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Abstract 

Background Hepatocellular carcinoma (HCC) is a prevalent tumor that poses a significant threat to human health, 
with 80% of cases being primary HCC. At present, Early diagnosis and predict prognosis of HCC is challenging 
and the it is characterized by a high degree of invasiveness, both of which negatively impact patient prognosis. 
Natural killer cells (NK) play an important role in the development, diagnosis and prognosis of malignant tumors. The 
potential of NK cell-related genes for evaluating the prognosis of patients with hepatocellular carcinoma remains 
unexplored. This study aims to address this gap by investigating the association between NK cell-related genes 
and the prognosis of HCC patients, with the goal of developing a reliable model that can provide novel insights 
into evaluating the immunotherapy response and prognosis of these patients. This work has the potential to signifi-
cantly advance our understanding of the complex interplay between immune cells and tumors, and may ultimately 
lead to improved clinical outcomes for HCC patients.

Methods For this study, we employed transcriptome expression data from the hepatocellular carcinoma cancer 
genome map (TCGA-LIHC) to develop a model consisting of NK cell-related genes. To construct the NK cell-related 
signature (NKRLSig), we utilized a combination of univariate COX regression, Area Under Curve (AUC) LASSO 
COX regression, and multivariate COX regression. To validate the model, we conducted external validation using 
the GSE14520 cohort.

Results We developed a prognostic model based on 5-NKRLSig (IL18RAP, CHP1, VAMP2, PIC3R1, PRKCD), which 
divided patients into high- and low-risk groups based on their risk score. The high-risk group was associated 
with a poor prognosis, and the risk score had good predictive ability across all clinical subgroups. The risk score 
and stage were found to be independent prognostic indicators for HCC patients when clinical factors were taken 
into account. We further created a nomogram incorporating the 5-NKRLSig and clinicopathological characteristics, 
which revealed that patients in the low-risk group had a better prognosis. Moreover, our analysis of immunotherapy 
and chemotherapy response indicated that patients in the low-risk group were more responsive to immunotherapy.

Conclusion The model that we developed not only sheds light on the regulatory mechanism of NK cell-related 
genes in HCC, but also has the potential to advance our understanding of immunotherapy for HCC. With its strong 
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predictive capacity, our model may prove useful in evaluating the prognosis of patients and guiding clinical decision-
making for HCC patients.

Keywords Natural killer cell, HCC, Tumor microenvironment, Prognostic signature

Background
Hepatocellular carcinoma represents the most prevalent 
form of malignant liver tumors in adults. Recent global 
cancer statistics indicate that primary liver cancer ranks 
as the sixth most frequently diagnosed cancerous con-
dition, while simultaneously holding the second highest 
mortality rate [1]. At present, surgical resection and liver 
transplantation are considered the primary treatment 
options for liver cancer. However, the stealthy onset and 
rapid progression of liver cancer often result in late-stage 
diagnoses and metastases, making it challenging to treat 
[2]. Later stage diagnosis and metastasis often accom-
pany liver cancer in many patients [3]. Despite the prom-
ising progress and widespread use of targeted therapy 
[4], the overall survival rate of patients with HCC has 
remained largely unchanged due to drug resistance and 
adverse effects associated with this treatment modality. 
Therefore, there is an urgent need to study new treatment 
targets and biomarkers to better improve the prognosis 
of patients. NK cells are important immune cells in the 
body [5]. Compared to B cells and T cells, NK cells have 
the unique ability to kill tumor cells in a nonspecific man-
ner, without requiring prior sensitization [6]. NK cells 
play a crucial role in the immune response against tumors 
by effectively eliminating cancer cells [7]. Furthermore, 
NK cells can also play an important indirect immune-
mediated role by cooperating with other innate immune 
cells to regulate the immune status and function of the 
body. They secrete various chemokines and cytokines 
that enhance immune defense and help to maintain the 
immune balance of the body [8]. Therefore, it is consid-
ered a potential target for cancer immunotherapy [9]. In 
recent years, immunotherapy, as the fourth treatment 
after surgery, radiotherapy, and chemotherapy, has been 
gradually applied to clinical practice [10]. In addition to 
the focus on chimeric antigen receptor T-cell (CRT-T) 
therapy, NK cell-based immunotherapy has emerged as 
a novel approach for treating both solid and hematologic 
tumors [11]. It has been reported that NK cell immuno-
therapy has greatly improved the adverse reactions and 
survival time of patients with liver cancer, which can 
effectively improve the quality of life of patients [12]. 
Currently, the significance of NK cell-related genes in the 
prognosis of HCC patients is not well understood. Thus, 
this study aims to conduct a comprehensive analysis of 
the relationship between the expression of genes associ-
ated with NK cells and the prognosis of HCC patients.

