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Abstract 

Background Cell composition deconvolution (CCD) is a type of bioinformatic task to estimate the cell fractions 
from bulk gene expression profiles, such as RNA‑seq. Many CCD models were developed to perform linear regression 
analysis using reference gene expression signatures of distinct cell types. Reference gene expression signatures could 
be generated from cell‑specific gene expression profiles, such as scRNA‑seq. However, the batch effects and dropout 
events frequently observed across scRNA‑seq datasets have limited the performances of CCD methods.

Methods We developed a deep neural network (DNN) model, HASCAD, to predict the cell fractions of up to 15 
immune cell types. HASCAD was trained using the bulk RNA‑seq simulated from three scRNA‑seq datasets that have 
been normalized by using a Harmony‑Symphony based strategy. Mean square error and Pearson correlation coef‑
ficient were used to compare the performance of HASCAD with those of other widely used CCD methods. Two types 
of datasets, including a set of simulated bulk RNA‑seq, and three human PBMC RNA‑seq datasets, were arranged 
to conduct the benchmarks.

Results HASCAD is useful for the investigation of the impacts of immune cell heterogeneity on the therapeutic 
effects of immune checkpoint inhibitors, since the target cell types include the ones known to play a role in anti‑
tumor immunity, such as three subtypes of CD8 T cells and three subtypes of CD4 T cells. We found that the removal 
of batch effects in the reference scRNA‑seq datasets could benefit the task of CCD. Our benchmarks showed that HAS‑
CAD is more suitable for analyzing bulk RNA‑seq data, compared with the two widely used CCD methods, CIBER‑
SORTx and quanTIseq. We applied HASCAD to analyze the liver cancer samples of TCGA‑LIHC, and found that there 
were significant associations of the predicted abundance of Treg and effector CD8 T cell with patients’ overall survival.

Conclusion HASCAD could predict the cell composition of the PBMC bulk RNA‑seq and classify the cell type 
from pure bulk RNA‑seq. The model of HASCAD is available at https:// github. com/ holid ay01/ HASCAD.
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Introduction
RNA sequencing (RNA-seq) is a next-generation 
sequencing-based technology to target whole transcrip-
tome of a sample [1]. This technology has been widely 
used in large-scale disease studies, since it enables a sen-
sitive detection of the global gene expression signatures 
of samples. However, the samples used for the RNA-seq 
analysis are usually prepared in the form of bulk tissues 
which might consist of various types of cells. Such a bulk-
tissue RNA-seq approach measures only the average gene 
expression profiles (GEP) of various cell types contained 
in a tissue.

Notably, certain types of immune cells infiltrating in 
the tumor microenvironment (TME) may actively inter-
act with cancer cells and thus promote malignant phe-
notypes such as enhancing survival of cancer cells and 
supporting their metastasis [2, 3]. The abundance and 
density of these tumor-infiltrating immune cells (TIICs) 
have been implicated in patient survival and anti-cancer 
treatment efficacy [4]. For example, macrophage cells 
are able to be polarized into classically activated mac-
rophages (M1), or alternatively, they are able to become 
activated macrophages (M2). M2 cells promote the 
growth of cancer cells, while M1 cells inhibit the differ-
entiation of cancer cells [5]. A few studies reported that 
a high M1/M2 ratio is associated with better survival 
of cancer patients [6, 7]. In addition, CD8 T cell and its 
functional subsets have been highlighted in many stud-
ies due to their roles in cancer immunotherapy [8]. A 
higher density and a greater abundance of CD8 T cells 
in the tumor microenvironment (TME) have been asso-
ciated with a better prognosis for cancer patients [9]. In 
addition, Tu et  al. analyzed the  ICOS+  FOXP3+ regula-
tory T cells (Tregs) in 57 HCC patients by immune-his-
tochemistry (IHC), and reported that the infiltration of 
 ICOS+  FOXP3+ Tregs showed a negative correlation with 
patient survival [3].

