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Abstract 

Background Epidemiological studies have indicated a potential link between the gut microbiome and autoimmune 
liver disease (AILD) such as autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), and primary sclerosing 
cholangitis (PSC). The relationship between the gut microbiome and autoimmune liver disease is still uncertain due 
to confounding variables. In our study, we aim to shed light on this relationship by employing a two-sample Mende-
lian randomization approach.

Methods We conducted a two-sample Mendelian randomization (MR) study using the R package "TwoSampleMR". 
The exposure data consisted of genetic variants associated with 194 bacterial traits obtained from the MiBioGen con-
sortium. Summary statistics for AILD were obtained from the GWAS Catalog website. Furthermore, a series of sensitiv-
ity analyses were performed to validate the initial MR results.

Results There were two, four and three bacteria traits associated with an increased risk of AIH. PBC, and PSC respec-
tively. In contrast, there were five, two and five bacteria traits associated with a decreased risk for AIH, PBC and PSC. 
Notably, the genus_Clostridium_innocuum_group showed a negative association with AIH (OR = 0.67, 95% CI: 0.49–
0.93), and the genus_Actinomyces was found to be genetically associated with a decreased risk of PSC (OR = 0.62, 95% 
CI: 0.42–0.90).

Conclusions Our study identified the causal impact of specific bacterial features on the risk of AILD subtypes. Particu-
larly, the genus_Clostridium_innocuum_group and the genus_Actinomyces demonstrated significant protective effects 
against AIH and PSC respectively. These findings provide further support for the potential use of targeted probiotics 
in the management of AILD.
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Background
Autoimmune liver disease (AILD) is a rare chronic liver 
disorder characterized by autoimmune abnormalities. 
It encompasses three main types: autoimmune hepatitis 
(AIH), primary biliary cholangitis (PBC), and primary 
sclerosing cholangitis (PSC). The diagnosis of AILD 
typically involves a combination of specific autoanti-
body testing, serum biochemistry, and liver histology [1, 
2]. Notably, specific autoantibodies associated with PSC 
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have not been identified, and non-invasive imaging tech-
niques are recommended for evaluating liver and bile 
duct fibrosis [3]. Despite the low incidence and preva-
lence of autoimmune liver diseases, they impose a dispro-
portionate clinical burden on affected individuals. The 
global incidence rates per 100,000 population vary, rang-
ing from 0.4 to 2.39 for AIH, 0.84 to 2.75 for PBC, and 0.1 
to 4.39 for PSC [4]. Treatment typically involves the use 
of immunosuppressants, which are generally effective but 
often require long-term administration, raising concerns 
regarding potential side effects and patient adherence to 
therapy [5].

The gut microbiota, considered a virtual metabolic 
organ, is increasingly recognized for its role in various 
extraintestinal systems [6]. Recent research has empha-
sized the importance of the gut-liver axis in liver disease 
pathogenesis, involving intestinal barrier homeostasis, 
bile-mediated liver communication, and the composition 
and function of the gut microbiota [7]. While the crucial 
involvement of the gut microbiota in alcohol-associated 
liver disease and non-alcoholic fatty liver disease has 
been extensively investigated, studies focusing on the 
relationship between AILD and the gut microbiota are 
limited [8]. Over the past decades, Genome-Wide Asso-
ciation Study (GWAS) has successfully identified genetic 
factors associated with AIH, PBC, and PSC [9]. These 
GWAS data can be repurposed to explore the causal rela-
tionship between the gut microbiota and AILD. Mende-
lian randomization (MR), a statistical method, offers an 
opportunity to infer causal effects by using single nucle-
otide polymorphisms (SNPs) as instrumental variables 
(IVs) [10]. Through MR analysis, the causal relation-
ship between the gut microbiome and the occurrence of 
AIH, PBC, and PSC can be explored, providing valuable 
insights for clinical practice. Additionally, the results of 
MR analysis may also support the potential development 
of probiotic therapies targeting the gut microbiota for 
AILD.

