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Abstract 

Background Increasing evidence suggests that the metabolism of lipids plays a crucial role in the progression 
of gastric cancer. However, the expression of lipid metabolism-related genes (LMGs) still does not serve as a prognos-
tic biomarker in gastric cancer.

Methods We obtained transcriptome data for 751 LMGs and divided STAD patients into two subtypes based 
on differences in LMGs expression. Then, we analyzed genetic changes in two subtypes as well as immune features 
to determine their differences. We also constructed a prognostic risk model related to LMGs for individualized com-
prehensive evaluations.

Results In this study, two lipid metabolic (LM) subtypes were identified anchored in the expression profiles of LMGs. 
Clinical information, genomic alterations, immune features, and immunotherapy response varied significantly 
between the two LM subtypes. A risk model based on LMGs was also developed to assess prognosis and distin-
guish patients with high risk from those at low risk. The prognosis differed significantly between the two risk groups 
of patients. In STAD patients, the risk score was strongly correlated with genomic alterations and immune profile 
scores. Also, the risk score was an excellent predictor of immune checkpoint inhibitors (ICIs) response. Anchored 
in preliminary results derived from the aforementioned bioinformatic analysis, we chose CYP19A1 as our target 
gene and the expression of CYP19A1 was verified in several common gastric cancer cell lines. Then, we carried 
out the Western blotting, CCK-8 assay, colony formation assay, wound healing assay, and transwell assay to explore 
the effects of CYP19A1  on malignant biological behavior, and positive consequences were obtained.

Conclusions In this study, STAD patients were divided into two subtypes based on LMGs expression. It is possible 
to assess the prognosis of a patient and the response to immunotherapy using the established prognostic risk model. 
A series of basic laboratory experiments also verified the functional role of CYP19A1 in gastric cancer.
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Introduction
Gastric cancer (GC) is a prevalent malignant tumor and 
the third leading cause of cancer-related deaths globally 
[1]. The better Lauren/WHO classification and tumor-
node-metastasis (TNM) staging system of gastric cancer 
subtypes have enabled recent advances in treatment [2]. 
Some patients can improve their survival rate through 
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surgery, chemotherapy, radiotherapy, or targeted thera-
pies. These treatments, however, have limited effects on 
different patients because of tumor heterogeneity and 
difficulty in early diagnosis [3, 4]. The 5-year survival rate 
of patients diagnosed with GC is around 30%, and yet 
70% of them do not benefit from these treatments [5]. In 
order to establish a new predictive and diagnostic tool, 
we must explore novel biomarkers.

A significant characteristic of cancer cells is their lipid 
metabolism [6]. Maintenance of homeostasis and cell 
function is dependent on lipids [7]. As a component of the 
cell membrane, lipids have crucial effects on cell growth 
and the different pathways the cell follows [8]. The metab-
olism of lipids is reprogrammed by tumor cells to meet 
the increased demand for lipids [9]. Reprogrammed lipid 
metabolism is present in STAD, providing energy stor-
age and intermediates for a variety of metabolic activi-
ties involved in tumor cell proliferation and metastasis 
[10]. According to in-depth studies about tumor mutation 
burden, large numbers of potential prognostic markers 
for immunotherapy in malignant tumors have surfaced 
[11, 12], Among many biological processes, the associa-
tion between lipid metabolism and immunotherapy has 
become a research hotspot [13, 14]. The metabolic state 
and functional phenotypes of cancer cells and tumor-infil-
trating immune cells could be affected by metabolic adap-
tion and nutrient competition for essential nutrients. In 
addition, reprogramming lipid metabolism may enhance 
tumor immunotherapy by disrupting effector T cell senes-
cence. A cancer patient’s survival and response to immu-
notherapy can be predicted by a gene signature related 
to lipid metabolism [15, 16]. Further studies remain per-
formed to determine whether the expression of LMGs 
could serve as a biomarker of prognosis and immunother-
apy response in patients with STAD.

To identify hub genes that could predict patients’ sur-
vival, we investigated LMGs expression in STAD. A 
5-gene prognostic signature was developed and vali-
dated to accurately predict STAD patients’ prognosis and 
immunotherapy response. Then, we conducted relevant 
experiments to demonstrate the function of the most sig-
nificant gene of the aforementioned 5-gene prognostic 
signature. Identifying new therapeutic targets for STAD 
will be made easier with this prognostic signature.

