructed a 
nomogram of CCNB1 combined with other clinical indicators. Single gene GSEA and immune infiltration analysis 
revealed that CCNB1 was associated with the degree of infiltration or activation status of multiple immune cells. 
TIDE analysis indicated that this gene was correlated with multiple key immune checkpoint molecules and TIDE 
scores. Finally, we validated the differential expression level of CCNB1 in an external gene set, the pan-cancer, clinical 
samples, and cell lines. CCNB1 silencing significantly inhibited the proliferation, migration, and invasive capabilities of 
WIT-49 cells, also, promoted apoptosis, and in turn induced G2 phase cell cycle arrest in loss-of-function assays.

Conclusion Our study suggests that CCNB1 is closely related to WT progression and prognosis, and serves as a 
potential target.
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Introduction
Wilms tumour (WT) is a mixed type of embryonal 
tumour that accounts for more than 7% of childhood 
malignancies and 90% of pediatric renal tumours [1]. 
WT usually occurs in early childhood, and most cases 
are sporadic, with only 1-2% of familial cases [2]. It is 
well known that the tumour grows rapidly with the main 
clinical manifestation of a huge abdominal mass. The 
recurrence rate of WT is nearly 15%, and the long-term 
survival rate is only 50% [3]. As medical treatments have 
advanced, radical resection, radiotherapy, and chemo-
therapy have improved the 5-year survival rate to over 
90% [4]. In addition, the side effects of high-intensity 
radiotherapy and chemotherapy seriously affect the qual-
ity of life of WT patients [5, 6]. However, our understand-
ing of the pathogenesis and progression mechanisms of 
Wilms tumor is still insufficient, and there is a lack of 
effective therapeutic targets [7–10]. Hence, it is critical to 
investigate the molecular processes behind WT develop-
ment and to establish efficient biomarkers for better WT 
therapy and overall prognosis.

Since its first appearance in 2005 [11], high-throughput 
sequencing has become widely available with the popu-
larization of sequencing technologies, and RNA-seq 
has become one of the most common applications of 
sequencing technology [12]. Differential gene expression 
analysis is one of the primary applications of RNA-seq, 

which can reveal the functional and potential molecular 
mechanisms of differentially expressed genes identified 
[13]. Importantly, differential gene expression analysis 
is useful for identifying potential biomarkers for cancer 
[14]. Bioinformatics has been widely applied to various 
cancer studies and has been proven effective and reliable 
for diagnosing cancer and targeting new tumor markers 
[15]. Many cancers, including Wilms’ tumor, occur due to 
genetic mutations. Using bioinformatics methods, we can 
identify and validate key genes related to cancer and pro-
vide new targets for diagnosis and treatment [16]. In this 
study, we used high-throughput sequencing combined 
with bioinformatics methods to screen key genes asso-
ciated with the prognosis of Wilms’ tumor and verified 
their specific expression and impact on the malignant 
biological phenotype of Wilms’ tumor through a series of 
basic experiments. Figure 1 displays our main steps.

Materials and methods
Clinical specimens
All programs were approved by the Ethics Committee of 
the affiliated Children’s Hospital of Chongqing Medical 
University and all patients diagnosed with WT had not 
received radiotherapy or chemotherapy before surgery. 
We collected WT tissue and normal kidney tissue from 
37 patients who underwent surgery from January 2019 to 
September 2022 (Table 1). Each sample was immediately 
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Fig. 1 Flow chart of analysis for the present study
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frozen in liquid nitrogen and preserved. All samples were 
identified as WT by pathology tissue department special-
ists, and all WT samples were classified by pathologists 
following the Children Oncology Group (COG) stag-
ing system [17]. We randomly selected 8 pairs of tumor 
samples and paired normal tissue samples for mRNA 
sequencing to obtain the expression data of mRNA in 
WT. The rest of the samples were used for gene expres-
sion validation.

RNA sequencing (RNA-seq) of WT tissue
The Illumina NovaSeq 6000 was used for library con-
struction and sequencing at Shanghai Sinomics Corpora-
tion (Illumina, USA). Detailed procedures can be referred 
to the previously published paper [18].