Methods
Study design
We conducted a two-sample MR study to investigate 
the causal association between the gut microbiome and 
autoimmune liver disease, and a workflow of the study is 
shown in Fig.  1. To ensure valid instrumental variables 
(IVs), three fundamental assumptions of the MR design 
were satisfied: (I) genetic variation as an IV must be sig-
nificantly associated with the gut microbiome; (ii) genetic 
variation must be independent of confounders; and (iii) 
variation must be associated with autoimmune liver dis-
ease only through the gut microbiome [11]. The sum-
mary data were primarily based on independent GWAS 
and MR utilized SNPs to assess causality.

GWAS data source
The full GWAS summary statistics for the microbiota 
were primarily derived from a large-scale multi-ethnic 
GWAS meta-analysis conducted by the international 
MiBioGen consortium [12], which was established to 
study the influence of human genetics on the gut micro-
biome. This meta-analysis included 211 gut microbiota 
and 122,110 related SNPs. To exclude the influence of 
ethnicity, GWAS data for participants of European ances-
try were selected.

The summary statistics data for AIH, PBC, and PSC 
were acquired from the corresponding studies in the 
GWAS Catalog. For AIH (GCST90018785), there were 
821 cases and 484,413 controls of European ancestry 
[13]. For PBC (GCST90061440), there were 8,021 cases 
and 16,489 controls of European ancestry [14]. For PSC 
(GCST004030), there were 2,871 cases and 12,019 con-
trols of European ancestry [15]. Detailed descriptions of 
the study procedures, ethical approvals, and consent to 
participate can be found in the original studies.

The selection of instrumental variables
To ensure the reliability of the results, instrumental vari-
ables were carefully selected. First, 17 bacterial traits with 
unknown classifications were excluded. Then SNPs with 
a p-value less than  10–5 were chosen, while those with 
weak associations or low minor allele frequencies were 
excluded. Independent SNPs were identified by clumping 
SNPs based on the European 1000 Genomes Project ref-
erence panel (r2 < 0.01 and clump distance > 10,000  kb). 
The instrumental strength of each SNP was assessed 
using the F statistics = (β/SE)2, and variables with F sta-
tistics values > 10 were excluded [16]. The corresponding 
data of the selected SNPs was extracted from the GWAS 
outcome data, and proxy SNPs were not allowed. The 
selection process was carried out using the “TwoSam-
pleMR” R package (version 0.5.6) [17]. It’s worth noting 
that due to the absence of the rsID column in the GWAS 
summary data of AIH, a set of unique identifiers for dis-
tinguishing similar SNPs was unavailable. To address this, 
we utilized the SNP Annotation Tool [18] to derive rsID 
information based on the available chromosome number 
and position details. As the GWAS summary data were 
annotated in the GRCh37 version, we ensured the use 
of the same version for consistency during the query-
ing process. This enabled us to obtain the necessary rsID 
information for the SNPs. This information was then 
matched with the outcome data and processed using the 
“format_data” function in the “TwoSampleMR” package 
to obtain standardized data. During the harmonizing 
process, positive strand alleles were inferred using allele 
frequencies for palindromes to ensure that the effects of 
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SNPs on exposure corresponded to the same allele as the 
effects of SNPs on the outcome. Finally, as a quality con-
trol measure, exposure traits with less than 3 SNPs were 
excluded.

Conduction of MR analyses
MR analyses were performed using inverse variance-
weighted (IVW), weighted median, MR–Egger, and 
maximum likelihood methods to identify gut micro-
biome related to three subtypes of autoimmune liver 
diseases. IVW was used as the primary method assum-
ing all SNPs are valid variables. The weighted median 
approach yields consistent estimates assuming more 
than half of the weights are from valid SNPs [19]. MR–
Egger analysis can calibrate for pleiotropy and calcu-
late causal inferences even when all genetic variants 
are pleiotropic [20]. The maximum likelihood-based 
approach can generate appropriate confidence interval 
(CI) estimation when weak IV is observed. Guidance 