Methods
Datasets
We downloaded normalized transcriptome data of 373 
samples (343 tumor samples and 30 normal samples) 
and clinical information from The Cancer Genome Atlas 
(TCGA) (https:// tcga- data. nci. nih. gov/ tcga). Patients 
with missing survival data or with overall survival (OS) of 
less than 30 days were excluded, leaving 317 patients for 

further analysis. Gene expression data was also accessed 
from the  Genotype-Tissue Expression (GTEx) database 
(https:// gtexp ortal. org/). The STAD external validation 
cohort (including 433 samples, GSE84437) was down-
loaded from the GEO database (https:// www. ncbi. nlm. 
nih. gov/ geo/). The "limma" R package was used to nor-
malize the data on RNA expression in this dataset.

The identification of STAD groups
The 751 LMGs were used for differential expression anal-
ysis (P < 0.05, |log2FC|> 1.5) and univariate Cox regres-
sion analysis, and intersecting LMGs were found. In our 
study, we used the “ConsensusClusterPlus” R package 
to categorize STAD patients anchored in the expres-
sion patterns of prognostic LMGs-related differentially 
expressed genes (DEGs). A suitable clustering number 
could be determined using cophenetic, dispersion, and 
silhouette indicators. The t-distributed stochastic neigh-
bor embedding (tSNE) algorithm was used to validate 
clustering results. Then we showed the expression levels 
of prognostic LMGs-related DEGs of two subtypes. The 
Kaplan–Meier (K-M) curves were displayed to compare 
the overall survival of two subtypes. The clinical data 
(status, stage, M stage, N stage, T stage) of STAD patients 
in the TCGA cohort were collected and analyzed in 
combination with subtypes. In order to investigate func-
tional annotations and pathways between two subtypes, 
the Gene Ontology (GO), Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [17–19], and GSVA analyses were 
conducted.

Analysis of genomic characteristics
We downloaded mutation annotation format (MAF) 
profiles of TCGA STAD patients from the TCGA data 
portal (https:// portal. gdc. cancer. gov/). The  Maftools R 
package was used to analyze STAD mutation data, and a 
tumor mutation burden (TMB) score was calculated for 
every STAD patient. Patients with high and low TMB 
levels were compared in terms of survival. Furthermore, 
the copy number alteration (CNA) data of STAD patients 
were obtained from the TCGA database. We used GIS-
TIC 2.0 to determine whole genome amplifications and 
deletions. We calculated the CNA burden at the focal and 
arm levels between two subtypes.

Analyzing the immune microenvironment 
and the response to immunotherapy
Using Single-sample gene set enrichment analysis 
(ssGSEA), we quantified the scores of 21 immune cells 
and 21 immune functions. We used the CIBERSORT 
algorithm with 1,000 permutations to quantify the com-
positions of 22 immune cell types. As ICIs are com-
monly used in cancer treatment, we also calculated the 
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scores of 50 immune checkpoints using the ssGSEA algo-
rithm. The immune scores, stromal scores, and ESTI-
MATE scores of STAD patients were quantified using 
the ESTIMATE algorithm. Considering the important 
role of immunotherapy in cancer treatment, we evalu-
ate the potential immunotherapy responses between 
two subtypes with the Tumor Immune Dysfunction and 
Exclusion (TIDE) algorithm online (http:// tide. dfci. harva 
rd. edu/). We then used subclass mapping algorithms to 
identify PD-1, PD-L1, and CTLA4 therapeutic effects in 
two subtypes of patients. Through the R package ’onco-
Predict’, we assessed drug sensitivity in two subtypes and 
identified potential targeted therapy drugs.

The construction of a prognostic signature linked to LMGs
The prognostic-related LMGs were used in the random 
forest algorithm to identify the hub genes. The median 
risk score was evaluated to divide patients into high- and 
low-risk groups making use of multivariate Cox regres-
sion analysis. In the TCGA cohort, the K-M survival 
curve was used to estimate the prognosis for patients in 
both risk groups based on overall survival, progression-
free survival, and disease-free survival. A K-M survival 
curve was also used to validate the prognostic value 
of LMGs in GC patients in the GEO cohort. A receiver 
operating characteristic (ROC) curve analysis was then 
used to evaluate the accuracy of LMGs in predicting 
STAD survival probability. We compared the differences 
in the expression of hub genes in normal and tumor tis-
sues and used the expression of hub genes to make sur-
vival curves.

