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Abstract
Background This study aimed to investigate a causal relationship between IBD and multiple kidney diseases using 
two-sample Mendelian randomization (MR) analyses.

Methods We selected a group of single nucleotide polymorphisms (SNPs) specific to IBD as instrumental variables 
from a published genome-wide association study (GWAS) with 86,640 individuals of European ancestry. Summary 
statistics for multiple kidney diseases were obtained from the publicly available GWAS. Genetic data from one GWAS 
involving 210 extensive T-cell traits was used to estimate the mediating effect on specific kidney disease. Inverse-
variance weighted method were used to evaluate the MR estimates for primary analysis.

Results Genetic predisposition to IBD was associated with higher risk of IgA nephropathy (IgAN) (OR, 1.78; 95% 
CI, 1.45–2.19), but not membranous nephropathy, diabetic nephropathy, glomerulonephritis, nephrotic syndrome, 
chronic kidney disease, and urolithiasis. CD4 expression on CD4 + T cell had a significant genetic association with 
the risk of IgAN (OR, 2.72; 95% CI, 1.10–6.72). Additionally, consistent results were also observed when IBD was 
subclassified as ulcerative colitis (OR, 1.38; 95% CI, 1.10–1.71) and Crohn’s disease (OR, 1.37; 95% CI, 1.12–1.68). 
MR-PRESSO and the MR-Egger intercept did not identify pleiotropic SNPs.

Conclusions This study provides genetic evidence supporting a positive casual association between IBD, including 
its subclassification as ulcerative colitis and Crohn’s disease, and the risk of IgAN. However, no casual association 
was found between IBD and other types of kidney diseases. Further exploration of IBD interventions as potential 
preventive measures for IgAN is warranted.
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Introduction
The inflammatory bowel diseases (IBD), including 
Crohn’s disease and ulcerative colitis, are also immune-
mediated chronic or flares of inflammatory activity of the 
gastrointestinal tract [1]. Kidney-related extra-intestinal 
manifestations are common in IBD, occurring in 4 to 23% 
of IBD patients [2]. A cohort study involving renal biop-
sies of IBD patients with renal diseases showed that out 
of 896 IBD patients, 218 patients (24.3%) exhibited renal 
involvement, among which 25.7% were diagnosed with 
amyloidosis, 16.1% with immunoglobulin A nephropa-
thy (IgAN), and 14.7% with crescentic glomerulonephri-
tis [3]. Furthermore, a recent large-scale retrospective 
cohort study utilizing the United Kingdom electronic 
records database, identified 910 cases of chronic kidney 
disease (CKD) among 17,807 patients in the IBD cohort 
during follow-up, and found that IBD was associated with 
increased risk of CKD [4]. However, whether kidney dis-
eases present as potential complication remains uncer-
tain. Patients with IBD are susceptible to drug-related 
nephrotoxicity due to the nephrotoxic nature of certain 
medications used in their treatment, such as nonsteroidal 
anti-inflammatory drugs, methotrexate, and 5-aminosali-
cylic acid, and others [5, 6]. Distinguishing renal damage 
caused by nephrotoxic drugs or that resulting from the 
pathogenesis of IBD is challenging. Moreover, previous 
studies evaluating the association between IBD and kid-
ney diseases had yielded conflicting results, likely due 
to the potential influence of residual confounding and 
reverse causation of observational studies [4, 7, 8]. There-
fore, it’s essential to investigate whether there is a causal 
relationship between IBD and risk of renal diseases.

Mendelian randomization (MR) is an analytical 
approach used to infer causal associations between a 
modifiable exposure or risk factor and a clinically rel-
evant outcome by integrating summary statistics from 
genome-wide association study (GWAS) [9, 10]. Based 
on the Mendel’s second law, genetic variants are ran-
domly allocated in the population during gamete forma-
tion. The instrumental variables involved in the exposure 

will affect the outcomes proportionally if the exposure is 
causal. MR approach enables us to minimize the impact 
of confounding factors (e.g., environment) and reverse 
causation, serving as a mimic of the randomization in 
randomized controlled trial. This study conducted a two-
sample MR analysis to examine the causal association 
between genetically predicted IBD and the risk of mul-
tiple kidney diseases. We aimed to evaluate which type of 
kidney disease primarily reflect this causal relationship.