on interpreting the outcomes of these methods can be 
found elsewhere [21]. We further visualized the results 
of IVW method with a heatmap for more intuitive 
interpretation. Finally, several essential sensitivity anal-
yses were performed to verify the robustness of the MR 
analysis results. A test for heterogeneity was conducted 
using Cochran’s test. MR-Pleiotropy Residual Sum and 
Outlier (MR-PRESSO) was performed to examine hori-
zontal pleiotropy if available in order to eliminate SNPs 
with horizontal pleiotropic outliers [22]. The MR–Egger 
regression intercept was used to estimate potential 
pleiotropy of SNP, with a P-value > 0.05 indicating no 
horizontal pleiotropy. A leave-one-out analysis was also 
used to detect pleiotropy caused by each SNP. Sensitiv-
ity analyses were conducted using the “TwoSampleMR” 
R package. Results were presented as odds ratios (OR) 
with respective 95% CI. P-values were two-sided and 
statistical significance was set at the 5% level.

Fig. 1 Study design of the two-sample Mendelian randomization for the effect of genetically predicted gut microbiome on AILD subtypes. AIH, 
autoimmune hepatitis; PBC, primary biliary cholangitis; PSC, primary sclerosing cholangitis; N: number of discovery cases; SNPs, single nucleotide 
polymorphisms
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Results
Instrument variables for gut microbiome
SNPs from 194 bacterial traits containing five biological 
levels (i.e. phylum, class, order, family, and genus) were 
included in our study. Detailed information (i.e. effect 
allele, other allele, beta, standard error, p-value, and 
F statistics) of the final SNPs for each bacterial trait is 
shown in Supplementary Table 1.

Causal effects of the gut microbiome on autoimmune liver 
diseases
Using the IVW method as the primary MR detection 
method, a total of 21 gut microbiome traits were found 
to have a potential causal relationship with AILD (7 traits 
for AIH, 6 traits for PBC, and 8 traits for PSC). A heat-
map was created to display these results, with red rep-
resenting risk factors and blue representing protective 
factors (Fig. 2). These taxonomic groups demonstrate the 
hierarchical relationship between phyla, classes, orders, 
families, and genera of bacteria, with groups related at 
the highest level (phylum) and branching into more spe-
cific categories. In detail, the phylum Tenericutes includes 
the class Mollicutes. The class Clostridia contains two 
families: Clostridiales vadin BB60 group and Victival-
laceae. The class Coriobacteriia includes the order Corio-
bacteriales and the family Coriobacteriaceae. The order 
Actinomycetales contains the family Actinomycetaceae 
and the genus Actinomyces. Genera in the results do not 
have a hierarchical relationship with each other. These 
results provide insight into the potential associations 
between certain bacterial features and the risk of AILD.

AIH
According to our IVW-MR analysis, we found that genet-
ically predicted levels of two bacterial features (fam-
ily_Victivallaceae: OR 1.42, 95% CI 1.03–1.92, P = 0.004; 
genus_Ruminococcaceae NK4A214 group: OR 1.64, 95% 
CI 1.03–2.64, P = 0.039) were potentially associated with 
an decreased risk of AIH. Additionally, we observed that 
genetically predicted levels of five bacterial features were 
associated with a lower risk of AIH: class_Clostridia (OR 
0.58, 95% CI 0.35–0.97, P = 0.039), genus_Ruminiclostrid-
ium9 (OR 0.39, 95% CI 0.20–0.76, P = 0.005), genus_
Holdemania (OR 0.66, 95% CI 0.46 to 0.95, P = 0.024). 
genus_Clostridium innocuum group (OR 0.67, 95% CI 
0.49 to 0.93, P = 0.016) and genus_Anaerostipes (OR 0.35, 
95% CI 0.17 to 0.74, P = 0.006) (Table 1). The aggressive 
role of family_Victivallaceae and the protectiove role of 
genus_Anaerostipes were supported by the Weighted 
Median method, whilst others were not (see Supplemen-
tary Table 2).