Materials and methods
Dataset and sample extraction
RNA sequencing data (RNA-seq), clinical features, 
and mutation data of TCGA-LIHC cohort dataset were 
obtained from The Cancer Genome Atlas (TCGA, 
https:// portal. gdc. cancer. gov/) [13]. To begin with, data 
from 424 HCC patients were initially collected from 
the TCGA database. Patients with incomplete follow-
up data or a survival time of less than 30  days, as well 
as those lacking complete clinical data, were excluded 
from the follow-up analysis. Ultimately, a total of 319 
cancer patients and 50 healthy controls were enrolled. 
To account for the same genes with different probes, the 
average was taken. The data was then standardized using 
log2 (TPM + 1) transformation, and was normalized by 
“normalizeBetweenArrays” function of "limma" R pack-
age. To obtain the necessary data for this study, we down-
loaded the GSE14520 dataset from the Gene Expression 
Omnibus (GEO) database (https:// www. ncbi. nlm. nih. 
gov/ geo/) [14]. We carefully excluded patients who had 
a survival time of less than 30 days, lacked clinical data, 
or had incomplete follow-up data. In total, 177 cases of 
HCC patients were included in the study. And standard-
ize the data with the "limma" R package. GSE14520 is 
considered an externally validated dataset. To investigate 
the relationship between NK-cell-related genes and the 
prognosis of HCC patients, a total of 273 NK-cell-related 
genes were collected. These genes were identified by 
gathering 134 NK-cell-related genes from the ImmPort 
Portal website (Additional file  1. Table  S1) and 31 gene 
sets obtained from the MSigDB database (Additional 
file 2. Table S2). Finally, we removed the duplicate genes, 
resulting in a final list of 273 NK-cell-related genes. This 
study is based on the Helsinki Declaration, which was 
revised in 2013.

Identification of NKRLSig and formulation of modal 
for prediction of prognosis of HCC patients
To investigate the differential expression of NK cell-
related genes between normal and tumor tissues, we 
employed the "limma" R package, a widely used tool for 
analyzing microarray and RNA-seq data. The screen-
ing criterion we used was a threshold of |log2FC|> 0.585 
and an adjusted p-value of less than 0.05 [15]. To con-
struct the 5-NKRLSig, we intersected the differentially 
expressed genes obtained from the analysis of normal 
and tumor tissues with known NK cell-related genes. 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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This approach allowed us to identify a list of genes 
that were differentially expressed and also functionally 
related to NK cells. Through univariate COX regres-
sion with p < 0.05 [16]. We identified the NK regulatory 
genes related to survival. Then we used "survivalROC" R 
package to calculate AUC [17] and "glmnet" package to 
run LASSO COX regression analysis [18] in the train-
ing set. To further screen genes, we utilized a five-fold 
cross-validation method to determine the penalty regu-
larization parameters. Finally, to determine the most 
significant genes for the 5-NKRLSig model, we used mul-
tivariate COX regression analysis to identify the central 
gene and its coefficients. Based on the central gene and 
coefficients, we constructed the 5-NKRLSig model and 
calculated the risk score using the regression coefficient 
obtained from the multivariate COX regression analysis. 
The risk scoring formula is established as follows: Risk 
score = ExpressionmRNA1 × CoefmRNA1 + Expression-
mRNA2 × CoefmRNA2 + ExpressionmRNA3 × Coefm-
RNA3 + ExpressionmRNA4 × CoefmRNA4 + Expres-
sionmRNA5 × CoefmRNA5. According to the risk score, 
the cut-off point was calculated using the ‘surv.cutpoint’ 
function of "survminer" R package based on the mini-
mum P-value. We divided all patients in the TCGA-LIHC 
cohort into high- and low-risk groups based on the cut-
off value and plotted their respective Kaplan–Meier sur-
vival curves [19]. Finally, the accuracy of the model was 
evaluated using Time-ROC analysis [20].