A comparison of TMB levels and stemness index
For each patient, we showed the distribution of risk 
scores and clinical features. A correlation was then 
shown between the risk score and the TMB levels. By 
using the OCLR algorithm, we quantified the DNA meth-
ylation-based stemness index (mDNAsi) and the mRNA 
expression-based stemness index (mRNAsi). Further-
more, we analyzed the difference between the two groups 
in mDNAsi and mRNAsi.

Analysis of immune terms
SsGSEA was used to compare scores between two 
groups for 21 immune cells, 21 immune functions, and 
50 immune checkpoints. Additionally, we examined the 
correlation between risk scores and immune cell scores 
(measured by ssGSEA and CIBERSORT). We then com-
pared immune scores, stromal scores, and ESTIMATE 
scores between two groups of STAD patients. We also 
investigated whether high-risk versus low-risk patients 
respond differently to immunotherapy with TIDE and 
subclass mapping analysis. To confirm our prediction, 

we compared the immunotherapy response between two 
groups of STAD patients in the TCGA.

Cell culture, RNA extraction, and quantitative real‑time 
PCR
We obtained several human GC cell lines from the cell bank 
of the Chinese Academy of Sciences (Shanghai, China) and 
employed them in this research cultured in RPMI 1640 
medium (Invitrogen) supplemented with regular 10% fetal 
bovine serum (FBS, WISENT, Canada) as well as 1% anti-
biotics (100 U/ml penicillin and 100 mg/ml streptomycin) 
in a humidified atmosphere containing 5% carbon dioxide 
at 37 °C. We extracted RNA from cells making use of Tri-
zol Reagent (Invitrogen, Carlsbad, CA, USA). After reverse 
transcription, we measured the expression of mRNA by 
quantitative real-time PCR (ABI 7300) with SYBR Green 
assay (Vazyme Biotech Co., Ltd, Nanjing, China), and the 
data was calculated by the 2 − ΔΔCT method. The prim-
ers used are as shown below: CYP19A1 forward, 5′-CAC 
CCA TCT TTG CCA GGT AGTC-3′ and CYP19A1 reverse, 
5′-ACC CAC AGG AGG TAA GCC TAT AAA -3′; GAPDH 
forward, 5′-TGC ACC ACC AAC  TGC TTA GC-3′ and 
GAPDH reverse, 5′-GGCA TGG ACT GTG GTC ATGAG-
3′. Experiments were performed in triplicate.

Plasmids construction, siRNA interference, 
and transfection
CYP19A1-overexpressing plasmids were constructed into 
the pGL3-basic vector (Promega, Madison, WI, USA) and 
the siRNA sequences designed against CYP19A1 are listed 
as follows: CYP19A1-1: CUU UGG GAA UAA UAA UCG 
UUC AGG A, CYP19A1-2: UCC UGA ACG AUU AU UAU 
UCC CAAAG, NC: UUC UCC GAA CGU GUC ACG UTT.

Western blotting
We extracted total protein from selected cell lines using 
RIPA lysis buffer (Beyotime, Shanghai, China), separated 
isolated proteins through sodium dodecyl SDS-PAGE 
and transferred them to a PVDF membrane. Then, 5% 
non-fat milk was used to block the membranes at room 
temperature for 1.5 h and we incubated the membranes 
with the specific primary antibodies at 4  °C overnight. 
We used TBST to wash the membranes before and after 
the incubation with secondary antibodies. We employed 
an ECL detection system to detect the relative expression 
levels of the proteins. The listed antibodies were used: 
CYP19A1 (Abcam, Britain); N-cadherin, E-cadherin, 
Vimentin, and GAPDH (Proteintech, Wuhan, China). 
The membrane was cut during the process of western 
blots according to the molecular mass of the target pro-
tein prior to hybridization with antibodies in order to 
save the use of PVDF membrane, which resulted in the 
absence of images of full-length blots. The unedited 
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images of blots in Fig. 10 and their replicates are acces-
sible in the Additional file 1.