Identification of DEGs
To measure mRNA levels, we utilized fragments per kilo-
base million (FPKM) to reflect the expression of various 
genes, which could be determined as follow:

 
FPKM =

totalexonFragments
mappedreads (Millions) × exonlength (KB)

The fragments within each gene interval were first 
counted using Stringtie software [19]. Finally, FPKM val-
ues were then calculated for each gene, and the software 
edgeR [20] was used to analyze the differences in gene 
expression between groups. The final P-value was calcu-
lated for differential expression between tumour and nor-
mal tissues. Meanwhile, the differential expression fold 
change (FC) was calculated based on the FPKM values. 
Ultimately, DEGs were evaluated using both |logFC| > 1 
and Q-value 0.05 as filtering principles.

Enrichment Analysis and hub genes identification
To investigate the underlying mechanics of DEGs in WT, 
we used the Gene Ontology (GO) and the Kyoto Ency-
clopedia of Genes and Genome (KEGG) [21] to explore 
potential biological processes and pathways using the R 
package ‘clusterProfiler’ [22]. In addition, DEGs were 
uploaded to the STRING database [23] to construct a 
protein-protein interaction (PPI) network. Cytoscape 
[24] based on the Cytohubba algorithm [25] was adopted 
to identify the top ten highly correlated HUB genes.

Gene Set Enrichment Analysis (GSEA)
GSEA is a functional annotation tool for understanding 
the underlying biological pathways of different biologi-
cal phenotypes or states [26]. In this study, we performed 
GSEA analysis using gene sets based on GO, KEGG, and 
ImmuneSigDB. We grouped the samples based on the 
median expression of CCNB1 and identified the biologi-
cal processes and pathways that were significantly associ-
ated with high and low expression groups.

Survival analysis
The TARGET database was used to acquire gene tran-
scription and patient information on WT individuals. To 
compare survival differences across groups, log-rank was 
used to assess the Kaplan-Meier (KM) survival analy-
sis, and time-dependent receiver operating characteris-
tic (ROC) curve analysis was done to predict accuracy. 
The survival outcome metric used was overall survival 
(OS). We conducted a multivariate Cox survival analy-
sis of CCNB1 and other clinical indicators, resulting in 
three independent prognostic factors: stage, gender, and 
CCNB1. We then constructed a risk score (Riskscore) 
based on the impact of each indicator on prognosis in 
the COX regression model, and divided the subjects into 
high-risk and low-risk groups based on the median of the 
risk score for further survival analysis. Subsequently, the 
independent prognostic value of CCNB1 was constructed 
and evaluated in conjunction with clinical indicators.

Assessment of Immune Infiltration
The Stromalscore and Immunescore, which reflect the 
extent of TME-related cell infiltration in WT tumor tis-
sue, were calculated using the “IOBR” R package, employ-
ing the ESTIMATE algorithm[27, 28]. The ESTIMATE 
algorithm was developed based on single-sample gene set 
enrichment analysis (ssGSEA). The TME consists of vari-
ous types of immune cells. To assess the heterogeneous 
cellular landscape of the TME, cell type enrichment 
scores were evaluated. In the TARGET and GSE31403 
datasets, the XCELL method [29] was used to calcu-
late the degree of immune cell infiltration and immune 
score. In addition, in the TARGET cohort, we employed 
the Tumour Immune Dysfunction and Exclusion (TIDE) 

Table 1 The clinicopathological features of WT patients. WT, 
Wilms tumor; TNM, tumor-node-metastasis; FH, favorable 
histology; UH, unfavorable histology
Characteristics Total (N = 37)
Gender

 Female 19 (51.35%)

 Male 18 (48.65%)

Age (years)

 > 3year 11 (29.73%)

 ≤ 3year 26 (70.27%)

TNM

 I-II 13 (35.14%)

 III-V 24 (64.86%)

Pathologic types

 UH 16 (43.24%)

 FH 21 (56.76%)
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score to measure treatment responsiveness to immune 
checkpoint inhibitors [30].

Expression Verification
We obtained and downloaded the WT expression dataset 
(GSE66405) from the GEO platform for expression vali-
dation of CCNB1. Subsequently, a uniformly normalized 
pan-cancer dataset was downloaded from the Sangerbox 
platform (http://sangerbox.com/home.html), from which 
the expression data of the CCNB1 (ENSG00000134057) 
gene in each sample were extracted. Meanwhile, expres-
sion differences in clinical tissues and cell lines were cal-
culated using an unpaired t-test.