Functional enrichment analysis
Gene Ontology (GO) is a structured standard biological 
model that covers three aspects: cell composition (CC), 
molecular function (MF), and biological process (BP) 
[21]. Kyoto Encyclopedia of Genes and Genomes (KEGG) 
is a database that provides a systematic and comprehen-
sive mapping of genes and expression information to 
pathways, which aids in the understanding of gene meta-
bolic processes in organisms. We utilized the "clusterPro-
filer" R package to perform GO and KEGG enrichment 
analysis of 115 NK-related genes, with a significance 
threshold of p < 0.05 [22]. The observed differences were 
found to be statistically significant, and to facilitate visu-
alization of the results, we used the "circlize" R package. 
In addition, Gene set enrichment analysis (GSEA) was 
conducted to identify distinct biological processes and 
signaling pathways that differentiate high-risk and low-
risk groups in HCC.

Construction of the nomogram
We integrated the established NKRLSig model with 
clinical information to evaluate the independent prog-
nostic value of the risk score, using univariate COX 
regression, LASSO COX regression and multivariate 

COX regression. To improve clinical applicability, we fur-
ther developed a nomogram by integrating the genetic 
model and clinical information, and created it using the 
"rms" R package. The nomogram was used to predict the 
1-, 3-, and 5-year survival status of patients in the TCGA-
LIHC cohort [23].

Analysis of somatic mutation data and TMB
TMB, which stands for tumor mutational burden, repre-
sents the sum of base substitution, insertion, and deletion 
mutations per trillion bases in the tumor exon coding 
region [24]. To visually analyze the number of copy num-
ber variations of somatic non-synonymous mutations in 
each sample, we utilized the "maftools" R package [25]. 
Additionally, we compared the TMB of the high- and 
low-risk groups and generated abrupt OncoPrint dia-
grams using the "ComplexHeatmap" R package [26].

Tumor microenvironment analysis
The "Estimate" R package was utilized to estimate the 
composition of the immune matrix in the HCC tumor 
microenvironment (TME) [27]. Subsequently, the 
immune score, matrix score, and ESTIMATE score were 
compared between the low-risk and high-risk groups.

Evaluation of immunotherapy, chemotherapy and target 
therapy based on risk score
To further evaluate the clinical utility of the risk score, we 
utilized the TIDE algorithm [28] to predict the immuno-
therapy sensitivity of the high-risk and low-risk groups. 
Additionally, we assessed the immune predictive score 
(IPS) of the two groups to predict the response to immu-
notherapy [29]. We obtained the patient immunotherapy 
data from the Cancer Immunotherapy Response Predic-
tion and Outcome (CRIPO) group database and analyzed 
the response of patients  in the high-risk and low-risk 
groups to different chemotherapeutic drugs using the 
"pRRophetic" R package to predict the semi-inhibitory 
concentration (IC50) [30].