CCK‑8 assay
Cell Counting Kit-8 (CCK-8) (Beyotime, Shanghai, 
China) was used to evaluate cell proliferation according 
to the manufacturer’s recommendations. We plated the 
cells in 96-well plates (1000 cells/well) containing RPMI 
1640 supplemented with 10% FBS for 5 days. During this 
assay, we added 10 μl of CCK-8 reagent to each well and 
incubated the cells at 37 °C for 2 h. The spectrophotom-
eter was used to determine the absorbance at 450  nm. 
Each group was evaluated in triplicate.

Colony formation assay
500 MKN45 or AGS cells treated with siRNA or plasmids 
were plated in a six-well plate and cultured in RMPI-1640 
medium containing 10% FBS for 14 days. Methanol was 
used to fix proliferating colonies and we made use of 1% 
crystal violet (Beyotime, Shanghai, China) to stain pro-
liferating colonies. The colonies were photographed and 
then counted three times.

Wound healing assay and transwell assay
For the  wound healing assay, we seeded cells in 6-well 
plates and cultured them to the subfusion state. Then, 
a  200  μl sterile pipette tip was used to create linear 
scratch wounds. We captured images at both 0 and 48 h 
and evaluated cell healing rates. For  the transwell assay, 
we used 6.5  mm chambers with 8  μm pores (Corning 
Costar Corp., USA) to evaluate the migratory and inva-
sive abilities of gastric cancer cells. In this experiment, 
we plated 2 ×  104 cells in the upper chamber cultured in 
200 μl of serum-free RMPI-1640 medium, and 600 μl of 
the RMPI-1640 medium containing 10% FBS without 
cells was added to the lower chamber. After incubating 
for 48 h, we stained the cells having migrated to the lower 
surface of the filter with 1% crystal violet for 30 min. For 
invasion assays, we added 0.1 ml of Matrigel (50 μg/ml, 
BD Biosciences, USA) onto the upper chamber. Then, the 
cells were plated, and the other procedures were similar 
to the aforementioned steps. The experiments were per-
formed in triplicate.

Statistical analysis
All statistical analyses were performed using R software 
(version 4.2.1). In the analysis of statistical significance 
between the two groups, a Student t-test was used. We 
estimated the correlation between two parameters using 
Spearman’s correlation analysis. Multivariate cox regres-
sion was used to determine the model and the random 
forest algorithm was applied to further identify prog-
nostic genes. mRNA expression levels and the number 

of colonies were tested by Student’s t test. Two-tailed 
p < 0.05 was defined as statistically different.

Results
Identification of lipid metabolic‑related subtypes
By comparing the difference in gene expression between 
normal and tumor tissue, 6433 different genes were 
identified (Fig.  1A). Univariate Cox regression analysis 
screened out 57 LMGs associated with prognosis. The 
intersection between differential express genes and prog-
nosis-related LMGs contained eleven genes (Fig.  1B). 
The consensus clustering analysis revealed that the cor-
relations were strong between two clusters when k = 2, 
which indicated that the 343 STAD patients could be well 
divided into two subtypes based on the eleven LMGs, 
namely LM1 (n = 245) and LM2 (n = 98) (Fig. 1C). There 
were great differences in distribution between the two 
subtypes in the tSNE (Fig.  1D). In the heatmap, eleven 
LMGs were shown with their different expression lev-
els (Fig.  1E). Survival curves between the two subtypes 
showed a tendency to differ. There was a lower sur-
vival rate among patients in LM2 compared with LM1 
(Fig. 1F).

Then we compared the clinical features of STAD 
patients in two subtypes and there were no significant 
differences (Fig.  2A). In order to determine the path-
ways and functions of LM1 and LM2 enrichment, we 
used nine gene sets for GSEA analysis (Fig.  2B). There 
was a stronger correlation between LM1 and lipid-
related pathways, such as intestinal lipid absorption, 
than LM2 (Fig.  2C). In addition, the top five markedly 
enriched pathways in LM1 included pancreas beta cells, 
coagulation, spermatogenesis, bile acid metabolism, 
and peroxisome. LM2 showed great enrichment in five 
pathways: E2F targets, IL-6 JAK STAT3 signaling, WNT 
beta-catenin signaling, P53 pathway, and inflammatory 
response (Fig. 2D).