RT-PCR
Tissue RNA was extracted from previously collected WT 
tissue and normal kidney tissue in 37 patients. Cellular 
RNA was extracted from WT cells (WIT-49) and nor-
mal renal epithelial cells (293T). RT-PCR methodology 
was performed according to previous literature [18]. The 
expression of CCNB1 and GAPDH was based on the for-
mula 2^-ΔΔCt. Table 2 lists the primers that were utilized.

Cell transfection
Table  3 shows the CCNB1 targeting siRNA and nega-
tive control (NC) siRNA sequences (TSINGKE, Beijing, 
China). The WIT-49 cells were plated onto 6-well or 
12-well plates and divided into four groups: experimen-
tal group for CCNB1siRNA-1, CCNB1siRNA-2, CCN-
B1siRNA-3, and negative control group with NC siRNA. 
Lipofectamine™ RNAiMAX (Invitrogen, USA) was used 
for transient transfection according to the manufacturer’s 
instructions.

Western blotting and immunofluorescence
The previous article [31] described experimental meth-
ods for western blot (Prior to antibody hybridization, we 
cut the membrane at corresponding band positions.) and 
immunofluorescence. The following antibodies were used 
in the experiments: primary antibody (Anti-CCNB1 Rab-
bit pAb, GB112098; Anti-GAPDH Rabbit pAb, GB11002, 

Servicebio, China), secondary antibody (HRP − conju-
gated secondary antibody, G1213-100UL, Servicebio, 
China).

Cell proliferation, Migration, and Invasion Assay
The CCK-8 counting method (MCE, HY-K0301) was 
used to determine cell viability. Approximately 1 × 104 
WIT-49 cells were inoculated into 96-well plates and 
transfected with CCNB1siRNA-1 and NCsiRNA. Tran-
swell invasion assay to determine cell invasion ability. A 
scratch wound healing motility assay was performed to 
determine cell migration using WIT-49 cells. A method-
ology was referenced from the previous literature of our 
team [32].

Flow Cytometry
Flow cytometry was used to determine the distribution 
of cell cycle phases and the amount of apoptosis using the 
BD detection kit. FlowJo software was used to handle all 
data.

Statistical analysis
The experimental data were analyzed and graphed using 
the statistical program GraphPad Prism 8. Sangerbox was 
used for all bioinformatics analyses. Every experiment 
was carried out three times. A p-value less than 0.05 was 
considered statistically significant.

Results
Identification of DEGs in WT tissue and functional 
Enrichment Analysis
We conducted mRNA sequencing analysis on 8 pairs 
of tumor samples and matched normal tissue samples, 
identifying distinct mRNA expression profiles in WT. 
According to the method’s guideline, a total of 1612 dif-
ferentially expressed genes were revealed, with 1030 
being up-regulated and 582 being down-regulated 
(Fig. 2B). Cluster heat map and PCA analysis showed that 
differential genes distinguished the tumour from normal 
tissue (Fig.  2A, C). Following GO and KEGG enrich-
ment analysis, the DEGs were shown to be significantly 
enriched in biochemical processes such as ‘DNA replica-
tion’, ‘Cell cycle’. (Fig. 2D-H).

PPI Network Construction and hub genes identification
We constructed a PPI network of 1612 DEGs based on 
the STRING database. The PPI network includes 693 

Table 2 Primers used for quantitative real time PCR.
RNA Forward primer Sequence 

(5`−3`)
Reverse primer Sequence 
(5`−3`)

CCNB1 TTTCTGCTGGGTGTAGGTCC GCCATGTTGATCTTCGCCTT

GAPDH CCTTCCTGGGCATGGAGTC TGATCTTCATTGTGCTGGGTG

Table 3 CCNB1 siRNA sequences
siRNA Forward primer Sequence (5`−3`) Reverse primer Sequence (5`−3`)
CCNB1 siRNA−1 GCUGAAUUCUGCACUAGUUTT AACUAGUGCAGAAUUCAGCTT