PBC
The same approaches were utilized to explore the causal 
effect of gut microbiome on PBC. There were four bac-
terial traits(class_Coriobacteriia: OR 2.18, 95% CI 1.30 
to 3.66, P = 0.003; family_Coriobacteriaceae: OR 2.18, 
95% CI 1.30 to 3.66, P = 0.003; order_Coriobacteriales: 
OR 2.18, 95% CI 1.30 to 3.66, P = 0.003; genus_Rumini-
clostridium5, OR 1.47, 95% CI 1.03 to 2.09, P = 0.031) 
potentially related to an increased risk of PBC utilizing 
the IVW method, while two bacterial traits(class_Del-
taproteobacteria, OR 0.52, 95% CI 0.36 to 0.74, P < 0.001; 
family_Desulfovibrionaceae, OR 0.53, 95% CI 0.34 to 
0.81, P = 0.003) were associated with a lower risk of PBC 
in the IVW–MR analysis (Table  1). Meanwhile, all the 
results above were supported by the Weighted Median 
method (P < 0.05, Supplementary Table 2).

PSC
Similarly, on the causal effect of gut microbiome on 
PSC, the estimates of the IVW test indicated that certain 
bacterial traits was associated with either an increased 
or reduced risk of PSC. Specifically, three bacterial fea-
tures (phylum_Tenericutes: OR 1.66, 95% CI 1.06 to 2.61, 
P = 0.026; class_Mollicutes: OR 1.66, 95% CI 1.06 to 2.61, 
P = 0.026; family_Oxalobacteraceae, OR 1.44, 95% CI 
1.08 to 1.91, P = 0.013) were associated with an increased 
risk of PSC according to IVW analysis. In the contrast, 
five bacterial features (order_Actinomycetales, OR 0.59, 
95% CI 0.36 to 0.98, P = 0.041; family_Clostridiales vadin 
BB60 group, OR 0.73, 95% CI 0.54 to 0.98, P = 0.035; 
family_Actinomycetaceae, OR 0.60, 95% CI 0.36 to 0.98, 
P = 0.042; genus_Alloprevotella, OR 0.68, 95% CI 0.50 to 
0.94, P = 0.018; genus_Actinomyces OR 0.62, 95% CI 0.42 
to 0.90, P = 0.012) were associated with an lower risk of 
PSC (Table  1). The Weighted Median method provided 
support for the aggressive role of family_Oxalobacte-
raceae and the protective role of genus_Alloprevotella, 
while other associations did not reach statistical signifi-
cance (Supplementary Table 2).

In summary, Supplementary Table  2 presents a com-
prehensive overview of all positive results, providing 
in-depth details and information. On the other hand, 
Supplementary Table  3 includes all results, including 
negative ones, in a tabulated format. These supplemen-
tary tables are intended to complement and provide 
further context to the main findings discussed in the sec-
tions above.

Sensitivity analyses
When the exposure is the genus_Anaerostipes and the 
outcome is AIH, the MR result did not pass the hetero-
geneity test (Q p-value = 0.02, Supplementary Table 4). 
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Fig. 2 Heatmap illustrating positive IVW-MR results, with red indicating risk factors and blue indicating protective factors. Asterisks (*) denote 
statistical significance, with * indicating P < 0.05 and ** indicating P < 0.01
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Since there is only heterogeneity and no pleiotropy for 
this exposure trait, the result of the Weighted Median 
method are preferred [23]. The value of the Weighted 
Median method is P < 0.001, indicating that causal-
ity exists. To increase the credibility of the result, 
the random effects model of IVW was further per-
formed and the result was P = 0.006 < 0.05, which was 
statistically significant. For other exposure-outcome 
pairs, no heterogeneity or outliers were found using 
Cochran’s Q and MR-PRESSO tests (P > 0.05, Supple-
mentary Table  4–5). All P-values of MR–Egger inter-
pret were > 0.05, indicating no horizontal pleiotropy 
(Supplementary Table  4). Moreover, Supplementary 
figures  S1-3 show the results of sensitivity analyses 
in scatter plots. Furthermore, we conducted leave-
one-out analyses to evaluate the potential influence of 
individual SNPs on the observed associations. Supple-
mentary figures S4-6 present the leave-one-out analy-
sis, evaluating the influence of individual SNPs on the 
associations.