Analysis of genomic alterations between two subtypes
In order to investigate the difference in gene muta-
tions between LM1 and LM2, we calculated genetic 
mutation levels. Based on the somatic mutation pro-
files, patients in LM1 had specific top mutated genes 
and a higher TMB level than those in LM2 (Fig. 3A, B). 
There was a better survival rate for patients with high 
TMB levels than for patients with low TMB levels, as 
revealed by the survival curve (Fig.  3C). Gistic scores 
and percent distributions in two subtypes were shown, 
and a line diagram was used to visualize the differ-
ences in somatic copy number alternations (SCNAs) 
between the two subtypes (Fig.  3D-F). It was found 
that the frequency of autosomal amplification and 
deletion was significantly different between patients 
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in LM1 and LM2 (Fig. 3G). LM1 patients had a lower 
burden of gain and loss, both at the focal and arm lev-
els than LM2 patients (Fig. 3H).

Immunity and immunotherapeutic responses in two 
subtypes
It has become increasingly clear that LMGs are respon-
sible for modulating the sensitivity of cancer cells to 
immunotherapy [20]. The ssGSEA algorithm was used 
to compare scores of immune cells between two sub-
types, and there was a significant difference between 
them (Fig.  4A). LM1 patients had higher immune 
function scores than LM2 patients (Fig.  4B). The 
tumor immune microenvironment was also analyzed 
using the CIBERSORT algorithm. There was evidence 
that CD8 + T cells play a major role in anti-tumor 

activity [21], and patients in LM1 had higher CD8 + T 
cell scores than patients in LM2 (Fig. 4C). In addition, 
we compared immune checkpoints’ scores between 
patients in LM1 and LM2 and found that most of the 
patients in LM1 had higher immune checkpoints’ 
scores than those in LM2 (Fig.  4D). According to the 
ESTIMATE analysis, patients in LM1 had higher 
immune, stromal, and ESTIMATE scores than those 
in LM2 (Fig. 5A). As a result, we compared the immu-
notherapeutic response between two subtypes. TIDE 
results showed that patients in LM1 responded better 
to immunotherapy than those in LM2 (Fig.  5B). Sub-
class mapping analysis showed differences in response 
to PD1 treatment between two subtypes of patients 
(Fig.  5C). For both groups of patients, we presented 
eight drugs that may be useful (Fig. 5D).

Fig. 1 Identification of lipid metabolism-related subtypes. Notes: A The 6433 differentially expressed genes were presented. B The 11 differentially 
expressed genes associated with lipid metabolism and prognosis were identified. C Different clusters of the aforementioned 11 genes cohort were 
identified for k = 2. D The differences in distribution between LM1 and LM2 in the tSNE were analyzed. E The distribution of clinical characteristics 
and the expression levels of LMGs were displayed in a heatmap. F The survival curve between LM1 and LM2 was drawn
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Fig. 2 Function prediction of two subtypes. Notes: A The differences in clinicopathologic features between two subtypes of gastric cancer 
examined by the Chi-squared test were presented in pie charts. B GSEA analysis was performed to predict the pathways and functions associated 
with LM1 and LM2. C The top 20 GO and KEGG signaling pathways in the two subtypes were shown. D The top 20 Hallmark signaling pathways 
in two subtypes were shown



Page 7 of 17Zhou et al. BMC Medical Genomics          (2023) 16:228  

Identification of prognostic hub genes
To verify the hub genes related LMGs, random forest 
analysis was performed (Fig.  6A, B). A total of five hub 
genes related to LMGs were identified, which were sub-
sequently analyzed. For survival outcomes, four genes 
were risky and one was protective (Fig.  6C). According 
to the K-M survival curves, patients with high hazard 
had worse overall survival, progression-free survival, and 
disease-free survival than those in the  low-risk group 
in TCGA cohorts (Fig. 6D). Then we validated the same 
result with the GEO cohort (Fig. 6E). In addition, we used 
ROC curves to identify the accuracy of the expression 
of LMGs in predicting 1-, 3- and 5-year overall survival 
(Fig. 6F). The expression of these five hub genes was com-
pared between normal and tumor tissues (Fig. 6G). K-M 

survival curves based on five gene expression were shown 
(Fig. 6H).