Statistical analysis
The data were analyzed using R software version 4.2.1. 
Univariate COX regression analysis, AUC, LASSO-COX 
regression analysis, and multivariate COX regression 
analysis were employed to construct the 5-NKRLSig 
model. The Kaplan–Meier (KM) survival curve was 
used to compare the overall survival (OS) of the high-
risk and low-risk groups. The performance of the model 
was evaluated using a time-dependent receiver operating 
characteristic (ROC) curve. The Wilcoxon rank-sum test 
was utilized to compare the proportion of tumor infil-
trating immune cells, immune checkpoints, and immune 
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function between the two groups. P value of less than 
0.05 was considered statistically significant.

Results and discussion
Screening of NK cell‑related genes and construction 
of the NKRLSig model
Figure  1 outlines the main design of this study. We 
obtained the intersection of NK cell genes, and a total 
of 85 up-regulated genes and 30 down-regulated genes 
were obtained (Fig. 2A). Next, we utilized the "pheatmap" 
R package to perform a comprehensive visual analysis, 
generating both a heat map (Fig. 2B) and a volcano map 
(Fig. 2C) to represent the differential expression of genes 
related to NK cells. Furthermore, the results of univariate 
COX regression analysis revealed that a total of 35 NK 
cell-related genes were significantly associated with the 
prognosis of HCC patients. The corresponding p-values 

and hazard ratios (HR) were also presented (Additional 
file 3. Table S3). To improve the model’s accuracy, we per-
formed single-factor screening and calculated the AUC 
for each gene [17]. Genes with an AUC value greater 
than 0. 6 were used as our screening condition. The ROC 
curve is significant because an AUC value greater than 
0.6 indicates high precision in predicting patient survival 
using the gene. Figure 2D shows the P and HR values of 
variables filtered by univariate COX regression and AUC 
(Fig.  2D). To improve variable screening, we employed 
LASSO COX regression and conducted fivefold cross-
validation to obtain the λ value, which was determined 
as the lowest point on the cross-validation plot. Sub-
sequently, we screened the variables and generated a 
LASSO regression curve (Fig. 2E) and a cross-validation 
plot (Fig. 2F). Seven genes selected by LASSO regression 
(IL18RAP, CHP1, MCM10, PRKCD, PIK3R1, VAMP2, 

Fig. 1 Working flow chart, TCGA-LIHC: The Cancer Genome Atlas-Live Hepatocellular Carcinoma, ROC: Receiver operating characteristic
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Fig. 2 Construction of the NKRLSig model based on the target genes A A Venn diagram depicts 115 overlapping mRNAs considered NK 
cell-related, including 85 down-regulated genes and 30 up-regulated genes. B Heat map plot differentially expressed NKRLSig. C Volcano plot 
differentially expressed NKRLSig. D Forest plot showing 17 mRNAs with hazard ratios (95%confidence intervals) and P values based on the result 
of univariate Cox regression analysis. E–F mRNAs screened by the LASSO-Cox regression model
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Fig. 3 Evaluation of the predictive efficacy of the prognostic model. A The multivariate Cox relapse coefficient. B Circus plot show the correlation 
between risk scores and target genes. Kaplan–Meier survival curves in the high- and low-risk groups stratified by risk scores for overall survival 
in the training set C and test set D. E The risk score distribution and patient status for the TCGA-LIHC cohort
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FYN) were included in multivariate cox regression and 
the coefficient was calculated.

According to the results of the multivariate 
COX regression (Fig.  3A), we established the risk 
score formula: risk score = (- 1.08665 × IL18RAP-
expression) + (- 0.43843 × CHP1expression) + (- 
0.33298 × VAMP2Gexpression) + (- 0.19419 × PIK3R-
1expression) + (- 0.24772 × PRKCDexpression). To 
provide a more visual representation of the relation-
ship between the target gene and the risk score, we 
constructed a correlation circus plot for the risk scores 
(Fig. 3B). According to the risk score, the cut-off point 
value was calculated to be -4.3882 by using "survminer" 
R package “sur.cutpoint” function, and all patients in 
the TCGA-LIHC cohort were divided into high-risk 
and low-risk groups. Finally, the study cohort con-
sisted of 319 HCC patients, with 45 individuals in the 
high-risk training group and 274 in the low-risk train-
ing group. In the high-risk testing group, there were 
56 patients, while in the low-risk testing group, there 
were 121 patients. Survival analysis was conducted 
separately on the training set and validation set, and 
the Kaplan–Meier analysis results (Fig. 3C-D) demon-
strated that patients with low risk had a better progno-
sis compared to those with high risk. Furthermore, we 
generated a risk score distribution map (Fig. 3E) to vis-
ualize the association between risk scores and patient 
mortality, revealing that risk scores were significantly 
elevated in patients who had experienced more deaths. 
Additionally, differential expression analysis revealed 
distinct expression profiles of the five mRNAs between 
the high and low-risk groups, underscoring the close 
relationship between these mRNAs and patient prog-
nosis in our study.