Discussion
We conducted an MR study using the most compre-
hensive GWAS data available to overcome a common 
limitation in epidemiological studies. This could pro-
vide important insights into the genetic correlations 
between the gut microbiome and AILD subtypes. Our 
results highlighted a causal effect of the abundance of 
specific bacterial features on the risk of AILD subtypes. 
To the best of our knowledge, our study is the first to 
employ the MR framework to investigate the causal 
relationship between the gut microbiome and AILD. 
Our discussion primarily focuses on the findings at the 
genus level, as such an approach is more clinically ori-
ented. Notably, the genera Anaerostipes, Clostridium_
innocuum_group, Holdemania, and Ruminiclostridium9 
played a role in protection against AIH, while Rumino-
coccaceae_NK4A214_group increased the risk of AIH. 
Ruminiclostridium5 increased the risk of PBC. Allo-
prevotella and Actinomyces protected against PSC.

Table 1 Positive IVW-MR results of causal links between gut microbiome and AILD subtypes risk

OR odds ratio, CI confidence interval

Gut microbiome SNPs OR (95% CI) P-value

AIH
 Class_Clostridia 12 0.58 (0.35 to 0.97) 0.039

 Family_Victivallaceae 12 1.42 (1.11 to 1.81) 0.005

 Genus_Anaerostipes 13 0.35 (0.17 to 0.74) 0.006

 Genus_Clostridium innocuum group 9 0.67 (0.49 to 0.93) 0.017

 Genus_Holdemania 15 0.66 (0.46 to 0.95) 0.025

 Genus_Ruminiclostridium9 9 0.39 (0.20 to 0.76) 0.006

 Genus_Ruminococcaceae NK4A214 group 13 1.64 (1.03 to 2.64) 0.039

PBC
 Class_Coriobacteriia 3 2.18 (1.30 to 3.66) 0.003

 Class_Deltaproteobacteria 4 0.52 (0.36 to 0.74)  < 0.001

 Order_Coriobacteriales 3 2.18 (1.30 to 3.66) 0.003

 Family_Coriobacteriaceae 3 2.18 (1.30 to 3.66) 0.003

 Family_Desulfovibrionaceae 3 0.53 (0.34 to 0.81) 0.003

 Genus_Ruminiclostridium5 4 1.47 (1.03 to 2.09) 0.032

PSC
 Phylum_Tenericutes 5 1.66 (1.06 to 2.61) 0.027

 Class_Mollicutes 5 1.66 (1.06 to 2.61) 0.027

 Order_Actinomycetales 3 0.59 (0.36 to 0.98) 0.042

 Family_Actinomycetaceae 3 0.60 (0.36 to 0.98) 0.042

 Family_Clostridiales vadin BB60 group 10 0.73 (0.54 to 0.98) 0.035

 Family_Oxalobacteraceae 5 1.44 (1.08 to 1.91) 0.014

 Genus_Actinomyces 4 0.62 (0.42 to 0.90) 0.012

 Genus_Alloprevotella 3 0.68 (0.50 to 0.94) 0.018
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The microbiome’s implication in the etiology of auto-
immune disorders has garnered substantial attention. 
The primary mechanism involves immune system devia-
tions mediated through microbial signaling, predomi-
nantly via the gut-liver axis [24]. While the implication 
of microbiota in the pathogenesis of disorders like Type 
1 diabetes, rheumatoid arthritis, and coeliac disease 
has been extensively explored, the literature concern-
ing AILDs remains comparatively limited [25]. However, 
evidence from animal models underscores a causal con-
nection between dysbiosis of gut microbiota or specific 
pathobionts and AILDs. For example, gnotobiotic mice 
administered with microbiota from PSC patients exhib-
ited heightened Th17 cell responses within the liver, ren-
dering them more susceptible to hepatobiliary injuries 
[26]. This suggests a potential role of gut microbiota in 
driving PSC pathogenesis. Other research indicates that 
gut pathobiont translocation, stemming from compro-
mised gut barriers, infiltrates systemic organs in hosts 
prone to autoimmunity, instigating autoimmune patho-
genesis [27].