Methods
Data sources
We used summary data on GWAS obtained from the 
International Inflammatory Bowel Disease Genet-
ics Consortium (IIBDGC) [11]. It was a multi-ethnic 
large-scale genome-wide or Immunochip gen-
otype data, in which we only included the 
extended cohort of 86,640 European individuals 
to identify new IBD risk loci and compared the genetic 
architecture of IBD susceptibility [11]. Beyond that, we 
also investigated the same consortium of Crohn’s disease 
and ulcerative colitis as subtypes of IBD with 20,550 and 
17,647 cases vs. 41,642 and 47,179 controls, respectively. 
Regarding the multiple kidney diseases, including IgAN, 
membranous nephropathy, glomerulonephritis, diabetic 
nephropathy, nephrotic syndrome, chronic kidney dis-
ease, and kidney/ ureter/ bladder stone, the summary 
statistic were obtained from publicly available summary-
level data of previously published GWAS and restricted 
to European descent [12–14]. We also retrieved the 
summary data from MR Base database from Medical 
Research Council Integrative Epidemiology Unit (MRC-
IEU) and these datasets have already undergone the 
recommended quality control processes as previously 
described [16]. The extensive T-cell traits were derived 
from the SardiNIA project composed of GWAS data, 
which included 210 subtypes in the T-cell panel and cell 
marker expression levels on different T cells [15] The 
summary statistics could be archived in the IEU GWAS 
datasets (https://gwas.mrcieu.ac.uk). Table  1 shows the 

Table 1 Information on GWASs for exposure and outcome
Traits Cases Controls Year Number of SNPs Sample size Population PMID/Consortium
IgA nephropathy 977 4,980 2010 278,077 5,957 European 20,595,679
Membranous nephropathy 2,150 5,829 2020 5,327,688 7,979 European 32,231,244
Glomerulonephritis 4,613 214,179 2021 16,380,466 218,792 European IEU GWAS datasets
Nephrotic syndrome 480 214,619 2021 16,380,437 215,099 European IEU GWAS datasets
Diabetic nephropathy 3,283 181,704 2021 16,380,336 184,987 European IEU GWAS datasets
Chronic kidney disease 12,385 104,780 2016 2,191,877 117,165 European 26,831,199/ CKDGen
Urolithiasis 3,625 459,308 2018 9,851,867 462,933 European MRC-IEU
210 kinds of T-cell traits and markers - - 2018 10,534,735 3,757 European 3,292,928
Inflammatory bowel disease 38,155 33,977 2015 157,116 86,640 European 26,192,919/ IIBDGC
Crohn’s disease 20,550 41,642 2015 124,888 62,192 European 26,192,919/ IIBDGC
Ulcerative colitis 17,647 47,179 2015 156,116 64,826 European 26,192,919/ IIBDGC

https://gwas.mrcieu.ac.uk
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characteristics of all GWAS data for the exposure and 
outcome.

Assumptions for instrumental variable selection
The genetic instrumental variable selection used in 
MR analysis was performed based on following three 
fundamental assumptions [17, 18]. Firstly, selected 
instrumental variables should be powerfully associ-
ated with exposure. The F statistic was used to evaluate 
the strength of the relationship between instrumental 
variables and exposure [16]. The formula of F statistic is 
expressed as F = R2 (n-k-1)/[k× (1-R2)]. R2 refers to the 
cumulative explained variance of selected single-nucle-
otide polymorphisms (SNPs) on IBD and is defined as 
R2 = 2 × effect allele frequency (EAF) × (1-EAF) × b2. 
EAF is the effect allele frequency and b is the estimated 
genetic effect; n is the sample size; and k represent the 
number of selected instrumental variables. If the result-
ing F value > 10, it indicates a strong correlation between 
instrumental variables and exposure, thus minimizing 
bias caused by weak instrumental variables. Secondly, 
instrumental variables should be independent of con-
founders that influence both the exposure and outcome. 
Third, selected instrumental variables should affect out-
comes only through exposure, and not via alternative 
pathways. This implies the absence of a horizontal pleiot-
ropy effect between instrumental variables and outcome. 
MR-Egger regression was performed to identify potential 
horizontal pleiotropy pathways [17].