Evaluation of the precision of the 5‑NKRLSig model
To further evaluate the accuracy of the 5-NKRLSig model we 
constructed, we drew time-dependent ROC curves for the 
training and testing sets (Fig. 4A-B). The AUC results further 
demonstrated the model’s accuracy. Specifically, the AUC for 
the first, third, and fifth year in the training set were 0.793 
(0.720–0.867), 0.761 (0.689–0.833), and 0.701 (0.599–0.803), 
respectively. In the external testing set (GSE14520), the AUC 
for the 1st, 3rd, and 5th years were 0.658 (0.530–0.787), 0.705 
(0.617–0.792), and 0.637 (0.527–0.746), respectively. Overall, 
our model demonstrated good prediction ability for the accu-
racy of 1, 3, and 5 years in both the training and testing sets.

Functional enrichment analysis
We conducted a comprehensive analysis of the differ-
ential expression of genes related to NK cells using GO 
and KEGG enrichment analysis. The selection crite-
ria for significantly enriched items were a threshold of 

FDR < 0.05 and P < 0.05. GO enrichment analysis cat-
egorized the differential genes into molecular biological 
function, biological process, and cellular components to 
gain a more comprehensive understanding of gene func-
tion. The KEGG pathway enrichment score was used to 
functionally annotate differentially expressed genes to 
understand the related functions and pathways of these 
genes. In addition, we also used GSEA enrichment analy-
sis between high- and low-risk groups.

Our analysis of 115 differential genes related to NK 
cells revealed that the biological processes with higher 
abundance were leukocyte-mediated immunity, regula-
tion of immune effector processes, and cell killing. The 
most abundant cellular components were the external 
side of the plasma membrane, membrane raft, and mem-
brane microdomain. The most abundant biological func-
tions were cytokine receptor binding, immune receptor 
activity, and signaling receptor activator activity. In terms 
of KEGG pathway enrichment, the pathways with higher 
abundance were natural killer cell-mediated cytotoxicity, 
human cytomegalovirus infection, and Kaposi sarcoma-
associated herpesvirus infection (Fig. 4C).

In this study, we performed Gene Set Enrichment Analy-
sis (GSEA) to compare the high-risk and low-risk groups 
in the training set. The results revealed distinct enrich-
ment patterns in each group. Specifically, the high-risk 
group showed significant enrichment in pathways associ-
ated with cell cycle, DNA replication, pathogenic Escheri-
chia coli infection, ribosome, and spliceosome (Fig.  5A). 
Conversely, the low-risk group exhibited enrichment in 
pathways related to complement and coagulation cascades, 
drug metabolism cytochrome P450, fatty acid metabolism, 
retinol metabolism, and steroid hormone biosynthesis 
(Fig. 5B). These findings provide valuable insights into the 
underlying molecular mechanisms that contribute to the 
differential prognostic outcomes observed between the 
high-risk and low-risk groups in our study.