Correlation of LMGs with clinical features, TMB levels, 
and stemness index
The risk score for each patient was presented along with 
clinical information (Fig.  7A). An alluvial diagram was 
used to display the association between LM subtypes and 
risk groups as well as the status and grade of each patient 
(Fig.  7B). As well, we compared TMB levels in two risk 
groups. Patients with a lower risk score had higher lev-
els of TMB (Fig. 7C). Additionally, mDNAsi and mRNAsi 
levels were quantified in patients (Fig.  7D). Patients in 
the low-hazards group had higher mDNAsi and mRNAsi 
levels than those in the high-hazards group. (Fig. 7E).

Fig. 3 Analysis of genomic alterations between two subtypes. Notes: A Mutation profiles of two subtypes were presented. B The TMB level 
of patients in both two subtypes was calculated. C The survival rate of patients with different TMB levels was analyzed. D The gistic score of copy 
number variation of TCGA-STAD was shown. E The gain and loss percentage of copy number variation of TCGA-STAD. F The somatic copy-number 
alterations (SCNA) levels in two subtypes. G The frequency of autosomal amplification and deletion between patients in LM1 and LM2 
was analyzed. H The burden of gain and loss of two subtypes both at the focal and arm levels was shown
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Fig. 4 Differences in immunity between two subtypes. Note: A and B The immune cells and immune functions of two subtypes were estimated. C 
and D The expression level of immune checkpoints and immune checkpoints’ scores were compared between patients in LM1 and LM2
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An analysis of the immune profiles of two risk groups
Results of ssGSEA showed that patients with high haz-
ards had higher levels of immune cells and immune 
function scores than those in the  low risk group 
(Fig.  8A, B). Furthermore, patients with high hazards 
had obviously higher immune checkpoints’ scores 
than patients in the low-risk group (Fig. 8C). By using 
heatmaps, we showed the correlation between risk 
score and the scores of immune features (Fig.  8D). 
There was a significant positive correlation between 
risk score and immune and ESTIMATE scores, indi-
cating that the infiltration of immune cells increases 
with risk score (Fig.  9A). There was a significant dif-
ference between patients in high- and low-risk groups 
for TIDE, Dysfunction, and Exclusion scores (Fig. 9B). 
A total of 82.1% of patients in the high-hazards group 
responded to immunotherapy, and 58.5% of patients in 
the  low-hazards group responded (Fig.  9C). Further-
more, subclass mapping results indicated that immu-
notherapy targeting CTLA4 receptors was effective for 
patients with high hazards (Fig. 9D). Finally, we com-
pared the effectiveness of clinical immunotherapy in 
patients in the two risk groups in the TCGA cohort. 
After receiving immunotherapy, 56.8% of patients with 
high hazards and 79.7% of patients in  the low-risk 

group experienced complete remissions or partial 
remissions (Fig. 9E).

Validation of tumor‑promoting effects of CYP19A1 
in gastric cancer
On the basis of the results of differential expres-
sion analysis (Fig.  6E) and analysis for risk factors 
(Fig. 6C), we selected the gene CYP19A1 as our target 
gene which exhibited the highest relative expression 
in tumor tissues and demonstrated the most obvious 
correlation with the worse survival prognosis. Above 
all, quantitative real-time PCR (qRT-RCR) was used 
to validate the expression level of CYP19A1 in sev-
eral common gastric cancer cell lines and the results 
showed that some of the gastric cancer cell lines exhib-
ited high CYP19A1 expression with statistical signifi-
cance (Fig. 10A). We selected two cell lines, AGS and 
MKN45, whose expression levels of CYP19A1 were 
intermediate to knockdown or over-express CYP19A1. 
Western blots and qRT-RCR were performed to meas-
ure knockdown and over-expression efficiency at both 
mRNA and protein levels (Fig. 10B). Then, the above-
mentioned cell lines verified by us were employed to 
carry out CCK-8 assay, colony formation assay, wound 
healing assay, and transwell assay to explore the role 