CCNB1 siRNA−2 GGUAAAUCAAGGACUUACATT UGUAAGUCCUUGAUUUACCTT

CCNB1 siRNA−3 CUGACAACACUUAUACUAATT UUAGUAUAAGUGUUGUCAGTT
* The siRNA NC was provided in the reagent

http://sangerbox.com/home.html
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Fig. 2 Identification of DEGs in WT Tissue and Functional Enrichment Analysis. (A) Heatmaps and cluster analysis of DEGs. Each row represents a 
gene, and each column represents a sample. Red indicates high expression, while blue indicates low expression. Letters represent tumor samples, and 
numbers represent normal samples (paired as follows: A-1, B-2, C-3, D-4, E-5, F-6, G-7, H-8). (B) Volcano plot of DEGs. Red represents upregulated genes 
(1030), blue represents downregulated genes (582). The horizontal dashed line represents an adjusted P-value of 0.05, and the vertical dashed line repre-
sents a logFC of 2. (C) PCA analysis shows a remarkable difference in transcriptomes between the tumors (red) and normal tissues (blue). (D-H) GO and 
KEGG enrichment analysis showed that DEGs were mainly enriched in biological pathways or processes such as ‘DNA replication’, ‘cell cycle’
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nodes and 6656 edges (Fig. 3A). We used cytoHubba to 
obtain the top 10 most connected Hub genes in the PPI 
network, including CCNB1, CDK1, CCNB2, CCNA2, 
BUB1, KIF11, AURKB, NCAPG, CDC45, and BUB1B 
(Fig. 3B).

Survival and clinical relevance analysis
Univariate Cox analysis of 10 Hub genes showed that 
CCNB1 was significantly associated with OS of WT 

patients (Fig. 3C, D). Clinical correlation showed that the 
expression of CCNB1 was significantly associated with 
the pathological type and tumour progression (Table 4), 
suggesting that the gene may be involved in the malig-
nant progression of WT. Multiple survival analyses 
showed that CCNB1 was an independent predictor of 
WT patients. Therefore, we constructed a nomogram 
(the C-index of the nomogram was 0.72) by combin-
ing other clinical indicators for predicting the near and 

Fig. 3 Identification of prognosis-related HUB genes and construction of a nomogram. (A) A PPI network of 1612 DEGs based on the STRING data-
base. Red represents upregulated genes, blue represents downregulated genes. (B) Identification of top ten Hub genes using cytoHubba algorithm. (C) 
Univariate Cox analysis of the 10 Hub genes showed that CCNB1 was significantly correlated with OS in WT patients. (D) KM survival curves show that high 
expression of CCNB1 was associated with poorer prognosis in WT. (E) Multiple COX regression analyses revealed that CCNB1 was a critical risk biomarker 
independent of clinical indicators. (F) Combining CCNB1 expression and clinical indicators to develop a nomogram that could predict patient survival 
(1-, 3-, and 5-year survival rates). (G) Combined CCNB1 expression and clinical indicators to assess patient risk scores. (H and I) ROC curve and correction 
curve showed that the prediction model had good prediction performance (1-, 3-, and 5-year survival rates)
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long-term survival of patients (Fig. 3E, F). Subsequently, 
we calculated risk scores for each patient in a compos-
ite model with multiple indicators (Fig.  3G). The ROC 
curves and calibration curves showed good performance 
of the prediction model. The AUC values predicting 1-, 
3-, and 5-year survivals were increased to 0.80, 0.75, and 
0.73, respectively (Fig. 3H, I).

Analysis of the CCNB1-Associated Immune Infiltration
Single gene GSEA enrichment analysis revealed that 
this gene may be involved in regulating the activation 
and functional levels of multiple immune cells such as 
CD8+ T cells, CD4+ T cells, and NKT cells (Fig.  4A). 
Therefore, heat maps were generated by Single-sam-
ple gene set enrichment analysis (ssGSEA) to show 
the immune scores and relative abundance of immune 
cell subpopulations in the TARGET and GSE31403 
datasets (Fig.  4B). The XCELL algorithm was used to 
calculate the ImmuneScore, StromaScore, Microenvi-
ronmentScore, and immune infiltration level between 
high and low-expression subgroups of CCNB1 in the 
TARGET and GSE31403 cohorts (Fig.  4C). Compared 
to the low expression group in the TARGET cohort, the 
high CCNB1 expression group had a lower StromaScore. 
Furthermore, in the TARGET cohort, there was a signifi-
cant increase in CD4 + memory T cells, CD4 + T cells, M2 
macrophages, pro-B cells, γδ T cells, and Th2 cells in the 
CCNB1 high expression group. However, CD4 + naive T 
cells, CD4 + central memory (Tcm), and natural killer T 
(NKT) cells showed a significant increase in the CCNB1 