Identifying the role of risk level in clinical subgroups
To further investigate whether the prognosis of high-risk 
and low-risk patients in different clinical subgroups dif-
fers, we performed survival analysis on patients in the 
high and low-risk groups within different clinical sub-
groups, based on gender (male, female), age (< 65, ≥ 65), 
stage (stage I/II, stage III/IV), and grade (grade I/II, grade 
III/IV). The Kaplan–Meier analysis (Fig. 6A-P) indicated 
that the survival time of low-risk patients was signifi-
cantly longer than that of high-risk patients. Moreover, 
time-ROC analysis (Fig.  6A-P) revealed that the con-
structed 5-NKRLSig model can reliably predict the prog-
nosis of HCC across different clinical subgroups.
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Fig. 4 Verified the accuracy of the prognostic model. Time-dependent ROC curves analysis in the train set A and test set B. C GO and KEGG 
functional enrichment analysis of NKRLSig
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Establishment of nomograms in combination with clinical 
characteristics
To enhance the clinical utility of the 5-NKRLSig model 
developed in this study, we also constructed a nomo-
gram to predict the OS of HCC patients. We conducted 
univariate and multivariate COX regression analyses on 
both clinical information and genetic models. Accord-
ing to the results of the multivariate COX regression 
analysis (Fig.  7A), Stage and risk score were identified 
as independent influencing factors for HCC. We devel-
oped the nomogram (Fig.  7B) based on the patient’s 
stage and risk score, which can more accurately pre-
dict the patient’s survival rates at 1, 3, and 5 years. The 
C-index and 95% confidence interval (CI) of the nom-
ogram were 0.743 (0.718–0.769), indicating that the 
nomogram had good predictive ability for the patient’s 
survival rates at 1, 3, and 5  years (Fig.  7D). Moreover, 
we drew calibration curves for the training set and test-
ing set respectively (Fig. 7C) to evaluate the consistency 
between the predicted and actual risks. The calibration 
curves for both sets demonstrated that the OS prob-
ability predicted by the nomogram was in good agree-
ment with the actual OS probability. Furthermore, we 
compared the performance of our nomogram with 
AJCC staging using decision curve analysis (Fig.  7E), 
which revealed that our nomogram was not inferior to 
AJCC staging in predicting OS of HCC patients.

Analysis the relationship between 5‑NKRLSig modal risk 
score and somatic mutation and TMB
In this study, we aimed to comprehensively analyze the 
relationship between the expression of genes related to 

NK cells and the prognosis of HCC patients. Specifi-
cally, we investigated the relationship between the risk 
score level and somatic mutation and TMB cell muta-
tion. Our findings (Fig.  8A-B) demonstrated that the 
rate of TP53 somatic mutation was significantly higher 
in the high-risk group as compared to the low-risk 
group (62% vs 22%). However, we observed no signifi-
cant difference in somatic mutation rates of CTNNB1 
and TTN between low-risk and high-risk patients. 
Furthermore, we compared the TMB scores of the 
high-risk and low-risk groups, and the results (Fig. 8C) 
showed that high-risk patients had a higher TMB, 
which was statistically significant.

Analysis of the tumor microenvironment between high‑risk 
and low‑risk groups
The TME constitutes the milieu in which tumor cells 
thrive and is mainly composed of immune cells and 
stromal cells. The Estimate algorithm has been devel-
oped to estimate the abundance of immune and stro-
mal components in tumors, which can be quantified 
as an immune score. There have been multiple stud-
ies showing that immune and stromal cells play an 
important role in tumor prognosis. In this study, we 
employed the "Estimate" R package to calculate the 
immune score, matrix score, and ESTIMATE score 
in the high-risk group. Our results revealed that the 
low-risk group displayed significantly higher immune 
score, matrix score, and ESTIMATE score compared 
to the high-risk group (Fig. 8D).

Fig. 5 GSEA enrichment analysis identifies KEGG pathways associated with high-risk A and low-risk groups B in the training set
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Evaluation of immunotherapy, chemotherapy and target 
therapy based on risk score
Immunotherapy has emerged as a promising treatment 
option for HCC patients.To further investigate the role 
of risk score in immunotherapy, we utilized the TIDE 
algorithm to analyze the response to immunotherapy in 
two groups. Our results (Fig. 9A) indicate that the low-
risk group has a lower TIDE score than the high-risk 

group, suggesting that the low-risk group is more sensi-
tive to immunotherapy.