Several population-based observational studies have 
been conducted to examine the gut microbiome in 
patients with AILD [28–30]. Comparing the results to 
observational studies, we have observed both consisten-
cies and inconsistencies in the association of bacterial 
traits with AILD. These variations may stem from dif-
ferences in genetic backgrounds and synergistic activi-
ties among populations from different regions. For 
instance, the genus_Veillonella is frequently reported to 
be enriched in AIH, PBC, and PSC in Asian cohorts [31]. 
However, our study did not find a causal effect between 
the genus_Veillonella and AILD in the MR analysis. Here, 
we will specifically examine the potential impact of two 
traits, namely genus_Clostridium_innocuum_group and 

genus_Actinomyces as they exhibited protective role for 
AIH and PSC respectively. Meanwhile, these two traits 
were previously reported to be associated with AILD, and 
the details of the MR analysis pertaining to their effects 
were provided in Table 2.

So far, there are relatively few studies about the rela-
tionship between gut microbiome and AIH. In the cur-
rent study, the genus_Clostridium_innocuum_group 
could mitigate the risk of AIH. It belongs to the order_
Clostridiales and the latter has been adapted as a bio-
marker to distinguish AIH from controls in a microbial 
diagnostic model [28]. It is also reported that the genus_
Clostridium was more abundant in all subgroups of PBC 
and PSC [32, 33], however, in our study, no causal effect 
has been revealed between the genus_Clostridium and 
these subtypes, though a group of family_Clostridiales 
exhibited protective role in our MR analysis for PSC. 
Moreover, the genus_Clostridium has been found to 
modulate the induction of T regulatory cells through the 
provision of bacterial antigens and short-chain fatty acids 
[34]. These factors influence the activity of T regulatory 
cells and contribute to the reduction of pro-inflammatory 
cytokine levels [35].

Evidence indicates an elevated relative abundance 
of genus_Actinomyces in both saliva and fecal samples 
of PSC patients [36, 37]. Our findings suggest that the 
genus_Actinomyces may play a protective role in PSC 
patients, further supporting these findings. In contrast, 
the genus_Actinomyces was observed to be lower in AIH 
patients than in healthy controls [38]. Therefore, the role 
of the genus_Actinomyces in different subtypes of AILD 
may differ, and further investigation is required.

Notably, our MR analysis revealed contrast-
ing findings regarding the genus_Ruminiclostrid-
ium in relation to AIH and PBC. The presence of 

Table 2 The causal effects of genus_Clostridium_innocuum_group and genus_Actinomyces on AILD subtypes

OR odds ratio, CI confidence interval, PQ p-value of Q test. Cochran’s Q tests heterogeneity; MR-Egger detects directional pleiotropy

Gut microbiome Methods OR (95% CI) P-value Q statistic PQ Egger intercept Pintercept