low expression group. To explain the survival differ-
ences found in patients with good prognosis from an 
immune perspective, we further analyzed the differences 
in immune cell infiltration between CCNB1 high and 
low expression groups of WT patients in the GSE31403 
cohort. In the GSE31403 cohort, the high expression 
group had lower ImmuneScore and Microenviron-
mentScore compared to the low expression group. At the 
same time, the CCNB1 high expression group showed a 
significant increase in CD4 + memory T cells, CD8 + Tcm, 
pro-B cells, γδ T cells, and Th2 cells. The main lympho-
cyte subgroups involved in anti-tumor immunity, includ-
ing CD4 + Tcm, CD4 + Tem, and CD8 + T cells, showed a 
significant increase in the CCNB1 low expression group. 
Taken together, these results suggest that the favorable 
prognosis associated with low CCNB1 expression may 
be partially attributed to anti-tumor immune activity. 
Notably, this gene showed a significant correlation with 
TIDE score and several immune checkpoint molecules 
(HMGB1, CD80, IL13, ENTPD1, BTN3A1, TGFB1, 
VEGFA, ICOSLG, ICAM1, BTN3A2, TNFRSF14, 
CX3CL1, TLR4, ADORA2A, TNFRSF18) (Fig.  4D, E), 
indicating that CCNB1 might be an immunological regu-
latory target.

Expression analysis in multiple datasets and clinical 
samples
To verify the key role of this gene, we evaluated CCNB1 
expression levels in two different datasets. The results 
showed that this gene showed tumour-specific expression 

Table 4 Correlation between the expression of CCNB1 and the clinicopathological features of WT patients
CCNB1 expression (%)

Characteristics Low (N = 62) High (N = 62) Total (N = 124) P
Gender 0.20

 Female 39 (31.45%) 31 (25.00%) 70 (56.45%)

 Male 23 (18.55%) 31 (25.00%) 54 (43.55%)

Race 0.44

 Black or African American 7 (5.65%) 12 (9.68%) 19 (15.32%)

 Not Reported 3 (2.42%) 5 (4.03%) 8 (6.45%)

 Other 2 (1.61%) 3 (2.42%) 5 (4.03%)

 White 50 (40.32%) 42 (33.87%) 92 (74.19%)

Age (years) 0.68

 > 3year 44 (35.48%) 47 (37.90%) 91 (73.39%)

 ≤ 3year 18 (14.52%) 15 (12.10%) 33 (26.61%)

State 0.03

 None 8 (6.45%) 19 (15.32%) 27 (21.77%)

 Progression 54 (43.55%) 43 (34.68%) 97 (78.23%)

TNM 0.37

 I-II 36 (29.03%) 30 (24.19%) 66 (53.23%)

 III-V 26 (20.97%) 32 (25.81%) 58 (46.77%)

Pathologic types < 0.001

 UH 10 (8.06%) 32 (25.81%) 42 (33.87%)

 FH 52 (41.94%) 30 (24.19%) 82 (66.13%)
WT, Wilms tumor; TNM, tumor-node-metastasis; FH, favorable histology; UH, unfavorable histology
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Fig. 4 Associations between CCNB1 expression and immune infiltration in TME. (A) single-gene GSEA enrichment analysis showed that CCNB1 
was involved in regulating the activation and function of immune cells. (B) Single-sample gene set enrichment analysis to generate heat maps to display 
immune scores and relative abundance of immune cell subsets in TARGET and GSE31403 datasets. (C) XCELL algorithm was used to calculate the Immu-
neScore, StromaScore, MicroenvironmentScore, and immune cell infiltration levels between CCNB1 high expression subsets and low expression subsets 
in TARGET and GSE31403 cohorts. (D and E) CCNBI was correlated with the TIDE score and several immune checkpoint molecules. * p < 0.05, ** p < 0.01, 
*** p < 0.001, **** p < 0.0001
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levels in two independent datasets (Fig. 5B). Pan-cancer 
analysis showed consistent results (Fig.  5A), suggesting 
this gene may be a key oncogene. Next, we performed 
RT-PCR in 37 WT cancer tissues and paired adjacent 
normal kidney tissues to verify the expression of CCNB1. 
The results showed that CCNB1 was significantly over-
expressed in WT tissues compared with paraneoplas-
tic tissues (Fig. 5C). Similarly, the expression of CCNB1 
was significantly higher in the WT cell line WIT-49 than 

in the renal epithelial normal cell line 293T (Fig.  5D). 
Moreover, WB and IF results also showed that CCNB1 
was highly expressed in WT cell lines and cancer tissues, 
respectively (Fig. 5E, F).