Thus, to further investigate the biological roles played 
by various immune cells in complex tissues, a few com-
putational methods have been developed to perform cell 
composition deconvolution (CCD) [10–15]. CCD meth-
ods that apply regression-based deconvolution need a 
set of pre-compiled reference GEP (refGEP) composed 
of cell-specific gene expression signatures. The refGEP 
could be derived from whole transcriptome datasets, 
including microarray, RNA-seq, and single-cell RNA-
seq (scRNA-seq). Compared to other sources of refer-
ence data, scRNA-seq is likely to provide the specific 
gene expression signature of more diverse cell types, and 
thus scRNA-seq has become one of the favorite choices 
for buiding refGEP. Several CCD methods have reported 
high deconvolution accuracy by using scRNA-seq derived 
refGEP [13–16]. However, there are usually significant 

batch effects across scRNA-seq datasets derived from 
different studies, and thus directly pooling multiple 
scRNA-seq datasets to build refGEP may result in poor 
performance in CCD tasks.

To mitigate the influence caused by the technical biases 
in the data, quite a few methods, such as DWLS, CIB-
ERSORTx, and MuSic, have chosen to build their ref-
GEP with only a single scRNA-seq dataset, although this 
approach might limit the performance of CCD. Evidence 
suggests that leveraging heterogeneity across multiple 
reference datasets may reduce technical and biological 
biases in the data and thus increase the accuracy of CCD 
[17]. Therefore, SCDC proposed an ENSEMBLE decon-
volution approach to integrate CCD results from differ-
ent scRNA-seq datasets, which might implicitly reduce 
the confounding caused by cross-sample batch effects.

On the other hand, deep neural network (DNN)-
based approaches, such as Scaden [12], have recently 
been applied to perform the task of CCD. It was asserted 
that hidden layers of DNN might represent a high-order 
encoding of the gene expression signatures of distinct cell 
types, which might be more robust to input noise and 
technical bias. The work of Scaden suggests that a deep 
learning-based CCD method could be trained with a 
huge set of simulated bulk RNA-seq data, which is pre-
pared by subsampling and subsequently merging of cells 
obtained from single-cell RNA-seq datasets [12]. None-
theless, in terms of analyzing complex tissues, the appli-
cation of Scaden is restricted since it could predict the 
fractions of no more than 10 cell types [12]. Therefore, 
this study aims to create a DNN-based CCD method that 
is able to predict the fractions of more than 10 types of 
immune cells in the bulk RNA-seq samples.

In addition, we argue that the preparation of the huge 
training set should take the removal of batch effects 
across different reference datasets into consideration. 
Above all, training data should be derived from multi-
ple sources and each may contain within-sample tech-
nical and biological biases. Although SCDC appears to 
address the issue of batch effects by using an ENSEMBLE 
approach, their results imply that the best performance 
of SCDC can be achieved only when the reference data 
and the bulk samples were derived from the same source. 
The ENSEMBLE approach adopted by SCDC did not 
really remove batch effects in the reference dataset.

Batch effects pose a great challenge to the analysis of 
high-throughput datasets, since such technical variations 
may confound the biological variations of interest in the 
down-stream statistical analysis. Tran et  al. assessed 14 
batch-effect correction methods for scRNA-seq data, 
and they recommend that “Harmony” is the first choice 
to try [18]. Harmony is designed to integrate scRNA-seq 
datasets derived from different technologies and multiple 
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species [19]. Harmony projects the gene expression into 
a low-dimension embedding, and then iteratively adjusts 
the embedding in order to remove batch-specific varia-
tions, and thus enables the clustering to better corre-
spond to distinct cell types. Hence, we used Harmony to 
preprocess the scRNA-seq datasets that were used to cre-
ate the training set for our DNN model, HASCAD.

Hence in this study, Harmony, an algorithm that has 
been designed to normalize the scRNA-seq data, was 
used to remove the batch bias in the preparation of the 
training set [19]. This study builds a DNN-based CCD 
model that is trained by using the simulated gene sig-
nature matrix derived from the Harmony-normalized 
scRNA-seq data.

Materials and methods
The workflow
This study used the harmonized expression data of 
scRAN-seq to develop a CCD model, HASCAD (HAr-
monized ScRNA-seq Cell Assisted cell Deconvolution 
model). Our model is a deep neural network (DNN) 
model, which is inspired by the work of Scaden. Nota-
bly, our CCD model is designed to predict from the bulk 
RNA-seq data the fractions of 15 cell types (Table  1), 
including activated dendritic cell (aDC), plasmacytoid 
dendritic cell (pDC), memory and naïve B cells (bmem 
and bnaive), memory and naïve CD4 T cells (cd4mem 
and cd4naive), regulatory T cells (treg), effector, memory, 
and naïve CD8 T cells (cd8eff, cd8mem and cd8naive), 
hematopoietic stem cell (HSC), megakaryocyte (MK), 
CD14 monocyte (mono14), CD16 monocyte (mono16), 
and nature killer cells (NK).