In the present study, SNPs significantly associated 
with IBD were selected as genetic instrumental variable, 
which met the F-statistic > 10. To avoid the potential bias 
caused by strong linkage disequilibrium (LD) among 
the selected instrumental variables, we performed LD 
clumping process using an r2 cutoff of 0.001 and a clump-
ing distance = 10,000  kb. We systematically gathered 
information on effect allele (EA), EA frequency, effect 
sizes (β), S. E. and P-value for further analysis. To ensure 
data consistency, we harmonized the respective expo-
sure and outcome datasets using effect allele frequencies. 
Additionally, we removing palindromic SNPs with minor 
allele frequency (MAF) > 0.01. Figure  1 displays a flow-
chart illustrating the whole procedure.

Statistical analysis
We conducted a two-sample MR in accordance with the 
Strengthening the Reporting of Observational Studies in 
Epidemiology-Mendelian Randomization (STROBE-MR) 
guidelines [19]. The causal effects of IBD on kidney dis-
eases were estimated using the inverse-variance weighted 
(IVW) method for primary analysis. Moreover, to assess 
the robustness of IVW results, we compared them 
with other MR methods including MR-Egger, weighted 
median, simple mode, and weighted mode estimation. 

A consistent direction of estimates across all the MR 
methods increased confidence of causal relationship. 
The IVW method is essentially a meta-analysis method 
that requires all selected SNPs to be valid instrumen-
tal variables, with the intercept limited to zero. In the 
IVW method, a fixed-effect model was used when there 
was no heterogeneity (Cochrane’s Q P-value > 0.05), and 
a random-effect model was used otherwise. MR-Egger 
could be significantly influenced by outlying genetic vari-
ables, resulting in imprecise estimates, but it can still 
provide unbiased estimates even if there exist all invalid 
selected instrumental variables. The weighted median 
approach takes the median effect of all selected instru-
mental variables to provide accurate estimates with the 
prerequisite that at least half of SNPs are valid instru-
mental variables. The weighted mode approach remains 
still valid even if the other instrumental variables do not 
meet the requirements of MR method for causal infer-
ence. The MR-Egger regression was conducted to detect 
and adjusts for potential horizontal pleiotropic effects. 
Moreover, Cochran’s Q statistic was used to assess het-
erogeneity among the estimates from each SNP. The 
leave-one-out sensitivity analysis was performed to verify 
individual SNP that influenced the association dispropor-
tionately and to evaluate the stability of effect sizes. We 
also performed the Mendelian randomization pleiotropy 
residual sum and outlier (MR-PRESSO) test to estimate 
and correct outliers of instrumental variables with hori-
zontal pleiotropic effects. Post-hoc power calculation for 
the main analyses was performed using mRnd website 
(http://cnsgenomics.com/shiny/mRnd/) [20]. Statisti-
cal analyses were conducted in R software (version 4.0.2; 
using the “TwoSampleMR”, “MendelianRandomization” 
and “MR-PRESSO” R package; R Foundation for Statisti-
cal Computing, Vienna, Austria). Two-tailed P < 0.05 was 
considered statistically significant.

Results
Genetic variants selection
The current study evaluated the causal effect of geneti-
cally predicted IBD on multiple kidney diseases. After 
removing SNPs with LD (r2 > 0.001 within 10,000  kb), 
palindromic SNPs (P > 5 × 108 and F < 10), and duplicated 
SNPs, we finally selected 67 to 129 instrumental SNPs for 
each trait. Among all selected SNPs, 67 independent and 
significant SNPs were associated with IgAN (cases = 977), 
108 associated with membranous nephropathy 
(cases = 2,150), 129 associated with glomerulonephritis 
(cases = 4,613), 79 associated with nephrotic syndrome 
(cases = 480), 129 associated with diabetic nephropathy 
(cases = 3,283), 82 associated with CKD (cases = 12,385), 
and 120 associated with urolithiasis (cases = 3,625). 
Detailed information on the genetic variants, including 
SNPs, EA, EA frequency, effect sizes on IBD, ulcerative 

http://cnsgenomics.com/shiny/mRnd/)
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colitis, and Crohn’s disease and multiple kidney diseases 
is provided in Additional file 1: Table S1–S9.