AIH
 Genus_Clostridium_
innocuum_group

MR Egger 0.63(0.18–2.26) 0.49 5.02 0.66 0.11 0.32

Weighted median 0.65(0.32–1.33) 0.24

Simple mode 0.59(0.22–1.58) 0.31

Weighted mode 0.66(0.29–1.48) 0.34

Inverse variance weighted 0.58(0.35–0.97) 0.04 8.81 0.64 -0.01 0.9

PSC
 Genus_Actinomyces MR Egger 0.79(0.17–3.59) 0.79 0.99 0.61 -0.03 0.77

Weighted median 0.66(0.42–1.03) 0.07

Simple mode 0.70(0.37–1.31) 0.34

Weighted mode 0.71(0.39–1.30) 0.35

Inverse variance weighted 0.62(0.42–0.90) 0.01 1.1 0.78 -0.03 0.77
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genus_Ruminiclostridium5 was associated with an 
increased risk of PBC, while the genus_Rumini-
clostridium9, another unidentified group within the 
genus_Ruminiclostridium, exhibited a protective effect 
with greater statistical significance in AIH. The genus_
Ruminiclostridium is known to be involved in glu-
cose and bile acid metabolism [39]. Considering that 
a subset of patients (2–19%) may exhibit overlapping 
features of both PBC and AIH, known as PBC-AIH 
overlap syndrome [40], caution should be exercised in 
interpreting these results. Further investigation is war-
ranted to elucidate the role of this microbial trait in the 
pathogenesis of these subtypes.

The investigation of alterations in the gut microbiome 
holds significant clinical implications for AILD. First, 
changes in the gut microbiome can serve as a biomarker 
for disease screening, diagnosis, and prognosis through-
out the course of AILD. The human microbiome has been 
successfully utilized to develop diagnostic biomarkers 
for various diseases, including hepatocellular carcinoma 
[41]. In the context of AILD, diagnostic models based on 
the microbiome have been established for AIH [28] and 
PSC [42], but there is currently no reported model spe-
cifically for PBC. In the future, there is a need for more 
longitudinal data on the gut microbiome to support the 
development of screening, diagnosis, and prognosis 
models for AILD.

Second, current clinical approaches for treating AILD 
are limited. Standard therapy for AIH involves a combi-
nation of prednisone and azathioprine [43], while urso-
deoxycholic acid (UDCA) is commonly used for PBC 
and PSC. However, the efficacy of UDCA in improving 
survival in PSC is uncertain, and higher doses are asso-
ciated with increased adverse events [44]. Therefore, 
understanding the causal relationship between the gut 
microbiome and the development and progression of 
AILD is of great significance in identifying new thera-
peutic targets and drugs. Probiotics have shown poten-
tial as a promising adjunctive therapeutic option in the 
management of AILD [45]. In the routine management 
of patients, incorporating food products containing 
beneficial bacterial components into their daily diet is a 
relatively easy to implement, cost-effective, and efficient 
approach. Probiotics were found to increase the popula-
tion of T regulatory cells in AIH mouse model, indicating 
their immunomodulatory role in alleviating autoimmune 
hepatitis [46]. The therapeutic potential of Lactobacillus 
in combination with prednisone for the treatment of AIH 
has been suggested from a clinical trait [47]. However, a 
randomized, placebo-controlled study of probiotics in 
patients with PSC did not show any benefits in relieving 
PSC symptoms, indicating that probiotics alone may not 
be effective in treating PSC [48].

Limitations of our research include the potential 
influence of various factors on the abundance of the 
gut microbiome, such as diet, sex, medication, and 
sampling time. To obtain more comprehensive results, 
we refrained from applying a strict false discovery rate 
correction to re-evaluate positive outcomes. Future 
research demands more rigorous experimental and 
clinical validation of our findings. Furthermore, it 
underscores the necessity for comprehensive GWAS 
tailored to Asian populations to delve into host genetic 
variants associated with the gut microbiome [49]. 
Additionally, the overlapping symptoms among differ-
ent subtypes of AILD can complicate the diagnosis pro-
cess, making it more relevant to compare results across 
subtypes rather than relying solely on subtype-specific 
conclusions to draw definitive causal inferences regard-
ing the relationship between the gut microbiome and 
AILD.

Conclusion
Our study provides evidence supporting the causal effect 
of specific bacterial features on the risk of AILD sub-
types. Specifically, we found that the genus_Clostridium_
innocuum_group displayed a significant protective effect 
against AIH, while the genus_Actinomyces showed a sig-
nificant protective effect against PSC. Further longitudi-
nal studies and clinical trials are needed to validate these 
findings and explore the potential of targeted probiotics 
for the management of AILD.
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