The workflow of the build of our model is illustrated in 
Fig.  1. To start with, in order to prepare a huge dataset 
to train our DNN model, public scRNA-seq datasets of 
peripheral blood mononuclear cell (PBMC) that could 
provide the cell type-specific GEPs of the aforementioned 
15 cell types were obtained. These datasets were used to 
simulate bulk RNA-seq samples, with each consisting of 
known fractions of various cell types.

Next, to integrate the GEPs derived from different 
scRNA-seq datasets, the expression values were preproc-
essed in order to remove batch-specific systematic vari-
ations. We chose to use Harmony, which is an algorithm 
designed to perform cross-sample normalization and 
batch effect removal in scRNA-seq datasets [19].

We carried out the procedures of Harmony to perform 
a PCA-based dimension reduction of the input data, 
and then the low-dimension embedding was iteratively 
adjusted [19]. The iteration was converged when differ-
ent cell types were grouped separately, even though cells 
of the same type were derived from different batches 
(Fig. 1, the output of Harmony). Then the low-dimension 
embeddings in which batch variations have been cleaned 
were transformed back to cell-specific GEPs (Fig.  1, the 
matrix of genes × samples output by Harmony). These 
GEPs of single cells were used to simulate the training 
data, with the cell fractions being randomly assigned.

Finally, in terms of the cell fraction prediction of new 
bulk RNA-seq data, the expression values will be pre-
processed by using the functions provided by Symphony, 
which is an extension tool of Harmony that is designed to 
integrate new datasets into reference atlases [20]. Hence, 
HASCAD predicts the cell composition in the new bulk 
RNA-seq data whose batch effects are removed by using 
Symphony (Fig. 1, the matrix of genes × samples output 
by Symphony).

Preprocessing and normalization of scRNA‑seq datasets
In order to prepare the training data, three PBMC 
scRNA-seq datasets, PBMC6K (3′ v1), PBMC8K (3′ v2), 
and PBMC5GEX (5′), were obtained from the GitHub 
repository of Symphony. These data were initially trans-
formed by  log2(CP10K + 1) using R package Seurat [19, 
20]. CP10K is the count per million (CPM), whereas 
 log2(CP10K + 1) is a standard transformation used in 
scRNA-seq data analysis [19]. The datasets PBMC8K and 
PBMC6K were generated by using Chromium Single Cell 
3′ v2 chemistry and Chromium Single Cell 3′ v1 chem-
istry, respectively [20]. Chromium Single Cell 5′ paired-
end chemistry was used to generate PBMC5GEX [18]. 
As these three datasets were generated by different assay 
chemistry, correction of the batch effects is necessary.

Before carrying out the Harmony-based normalization, 
variance stabilizing transform (VST) was used to select the 

Table 1 The size of samples of each immune cell type for three 
scRNA‑seq datasets

PBMC6K (3’ v1) PBMC8K (3’ v2) PBMC5GEX (5’)

aDC 76 210 124

Memory B 197 450 429

Naïve B 386 774 747

Memory CD4 T 600 818 868

Naïve CD4 T 983 1436 1109

Effector CD8 T 553 922 551

Memory CD8 T 55 161 240

Naïve CD8 T 299 899 254

HSC 21 20 23

MK 22 49 49

CD14 monocyte 857 1824 2248

CD16 monocyte 332 225 330

NK 296 323 304

pDC 11 68 74

Treg 82 97 119
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genes and scale the gene expression for a dataset, which is 
the default setting of Harmony. Then, the functions imple-
mented in Harmony were used to remove the batch-spe-
cific variations from the embedding, �VT [19, 20]. U is the 
PCA loading, the coefficients/weights of the liner combina-
tions. For batch variation removal, the corrected embed-
ding Z’ would be calculated by iterating between the step 
of a maximum diversity clustering and the step of a mixture 

model based linear batch correction. The convolution of U 
with Z’ was taken as the corrected gene expression profiles 
of scRNA-seq, which can then be used for the downstream 
cross-sample analyses.