Estimates of causal effect of IBD on kidney diseases
The results of IVW with a fixed-effect model estimates 
showed a positive correlation between the genetically 
predicted IBD and the risk of IgAN [odds ratio (OR) 
1.78 (95% confidence interval (CI) 1.45–2.19), P < 0.001]. 

However, no significant genetic association was detected 
between IBD and risk of membranous nephropathy 
(OR, 0.93; 95%CI, 0.79–1.09), glomerulonephritis (OR, 
1.01; 95%CI, 0.96–1.06), diabetic nephropathy (OR, 
1.01; 95%CI, 1.00–1.02), nephrotic syndrome (OR, 1.04; 
95%CI, 0.92–1.19), chronic kidney disease (OR, 1.02; 
95%CI, 0.98–1.07), and urolithiasis (OR, 1.03; 95%CI, 
0.98–1.09) (Fig. 2).

Fig. 1 Flowchart describing the whole procedure. IBD: Inflammatory bowel disease; SNPs: single-nucleotide polymorphisms; LD: minor allele frequency; 
MAF: minor allele frequency; IgAN: IgA nephropathy; GWAS: genome-wide association study; MR: Mendelian randomization
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Estimates of causal effect of IBD and subclassification on 
IgAN
We further compared with other MR methods to evalu-
ate the robustness of IVW results of causal effect of IBD 
and subclassification on IgAN. The MR estimates of 
weighted median [OR 1.82 (95% CI 1.33–2.49), P < 0.001] 
and weighted mode methods [OR 1.91 (95% CI 1.16–
3.14), P = 0.01] also showed consistent results (Table  2; 
Fig.  3A and B). Post hoc power calculations indicated 
that the study had sufficient statistical powered (.100%) 
to detect an assuming of the real causal OR of 1.78 for 
the risk of IgAN with a total sample size of 5957 (19.6% 
ratio of IgAN case to control) and the significance level 
α of 0.05.

The genetic changes in the subclassification of IBD as 
ulcerative colitis, were also positively correlated with 
the risk of IgAN, which were showed in IVW based on a 
fixed-effect model [OR 1.38 (95% CI 1.10–1.71), P = 0.005; 
Additional file 1: Table S10, Additional file 1: Fig.S1A–
S1B]. The results of IVW with a random-effect model 
showed that the genetic changes in Crohn’s disease were 
positively correlated with the risk of IgAN [OR 1.37 (95% 
CI 1.12–1.68), P = 0.002; Additional file 1: Table S11, 
Additional file 1: Fig.S2A–S2B]. However, no significant 
causal association between ulcerative colitis or Crohn’s 

disease and IBD were found in MR-Egger, weighted 
median and weighted mode methods (Additional file 1: 
Table S10–S11).

Estimates of causal association mediated by T cells traits 
and IgAN
The detailed information regarding the MR result, includ-
ing EA, EA frequency, effect sizes on specifical T-cell 
traits and IgAN is shown in Additional file 1: Table 
S12. After harmonizing the respective T-cell phenotype 
exposure and outcome datasets, we identified 42 out of 
a total of 210 T-cell phenotypes had valid instrumen-
tal variables. Subsequently analyzing the 42 T-cell phe-
notypes in MR analysis, we only observed a significant 
genetic association between CD4 expression on CD4 + T 
cells and IgAN [OR 2.72 (95% CI 1.10–6.72), P = 0.029]. 
No statistically significant differences were observed for 
other T-cell traits (Additional file 1: Table S13).