Next, we obtained IPS data of HCC patients from 
the Cancer Immunome Atlas (TCIA) database and 
analyzed the role of risk score in IPS (Fig.  9B-E). Our 
results show that the median of the low-risk group was 
higher than that of the high-risk group, supporting our 
previous finding that patients in the low-risk group are 
more sensitive to immunotherapy.

Fig. 6 Clinical application of the 5-NKRLSig model in HCC. The difference in risk score by Female A‑B, Male C‑D, Age < 65 E–F, Age ≥ 65 G‑H, Stage 
I/II I‑J, Stage III/IV K‑L, Grade I/II M–N, Grade III/IV O‑P of HCC
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Fig. 7 Construction of the nomogram. A Univariate and multivariate Cox regression analysis in TCGA-LIHC. B Nomogram integrating the Risk score 
and Stage. C Calibration curves for predicting 1, 3and 5 years OS in the train set and test set. D Concordance index curves depicting risk scores 
and other clinical parameters relevant to predicting HCC patient prognosis. E DCA of the nomogram and AJCC stage
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Furthermore, we compared the efficacy of 10 immu-
notherapeutic drugs in the high-risk and low-risk 
groups. Our results show that the IC50 of Cetuximab, 
Erlotinib, Trametinib and XAV939 in the low-risk 
group was relatively higher (F  ig.  9F-I), whereas the 
IC50 of Docetaxel, MLN4924, OSU-03012, YM155, 
Salubrinal and Vorinostat in the low-risk group was 
lower (Fig.  9J-O) compared to the high-risk group. 
Based on the risk score, we can better understand the 
immunotherapy of HCC patients and improve the 
accuracy of drug treatment.

Discussion
Hepatocellular carcinoma is a highly heterogene-
ous disease with varying tumor growth patterns and 
response to treatment. While treatment options such 
as radiotherapy, chemotherapy, and immunotherapy 
have provided hope for HCC patients [31], the 5-year 
survival rate for HCC patients remains less than 20% 
[32]. One of the main reasons for the poor prognosis of 

HCC patients is that the disease is often diagnosed at 
an advanced stage. The conventional risk stratification 
methods based on tumor size, stage and lymph node 
metastasis have limited predictive value for the prog-
nosis of patients. Therefore, there is an urgent need for 
a novel prognostic model. NK cells, with their various 
cytotoxic mechanisms and immune-regulatory func-
tions through cytokine secretion, have emerged as 
important players in cancer immunity [33]. However, 
the regulatory role of NK-related genes in hepatocel-
lular carcinoma has not been reported. Therefore, 
we established a biomarker prognostic model based 
on NK-related genes based on TCGA and GEO data-
base. we constructed a 5-NKRLSig and calculated a 
risk score. We first used the ‘sur.cutpoint’ function to 
calculate the cutoff point and divide all HCC patients 
into two prognostic subgroups: high-risk and low-risk 
groups. Our comprehensive analysis demonstrated that 
our model has a superior predictive ability when com-
pared with traditional clinical indicators such as age, 

Fig. 8 Genetic alterations and tumor microenvironment. Top 10 gene mutations in high-risk A and low-risk B groups. C The analysis of TMB scores 
of high-risk and high-risk groups. D Comparison of the immune score, matrix score and ESTIMATE score in high- and low-risk groups
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Fig. 9 Application of risk score in immunotherapy, Chemotherapy and target therapy. A Prediction of immunotherapy response based on the TIDE 
algorithm. IPS score for immunotherapy. B CTLA4- PD1 − . C CTLA4 + PD1 − . D CTLA4 − PD1 + . E CTLA4 + PD1 + . Risk score predicts chemotherapy 
sensitivity. Cetuximab F, Erlotinib G, Trametinib H, XAV939 I, Docetaxel J, MLN4924 K, OSU-03012 L, YM155 M, Salubrinal N, Vorinostat O 
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sex, histological staging, and tumor staging. Impor-
tantly, our model also showed good predictive capacity 
in different clinical subgroups. These findings provide 
a robust theoretical basis for the clinical application 
of our model and can significantly improve patient 
prognosis.