M = U�VT

Z = �VT

Fig. 1 The workflow of HASCAD
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To allow an integrated analysis of new scRNA-seq 
datasets with the batch effect-removed reference 
scRNA-seq, we used the query-projection strategy 
that was provided by Symphony [20]. A non-refer-
ence scRNA-seq set obtained from other studies was 
referred to as a query, and the functions of Symphony 
[20] could project the query data to the PC (principal 
component) space of the reference scRNA-seq data. 
The query embeddings ( Zq ) was calculated, and thus 
the query gene expression data could be projected as 
UZq . Identically, Symphony output UZq′ , which was 
the corrected query gene expression profiles of RNA-
seq. Hence, the projected gene expression profiles of 
the query scRNA-seq data could be integratedly ana-
lyzed with the gene expression profiles of the reference 
scRNA-seq data, and thus we used the harmonized 
datasets in the training and validation of the DNN of 
HASCAD (Table 2).

To assess the benefit of using Harmony-Symphony 
batch-corrected data (H–S corrected data) in the training 
of our CCD model, we also prepared non-harmonized 
scRNA-seq data. Non-harmonized data were pre-pro-
cessed using a log transformation of the total count per-
million (TPM) as follows:

On the other hand, we also assessed if the Harmony-
Symphony batch-corrected data could somehow be ana-
lyzed by other CCD methods, in a way to improve the 
performances. Since input data required for running 
CIBERSORTx and quanTIseq must be TPM values, we 
prepared the H–S corrected scRNA-seq data and trans-
formed them back to TPM-like values (Table 3).

Log2(TPM gene expression+ 1)

The architecture of our deep learning model
The architecture of HASCAD is an ensemble of three par-
allel DNN modules (Fig. 2), which is similar to that used by 
Scaden [12]. Each module consists of three hidden layers 
in which the number of nodes is assigned between 32 and 
1024. The node numbers for the first layers are 1024, 512, 
and 256, respectively. In the output layer, a softmax func-
tion is used to turn the sum of the predicted cell fractions 
to 1, making the outputs as non-negative values. The pre-
dicted cell fractions for each sample are the averaged values 
of the outputs from the three DNN modules. The optimi-
zation method is Adam, with a learning rate 0.0001 and a 
batch size 64. Unlike Scaden, we chose to use the loss func-
tions composed of mean square error (MSE) and Pearson’s 
correlation coefficient (PCC). The model training opted 
early stop after 20 epochs by evaluating validation data.

The loss function used in the training of HASCAD was 
defined as follows:

where s refers to each cell type; truths refers to the 
ground-truth cell proportion of cell s; r in PCC loss refers 
to Pearson’s correlation coefficient.

The preparation of the simulated bulk RNA‑seq data 
for model training
We prepared the bulk RNA-seq data by using the Har-
mony-Symphony corrected scRNA-seq profiles. By fol-
lowing the strategy that has been used by Scaden, we 
simulated bulk RNA-seq data by combining the genes 
expression values from multiple single cells. In the 
simulated bulk RNA-seq data, Sn is a vector of n1, n2, 
…, where each element corresponds to the cell fraction 
assigned to each cell type. The cell fractions for various 
cell types in the samples are randomly chosen, and the 
gene expression values of the simulated bulk RNA-seq 
data correspond to the mean values of gene expression 
obtained from these samples. The ground truth Sn was 
normalized to sum to one:

argmin HASCAD loss function = MSE loss + PCC loss

MSE loss =

s
1 truths − predicts

2

s

PCC loss = 1− r(truth, predict)

Sn = [n1, n2, . . . ]

Ground truth =
Sn

�Sn

Table 2 Pre‑processing of real bulk RNA‑seq datasets as the 
input for HASCAD

HASCAD

No H–S correction Log2‑transformed TPM

H–S correction TPM corrected 
by the H–S approach

Table 3 Pre‑processing of simulated bulk RNA‑seq data as the 
input for CIBERSORTx and quanTIseq

CIBERSORTx quanTIseq

No H–S correction TPM TPM

H–S correction TPM corrected by the H–S approach, and then 
transformed again back to TPM‑like values
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Benchmarks to assess the performance of HASCAD 
and other CCD methods
In the first benchmark we used the simulated gene expres-
sion profiles based on scRNA-seq data. ScRNA-seq gene 
expression profiles were used to generate in silico bulk 
RNA-seq data. To assess if Harmony-Symphony correc-
tion (H–S correction) could improve the performance of 
CCD, the model predicted the cell fractions in H–S cor-
rected gene expression profiles and in non-H–S corrected 
gene expression profiles, respectively. Two scRNA-seq 
datasets were used to generate the training and validation 
data, and another dataset was used to make testing data.