Fig. 5 Immunotherapeutic responses in two subtypes. Notes: A The immune, stromal, and ESTIMATE scores were compared between two 
subtypes. B Patients in LM2 have a lower percentage of responders. C Subclass mapping analysis showed differences in response to PD1 treatment 
between patients in LM1 and LM2. D The predicted IC50 for 8 common chemo drugs was presented
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Fig. 6 Identification of prognostic hub genes. Notes: A and B The hub genes related to LMGs were screened by random forest analysis. C The 
survival analysis of 5 hub genes related to LMGs was performed. D OS, PFS, and DFS in the TCGA-STAD cohort were estimated by Kaplan-Meier 
curves in the two groups. E OS in GSE84437 was shown by Kaplan-Meier curves. F The accuracy of the expression of LMGs in predicting OS 
was identified by ROC curves. G The expression levels of these five hub genes were compared between tumor and normal tissues. H The survival 
analysis anchored in the expression level of the five hub genes was carried out
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of CYP19A1 in the cell proliferation, migration, and 
invasion and the results were counted and statistically 
analyzed which demonstrated the ability of CYP19A1 
to promote the progression of gastric cancer (Fig. 10C-
L). The correlation between epithelial-mesenchymal 
transition (EMT) and CYP19A1 was also studied by 
examining the expression of EMT-related proteins 
consisting of N-cadherin, E-cadherin, and vimentin 

by western blots and we obtained positive results 
(Fig. 10M).

Discussion
GC is the fifth most commonly diagnosed malig-
nancy, with an estimated 26,380 new cases and 11,090 
new deaths in 2022 [1, 22]. Heterogeneity is a hall-
mark of GC. Patients with the same TNM stage may 

Fig. 7 Correlation of LMGs with clinical features, TMB levels, and stemness index. Notes: A The patients’ risk scores and clinical information were 
presented. B The association between LM subtypes and risk groups as well as the status and grade was displayed. C TMB levels between the two 
risk groups were compared. D The association between the clinical and molecular features (sex, MetStatus, grade, stage, and Risk) and mRNAsi 
as well as mDNAsi levels. E Higher mDNAsi and mRNAsi levels were observed in patients with low risk than those with high risk
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Fig. 8 Immune checkpoints’ scores and the scores of immune features between two risk groups. Notes: A and B Higher levels of immune cells 
and immune function scores were observed than those in the low risk group. C The expression levels of immune checkpoints’ scores were 
compared between patients with high- and low-risk. D The correlation between risk score and the scores of immune features was estimated
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differ from each other in prognoses and respond dif-
ferently to immunotherapy [23]. Despite the improve-
ment in GC treatment over the last few years, the 
survival of patients remains unsatisfactory [24, 25]. 

The effectiveness of GC treatments still needs to be 
improved in order to prolong patients’ 5-year sur-
vival. Besides chemotherapy and radiotherapy, targeted 
therapy will also play a unique role in the treatment of 

Fig. 9 Immunotherapeutic responses in two risk groups. Notes: A The correlation between risk score and immune and ESTIMATE scores 
was estimated. B The difference in TIDE, Dysfunction, and Exclusion scores between patients in high and low risk groups was analyzed. C 
A larger percentage of patients in the high-risk group responded to immunotherapy than those in the low-risk group. D The immunotherapy 
targeting CTLA4 receptors was observed to be effective for patients with high hazards. E The effectiveness of clinical immunotherapy in patients 
between two risk groups was compared
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GC [26]. Therefore, there is an urgent need to find new 
molecular biomarkers of GC at the genetic level.

Lipids, lipid metabolites, and downstream effec-
tor molecules form a large signal network. Changing 
lipid metabolites affects the signaling network, thus 
promoting cancer progression [6]. The invasion and 
metastasis of malignancy are facilitated by biologically 
active lipids such as prostaglandin E2, leukotrienes, 
sphingosine-1-phosphate, and cholesterol esters 
[27–29]. Fatty acid synthase, a key enzyme for lipid 
metabolism, can promote tumor progression in several 
ways [30]. It is expected that STAD can be effectively 
treated by targeting genes involved in lipid metabolic 
pathways.

Using differentially expressed and prognostic-related 
intersection genes, we used unsupervised clustering to 
divide STAD patients into the two subtypes. Variance 
analyses between the  two subtypes were performed 
based on prognosis, clinical data, pathways enrichment, 
genomic features, immune infiltration, and response to 
immunotherapy. Prognosis-related genes were used for 
random forest analysis to screen hub genes and build 
prognostic models for further evaluation. It was indi-
cated in the findings that the expression of LMGs was 
strongly related to prognosis, genomic alterations, and 
immune features. The expression of LMGs was also capa-
ble of predicting immunotherapy response well.