Sensitivity analyses
Sensitivity analyses using the leave-one-out associa-
tions approach suggested that the causal association 
was not biased by potential driving SNP (Fig. 3C, Addi-
tional file 1: Fig.S1C, and Additional file 1: Fig. S2C). 
The horizontal pleiotropy between instrumental vari-
ables and outcome was assessed by MR-Egger regres-
sion, and the results indicated the predicted effect sizes 
of IBD, ulcerative colitis, and Crohn’s disease on IgAN 
were comparable and consistent in the direction [IBD: 
intercept = 0.0112 (SE = 0.031), P = 0.75, Fig.  3B], [ulcer-
ative colitis: intercept = -0.007 (SE = 0.04), P = 0.87, Addi-
tional file 1: Fig.S1B], and [Crohn’s disease: intercept = 
-0.009 (SE = 0.038), P = 0.82, Additional file 1: Fig.S2B]. 
Besides, the MR-PRESSO method did not detect outly-
ing SNPs causing horizontal pleiotropy [P-value for MR-
PRESSO global test = 0.67 (IBD), 0.99 (ulcerative colitis), 
and 0.86  (Crohn’s disease)]. Furthermore, no heteroge-
neity of IBD and ulcerative colitis on IgAN was found in 
IVW and MR Egger method using the Cochran’s Q test 
[Cochran’s Q = 62.958, P = 0.53 (MR-Egger) and P = 0.56 

Table 2 Causal associations between genetically determined IBD level and IgAN
Exposure-
outcome

Causal estimate
Method SNP OR 95% CI P value

IBD Inverse variance weighted* 67 1.78 1.45–2.19 < 0.001
Weighted median 67 1.82 1.33–2.49 < 0.001
Weighted mode 67 1.91 1.16–3.14 0.01
Simple mode 67 1.66 0.86–3.20 0.14
MR Egger 67 1.60 0.88–2.93 0.13
Test for Heterogeneity: P = 0.53 (MR-Egger) and P = 0.56 (IVW)
Test for Horizontal pleiotropy: MR-Egger intercept = 0.0112, se = 0.031, P = 0.72
MR-PRESSO global test: P = 0.67

*Inverse variance weighted (fixed-effect) method. IBD, Inflammatory bowel disease; IgAN: IgA nephropathy; SNPs: single-nucleotide polymorphisms; MR: Mendelian 
randomization; IVW: inverse-variance weighted; MR-PRESSO, Mendelian randomization pleiotropy residual sum and outlier

Fig. 2 Forrest plots for associations of genetically predicted IBD with risk 
of kidney diseases SNP: single nucleotide polymorphism; OR: odds ratio; 
CI: confidence interval
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(IVW), Fig. 3D] and [Cochran’s Q = 45.04, P = 0.10 (MR-
Egger) and P = 0.17 (IVW), Additional file 1: Fig.S1D]. 
However, there was significant heterogeneity in Crohn’s 
disease [Cochran’s Q = 93.60, P = 0.01 (MR-Egger) and 
P = 0.02 (IVW), Additional file 1: Fig.S2D].

Discussion
The current study revealed a positive correlation between 
IBD and the risk of IgAN, and CD4 expression on 
CD4 + T cell could involve the causal effects. Addition-
ally, the positive associations were also observed when 
subclassifying IBD into ulcerative colitis and Crohn’s 
disease. However, no statistical differences were found 
between IBD and risk of membranous nephropathy, 

glomerulonephritis, diabetic nephropathy, nephrotic syn-
drome, chronic kidney disease, and urolithiasis.

A observational study evaluated 83 kidney biopsy 
specimens from patients with IBD and found that IgAN 
was the most prevalent diagnosis (24%). This preva-
lence was significantly higher compared to all native 
non-IBD kidney biopsy specimens (24% versus 8%) [21]. 
Another retrospective analysis of renal biopsies done 
for IBD patients in Egypt revealed that out of 896 IBD 
patients, 218 (24.3%) developed renal complications, with 
IgAN being the second most common renal pathologi-
cal diagnosis (16.1%) [3]. Additionally, a recent popula-
tion-based cohort study including 3963 biopsy-verified 
IgAN patients and 19,978 matched controls, confirmed 
a correlation between IgAN and IBD, and further that a 