The second benchmark used a set of bulk RNA-seq 
data of pure type immune cells retrieved from NCBI 
GEO (accession number GSE141498) [21]. There are 
the four types of immune cells in this dataset, includ-
ing B cells, CD4 T cells, dendritic cells, and monocytes. 
The gene expression values in this dataset are provided 
as TPM counts. This assessment is to evaluate if HAS-
CAD could be used to predict the cell compositions of 
the bulk RNA-seq sets consisting of pure-type immune 

cells. As a comparison, CIBERSORTx and quanTISeq 
were assessed by using the same datasets.

Next, HASCAD was assessed by using human PBMC 
RNA-seq dataset with experimentally estimated cell 
fractions. The dataset was GSE107572, downloaded 
from NCBI GEO [11]. The raw read counts of the RNA-
seq expression were transformed by transcripts-per-
millions (TPM) normalization:

where exp denotes raw count reads mapped to transcript.
To apply HASCAD to predict cell fractions, the gene 

expression values for input were further transformed 
by using Harmony-Symphony correction. The perfor-
mance metrics is the mean squared error (MSE) between 
the ground-truths and the predicted cell fractions. Two 
widely used CCD methods, CIBERSORTx and quan-
TIseq, were also assessed by using the original TPM val-
ues provided in the dataset, as suggested by the manuals 
of these two methods.

TPM =
exp

∑

exp
× 10

6
,

Fig. 2 Architecture of the HASCAD model
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Preprocessing of the bulk gene expression profiles 
of TCGA‑LIHC samples
To predict the cell composition of HCC samples and to 
perform survival analysis of the patients, 414 RNA-seq 
samples of the Cancer Genome Atlas Liver Hepatocel-
lular Carcinoma (TCGA-LIHC) dataset [22] were down-
loaded from NCI Genomic Data Commons (NCI GDC, 
https:// gdc. cancer. gov/). R package biomaRt was used to 
map the Ensembl transcript ID to HGNC gene symbols, 
and the HTseq-count values were transformed using 
TPM normalization. By following the H–S correction 
procedure as described in Sect.  2.2, the TCGA-LIHC 
bulk RNA-seq data were deconvolved using HASCAD by 
adopting the three PBMC scRNA-seq datasets as the ref-
erence data. Kaplan–Meier plotter was utilized to inves-
tigate the association between immune cell abundance 
and the prognosis of LIHC patients. The data used in 
the survival analysis included the overall survival time of 
patients, and the predicted high/low abundance of vari-
ous immune cell types.

Results
Training the HASCAD model
Preparation of the training data
Three scRNA-seq datasets, PBMC6K PBMC8K, and 
PBMC5GEX, were used to prepare the training data, 
and the numbers of cells for each dataset is provided 
in Table  1. By using the variance stabilizing transform 
(VST) method, a set of 2371 non-redundant genes 
with the variability more stable across a wide range of 
expression values were selected for the model training. 

The expression values of these genes were then nor-
malized by using the functions of Harmony in order to 
remove batch-specific variations. To assess the impact 
of the normalization, UMAP plots were generated to 
contrast the clustering of cells across the three scRNA-
seq datasets for model training, by using the non-cor-
rected expression values and by using the corrected 
expression values (Fig.  3). The plot using the scRNA-
seq data without pre-processing using the Harmony-
Symphony functions is referred to as non-harmonized 
(Fig. 3A), whereas the plot of the scRNA-seq data pre-
processed using the Harmony-Symphony approach is 
referred to as Harmonized (Fig. 3B). It can be seen that 
the normalization by Harmony is able to remove the 
batch variations and thus makes the clustering of cells 
more coherent to cell types. When the scRNA-seq data 
have not been normalized, the same types of cells were 
dispersed in different clusters (Fig. 3A), where the clus-
ter separation appears to reveal the distinct batches of 
the cells. Conversely, after the scRNA-seq data being 
normalized by Harmony, cells derived from different 
batches were clustered largely consistent with their 
respective cell types (Fig.  3B). For example, memory 
and naïve B cells were clustered; mono14 cells  (CD14+) 
and mono16  (CD16+) cells were clustered. Naïve CD8 
T cells and memory CD8 T cells were clustered. Hence, 
we show that the Harmony-Symphony approach used 
in this study could remove to a certain extent the batch 
variations across scRNA-seq datasets, and thus we took 
the H–S corrected scRNA-seq data to prepare for the 
training and validation of our HASCAD model.