Silencing of CCNB1 significantly inhibited the Proliferation, 
Migration, and Invasion ability of WT cells
Single-gene GSEA enrichment analysis further sug-
gested that this gene may be involved in biological 

Fig. 5 CCNB1 exhibits a tumor-specific expression pattern. (A) Pan-cancer analysis showed CCNB1 was highly expressed in a variety of tumors. (B) 
Two independent databases verified that CCNB1 was significantly overexpressed in WT. (C and D) RT-PCR verified that CCNB1 was highly expressed in 
WT tissues and cell lines. (E and F) WB and immunofluorescence were used to demonstrate the expression of CCNB1 at the protein level. * p < 0.05, ** 
p < 0.01, *** p < 0.001, **** p < 0.0001
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Fig. 6 CCNB1 promotes the malignant biological behavior of Wilms tumor cells via multiple phenotypes. (A-B) single-gene GSEA enrichment 
analysis showed that CCNB1 was mainly involved in regulating cell cycle-related processes. (C) RT-PCR analysis of CCNB1 expression in WIT-49 cells after 
transfection with siRNAs. (D) Western blot analysis of CCNB1 expression in WIT-49 cells after transfection with si-CCNB1-1. (E-G) CCK-8 assay, cell Migration 
assay, and Transwell assay were used to demonstrate that silencing CCNB1 could significantly inhibit the proliferation, migration, and invasion ability of 
WIT-49 cells. (H and I) Flow Cytometry identified that silencing CCNB1 caused G2 phase arrest and promoted WIT-49 cell apoptosis. * p < 0.05, ** p < 0.01, 
*** p < 0.001, **** p < 0.0001
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processes such as regulation of ‘cell cycle’, ‘DNA replica-
tion’ (Fig. 6A, B). To demonstrate the role of CCNB1 in 
WT cells, three siRNA segments targeting CCNB1 were 
introduced into WIT-49 cells. After transfection for 48 h, 
we found that the knockdown efficiency of the first seg-
ment of si-CCNB1 was the highest (Fig. 6C). When com-
pared to the si-NC group, si-CCNB1 protein expression 
was considerably lower in WIT-49 cells (Fig.  6D). Fur-
thermore, cell function studies demonstrated that silenc-
ing this gene greatly reduced WIT-49 cell proliferation, 
migration, and invasive capacity (Fig. 6E-G).

In addition, this gene belongs to the family of cell cycle 
proteins. Therefore, we further verified whether this gene 
is involved in regulating the cell cycle and apoptosis lev-
els of WIT-49 cells. Relatively perspective, silencing this 
gene caused G2 phase arrest (Fig. 6H) and promoted the 
apoptosis of WIT-49 cells (Fig. 6I) by flow cytometry.

Discussion
Wilms tumor is the most prevalent malignant solid 
tumor in children’s urology, and the exact pathophysiol-
ogy is unknown [33]. Despite advances in clinical therapy 
for WT, overall survival has not increased considerably, 
which can be related to a paucity of molecular markers 
for successful diagnosis and treatment. As a result, it is 
critical to investigate WT molecular markers in order 
to increase patient survival. Researchers may now inte-
grate several bioinformatics methodologies to extensively 
investigate the main pathophysiology and clinical diagno-
sis or prognosis of many diseases at the molecular level, 
thanks to the fast growth of diverse bioinformatics data-
bases and high-throughput studies [34]. Therefore, the 
integration of RNA sequencing data and mining in the 
database has become an important means to explore the 
pathogenesis of WT and speculate the possible markers 
for diagnosis and treatment.