To ensure the accuracy of our model, we employed the 
method of external testing set (GSE14520) for verifica-
tion. Despite potential differences in chip specifications, 
our model’s ability to establish a relationship between 
the risk score and patient prognosis was consistent with 
results from the training set, suggesting the wide applica-
bility of our approach.

The 5-NKRLSig model constructed in this study com-
prises IL18RAP, CHP1, VAMP2, PIK3R1, and PRKCD. 
Previous studies have demonstrated the close association 
of these five genes with inflammation and tumor occur-
rence and development. For instance, Wang et al. reported 
that miR-493-5p overexpression induces apoptosis and 
inhibits proliferation and migration of hepatocellular car-
cinoma cells by negatively regulating VAMP expression 
[34]. Similarly, Ai et  al. found that PIK3R1 overexpres-
sion activates the PI3K/Akt/mTOR signaling pathway in 
hepatocellular carcinoma cells, promoting HCC initiation 
and progression [35]. In the context of natural killer/T-cell 
lymphoma cells, Lin et al. highlighted the role of IL18RAP 
in cell growth, where knockout of IL18RAP inhibited 
NKTCL cell proliferation through cell cycle arrest [36]. 
CHP1 has been shown to regulate plasma membrane 
NA( +)/H( +) exchange and play a crucial role in cellular 
pH regulation [37]. Li et al. reported that lactic acid and 
low pH can suppress the immune activity of NK cells [38], 
leading us to speculate that CHP1 may regulate NK cell 
activity by modulating pH. PRKCD has been identified as 
an active regulator of mitochondrial autophagy and has 
significant implications for B cell proliferation and NK cell 
activation [39]. Ke et al. [40] and Wen J et al. [41] found 
that PRKCD plays an essential role in the occurrence 
and development of cancers such as cervical cancer and 
esophageal squamous cell carcinoma, as well as influenc-
ing immunotherapy response. Exploring the application 
of PRKCD in HCC patients will be a key direction for our 
future research. These findings underscore the impor-
tance of the 5-NKRLSig model and its potential implica-
tions in understanding HCC pathogenesis and guiding 
future therapeutic strategies.

Based on our bioinformatics analysis, the 115 differ-
ential genes related to NK cells are primarily enriched 
in immune regulation and cell killing. We also investi-
gated whether the model gene can be used as a biologi-
cal marker of prognosis of HCC. Interestingly, the ROC 
curve analysis demonstrated that the expression of the 
model gene can accurately predict the survival status 

of patients, providing theoretical evidence for clinical 
practice. This study is the first to combine prognostic 
and diagnostic markers in hepatocellular carcinoma, 
emphasizing the continuous and inseparable relationship 
between cancer incidence and prognosis.

Despite the clinical significance of our study in the 
prognosis evaluation and treatment selection of HCC 
patients, there are still some limitations that need to 
be addressed. Our study is retrospective and relies on 
data from TCGA and GEO databases. Therefore, the 
applicability of this model as a diagnostic and treat-
ment indicator needs to be further validated in future 
prospective studies.

Conclusions
In summary, we have constructed a prognostic model of 
HCC based on NK-related genes and have verified the 
effectiveness of the model in an external verification set. 
This provides new evidence for the evaluation of prog-
nosis and immunotherapy of HCC patients. The study 
highlights the potential importance of NK cells and their 
related genes in the prognosis of HCC and may lead to 
the development of new therapeutic strategies. However, 
further validation in larger cohorts and prospective stud-
ies is needed to confirm the clinical utility of the model.
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