Fig. 3 (A) Forest plot; (B) Sensitivity analysis; (C) Scatter plot; (D) Funnel plot of the effect of IBD on IgAN
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diagnosis of IBD among patients with IgAN were more 
likely than to progress into end-stage kidney disease than 
those without IBD [22]. To our knowledge, apart from 
the aforementioned cohort studies [3, 21, 22], the associ-
ation between IgAN and IBD has mainly been described 
through single earlier case reports [23–26]. In present 
MR analysis, the use of SNPs as proxies of IBD allowed 
us to minimize the impact of confounding factors and 
inverse causality, which are common in observational 
study [27]. Our study provides genetic-level support 
for the positive association between IBD and the risk of 
IgAN, but not other types of kidney diseases. This finding 
aligns with the recent announcement by the Unite State 
Food and drug administration (FDA) and clinical tri-
als that budesonide in oral capsules, designed to release 
active compounds upon reaching the distal ileum, is pri-
marily intended for the treatment of adult primary IgA 
nephropathy, rather than other types of kidney diseases 
[28–30].The underlying mechanisms involved in deposi-
tion of IgA in glomerular of patients with inflammation 
of the intestinal mucosa remain to be unraveled. Recent 
advances have highlighted the important role of the gut-
kidney axis in pathophysiologic connection between IBD 
and IgAN [31–33]. Firstly, it has been observed that most 
IBD patients experience hyperactivity of IgA1-secreting 
cells in the lesions of intestinal mucosa, which leads to an 
imbalance in the of immunoglobulin production [4, 34]. 
This imbalance could be due to the impair of mucosal 
integrity, which acts as a barrier to antigenic stimulation. 
Additionally, an increase in intestinal permeability and an 
inadequate response to the microbiota (rather than spe-
cific taxa), potentially driven by host cytokines like B-cell 
activating factor, such as B-cell activating factor [33]. Fur-
thermore, recent GWAS have identified 9 genetic vari-
ants that control composition of gut microbiota may be 
associated with susceptibility to IgAN. This finding sug-
gests that host genetics can influence gut microbiota in 
IgAN [35]. Interestingly, our results indicated a positive 
correlation between CD4 expression on CD4 + T cell and 
the risk of IgAN, among 210 extensive T-cell traits. Previ-
ous study have shown that serum levels of IgA strongly 
correlate with the percentage of CD4 + CD45RO + cells in 
peripheral blood in patients with IgAN, indicating that 
CD4 + T cells might also play a role in abnormal IgA1 gly-
cosylation process [36–38]. Therefore, it might be worth 
exploring clinical trials with drugs that target the imbal-
ance in the CD4 + T cell compartment.

Limitations
This study has several limitations. First, we cannot deter-
mine the extent of overlapping participants involved 
between data sources for SNPs-exposure and outcome 
consortia in two sample MR analyses. However, to mini-
mize the potential deviation from participant overlap, we 

employed F statistic and instrumental variables filtering 
procedures. Second, all analyses were based from Euro-
pean ancestry individuals, and it is necessary to conduct 
further GWAS studies in other ethnicities to validate the 
results. Third, we investigated the casual effect of only 
one T-cell traits on the risk of IgAN, and it is possible 
that there were insufficient numbers of SNPs available 
to determine the causal effect. Hence, caution is needed 
when interpreting the results. Finally, we were unable to 
completely exclude the possibility of other direct causal 
pathway from the IBD-predisposing genetic variants to 
IgAN. To note, the subgroup analyses demonstrated a sig-
nificant heterogeneity within the population with Crohn’s 
disease. This suggests the presence of potential varia-
tions in the validity of SNPs and false positive results, 
which can be attributed to the constraint imposed by the 
limited sample size. Nevertheless, both the MR-Egger 
intercept and MR-PRESSO analyses showed little hetero-
geneity among instrumental variables of IBD and mini-
mal directional horizontal pleiotropy, suggesting a lower 
likelihood of bias.

Conclusions
The current MR study provides robust evidence support-
ing the causal association between genetic susceptibil-
ity to IBD and an increased risk of IgAN, as well as its 
specific subtypes including ulcerative colitis and Crohn’s 
disease. However, there is insufficient evidence to estab-
lish a causal link between IBD and other kidney diseases 
such as, membranous nephropathy, glomerulonephritis, 
diabetic nephropathy, nephrotic syndrome, chronic kid-
ney disease, and urolithiasis. Further investigation using 
updated data from large-scale genetic studies is necessary 
to validate and reinforce the findings.
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