In this study, we integrated and analyzed the high-
throughput sequencing data of WT tissues and adjacent 
normal tissues, and found that most of the differen-
tial genes were up-regulated. GO and KEGG pathway 
analysis showed that DEGs were enriched in multiple 
pathways related to malignant biology, including ‘DNA 
replication’, ‘cell cycle’. To further identify key genes that 
play important roles, we established a PPI network based 
on the STRING database and screened 10 HUB genes. 
CCNB1 was found to be a risk factor for poor progno-
sis in WT patients by univariate COX analysis. Multi-
factorial analysis similarly demonstrated that this gene 
was an independent risk factor. This suggests a poten-
tial biological role for CCNB1 in WT progression. It 
has been shown that CCNB1 is a prognostic factor for 
overall survival and metastasis-free survival in breast 
cancer [35]. Several studies have confirmed that CCNB1 
can be used as a diagnostic or prognostic biomarker 

for rhabdomyosarcoma, hepatocellular carcinoma, and 
meningioma [36–38]. Critically, our results of CCNB1 
validation from transcriptome and protein levels and 
combined with clinicopathological information showed 
that CCNB1 was significantly highly expressed in WT. 
Functional experiments confirmed that silencing CCNB1 
could inhibit the proliferation, invasion, and migration 
of WT cells, suggesting a crucial role of this gene in WT. 
Interestingly, there have been reports confirming the car-
cinogenic effect of high expression of CCNB1 in various 
cancers, including renal cancer, breast cancer, pancre-
atic cancer, hepatocellular carcinoma, and cervical can-
cer [39–42]. Several studies have shown that CCNB1 is a 
potential target for tumour intervention [43, 44]. CCNB1 
has been reported to be considered other potentially use-
ful genes for targeting hepatocellular carcinoma [45, 46]. 
Therefore, it is speculated that this gene may be a poten-
tial key therapeutic target for WT.

The cell cycle-related factor CCNB1 belongs to the 
family of cell cycle proteins [47]. It is well known that 
one of the distinguishing features of cancer is cell cycle 
dysregulation, leading to the unrestricted proliferation 
of cancer cells [48, 49]. In this study, GSEA enrichment 
analysis suggested that the gene promoted tumour pro-
gression by regulating the cell cycle, and further experi-
ments proved that silencing the gene caused cell cycle 
G2 arrest and apoptosis. These findings encourage us to 
speculate that CCNB1 is essential for cell cycle progres-
sion and proliferation. To sum up, CCNB1 may regulate 
WT tumour progression through the cell cycle pathway.

Cancer patients usually have a large number of T cells, 
but most of them have lost their function [50]. One 
study found that CCNB1 caused T cell-dependent anti-
body responses in patients with cancer and precancerous 
lesions, suggesting that this gene is an important player 
in the immune control of tumour growth [51]. In addi-
tion, CCNB1, which is aberrantly expressed in patients 
with breast, lung, head, and neck cancers, can be rec-
ognized by antibodies and T cells as tumour antigens 
[52]. CCNB1 was discovered by Kao et al. as a common 
human epithelial tumor-associated antigen recognized 
by T lymphocytes [53]. Latner et al. [54] elucidated the 
enhanced expression of CCNB1 in virus-specific memory 
CD8+ T cells. It is worth noting that another important 
finding of our study is that CCNB1 is associated with 
immune scores and multiple immune cell infiltration lev-
els. Single gene GSEA analysis suggests that the gene may 
be involved in the regulation of a variety of key immune 
cells, which may affect tumour immunity and lead to 
poor prognosis and can be used as an important indica-
tor of cancer prognosis.

We demonstrated that CCNB1 is a promising prog-
nostic marker and potential therapeutic target for 
WT by high-throughput sequencing combined with 
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bioinformatics analysis and experimental validation. 
Despite the large sample bioinformatics analysis and 
clinical sample validation performed in this study, cer-
tain limitations remain: First, our prognostic analysis 
and model are based on a public cohort, and retrospec-
tive innate characteristics hinder clinical applicability. 
Therefore, prospective studies are needed for further 
validation before clinical application. Second, the down-
stream mechanism by which CCNB1 exerts its oncogene 
function remains unclear requiring further in vivo and in 
vitro experiments for validation. Third, the immune regu-
latory function of this gene in the tumour microenviron-
ment is based on bioinformatics analysis, and the exact 
mechanism needs to be further explored.

In conclusion, our findings imply that CCNB1 is a sig-
nificant prognostic biomarker and a possible therapeutic 
target for Wilms tumor.
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