Through TCGA cohort analysis, a five-gene signa-
ture was identified as a reliable predictor of survival. 
There was a significant difference in survival cure rates 
between the two risk groups, demonstrating that the 
expression level of identified LMGs was closely related 
to patients’ outcomes. Then the manifestation of this 
signature was well verified in the GEO cohort. We veri-
fied that the respective expressions of the five genes 
predicted prognosis, and the results were also meaning-
ful. In addition, we examined the genomic alterations 
and immune features of patients in two risk groups. 
TMB is an indicator of a patient’s response to the ICIs 

treatment, regardless of PD-L1 expression levels [31, 
32]. A relatively negative correlation between TMB 
levels and risk score was validated. Cancer stem cells 
may affect the progression, recurrence, and metasta-
sis of cancer [33, 34]. The mDNAsi index and mRNASi 
index are based on DNA methylation levels and mRNA 
expression levels, respectively, and reflect epigenetic 
dry characteristics and transcriptomic dry characteris-
tics [35]. Patients with low hazards had higher mDNAsi 
and mRNAsi than those in the high risk group.

After that, we performed immune-related analyses 
to gain a deeper understanding of STAD’s immune 
landscape. The ssGSEA analysis showed that patients 
with high hazards had higher scores of immune cells, 
immune function, and immune checkpoints than those 
in the  low-risk group. There was a clear positive cor-
relation between the stromal scores, ESTIMATE scores 
and risk scores. By targeting PD1, PD-L1 and CTLA4, 
multidisciplinary treatments for cancer have improved 
[36]. Consequently, TIDE analysis was used to predict 
patients’ immunotherapy response. The results showed 
that more patients with high hazards responded to 
immunotherapy than those in the  low-risk group. This 
result was validated by the calculation of subclass map-
ping and clinical immunotherapy efficacy in TCGA 
patients. Based on these findings, ICIs may be benefi-
cial for patients with high hazards.

Despite some merits, the limitations in our study 
were also nonneglectable. Firstly, the underlying 
mechanism of how LMGs affect prognosis in patients 
with gastric cancer is still unclear. Further experi-
ments are needed to explore their molecular mecha-
nism. Secondly, this model used a GEO dataset for 
validation, which was not universal and still required 
more cohorts for validation. Then, as more and more 
LMGs are excavated, the five genes identified in our 
study may be incomplete, which means that prognos-
tic characteristics of LMGs in gastric cancer should 
be updated. In addition, the joint model of objective 

(See figure on next page.)
Fig. 10 Validation of tumor-promoting effects of CYP19A1 in gastric cancer. Notes: A The expression level of CYP19A1 in several gastric cancer 
cell lines examined by qRT-PCR. B Knock-down and over-expression efficiencies of CYP19A1 were determined by qPCR and western blot. C‑F 
CCK-8 assay was performed to explore the effect of proliferation of CYP19A1 in AGS and MKN45 cell lines. G and H The colony formation assay 
was used to validate the role CYP19A1 plays in the proliferation of AGS and MKN45 cell lines and the colonies were calculated. I and J The wound 
healing assay was used to explore the effect of migration of CYP19A1 in AGS and MKN45 cell lines and the rate of migration was calculated. K and L 
Transwell assays were used to validate the role CYP19A1 plays in the migration and invasion of AGS and MKN45 cell lines and the number of cells 
was calculated. M We carried out western blots and analyzed the expression of N-cadherin, E-cadherin, and vimentin to determine the correlation 
between CYP9A1 and EMT. The blots used in this figure conformed to the digital image and integrity policies. The blot and the corresponding 
internal reference in the same group were cropped from the same membrane and blots from different groups were from different membranes. The 
membrane was cut during the process of western blots according to the molecular mass of the target protein prior to hybridization with antibodies. 
One fuller-length, original, unprocessed blot performed with my samples for each antibody which confirms specific detection of the target antigen 
was provided in the supplementary material



Page 15 of 17Zhou et al. BMC Medical Genomics          (2023) 16:228  

Fig. 10 (See legend on previous page.)
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response rate (ORR) and time to event (TTE) has 
caught our attention and seems to be able to improve 
prediction accuracy [37], which could ensure better 
fault tolerance and provide new ideas for our future 
studies. Last but not least, only the role CYP19A1 
plays in gastric cancer was explored and the molecu-
lar mechanisms underlying this phenomenon remain 
studied.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12920- 023- 01664-y.

Additional file 1: Figure S1. Original western blots.
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