Fig. 3 UMAP plots of (A) non‑harmonized scRNA‑seq data, (B) harmonized scRNA‑seq data

https://gdc.cancer.gov/
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Training of HASCAD model and the initial assessment
Thus, with the pre-processed scRNA-seq data, it was 
ready to train our HASCAD. To assess if the normaliza-
tion of scRNA-seq data by using the Harmony-Symphony 
strategy can truly benefit the training of our HASCAD 
model, this study compared the performance metrics of 
the model trained by using H–S corrected scRNA-seq 
data, with that of the model that was trained by using the 
non-corrected scRNA-seq data. In the following text, the 
previous type of models will be referred to as Harmony-
corrected model, and the latter ones will be referred to 
as non-Harmony-corrected models. A leave-one-dataset-
out cross-validation was carried out as described in [12]. 
The Harmony-corrected models were trained by using 
the simulated bulk RNA-seq data that were generated 
based on either two of the three PBMC scRNA-seq data-
sets, and the models were evaluated by using the simu-
lated bulk RNA-seq data that were generated from the 
remaining one PBMC scRNA-seq dataset.

It was noted that all of the HASCAD models converged 
in approximately 80 epochs and no significant overfit-
ting was noticed (Fig. 4). As what has been expected, the 
Harmony-corrected models showed better performances 
than the non-Harmony corrected models. In both the 
training and testing of the models, the result showed 
that there were higher Pearson’s correlation coefficients 
(PCCs) and lower losses in the training of Harmony-cor-
rected models, compared to those of non-Harmony-cor-
rected model (Fig. 4).

In addition, a 10-fold cross validation was conducted to 
further assess the performance of the HASCAD models. 
The result shows that, for the Harmony-corrected mod-
els, the Pearson’s correlation coefficients (PCCs) between 
the predicted cell fractions and the ground-truth were 
over 0.79, whereas the best PCC of all non-Harmony-
corrected models was 0.63 (Fig.  5). This result suggests 
that the batch variation in the training data was likely to 
cause overfitting in model training. By contrast, the mod-
els trained by using the simulated bulk RNA-seq data 
based on the batch-variation removed scRNA-seq data 
were more robust.

In addition, we also assessed if CIBERSORTx and 
quanTIseq could predict the cell fractions in the simu-
lated bulk RNA-seq data that were generated using the 
batch variation-removed scRNA-seq datasets. To follow 
the usage suggestions of these two tools, we prepared the 
input data by transforming the simulated data of bulk 
RNA-seq to TPM values. It turns out that by using CIB-
ERSORTx and quanTIseq the PCCs of the predictions 
with the ground truths were better when the simulated 
bulk RNA-seq data were derived from non H–S cor-
rected scRNA-seq data (Fig.  6A for the CIBERSORTx 
predictions, and Fig. 6B for the quanTIseq predictions).

Benchmarks
The benchmark using the RNA‑seq of pure‑type immune 
cells
To compare the performance of HASCAD with those 
of other CCD methods, we started by using the bulk 
RNA-seq data of pure-type immune cells. NCBI GEO 
GSE141498 was used in this benchmark, and the data-
set includes 49 samples of B cells, 61 samples of DC 
cells, and 50 samples of monocytes. However, one con-
sideration is that there is no information about the frac-
tions of immune cell subtypes in this dataset. Besides, 
the cell subtypes that can be analyzed by different CCD 
methods are not perfectly the same. Therefore, we cre-
ated the mapping between the ground-truth cell types 
in GSE141498 to the immune cell types that could be 
predicted by the CCD methods (Table  4). For exam-
ple, HASCAD can predict the cell fractions of naïve and 
memory B cells, and their sum was regarded as the pre-
diction fraction for B cells.

To estimate the accuracy of different CCD methods 
when analyzing the RNA-seq data consisting of pure-type 
immune cells, we took the highest predicted cell fraction 
to determine the major immune cell type. For example, in 
analyzing such a sample consisting of only one cell type, 
if the predicted fraction of cell type X is higher than those 
of the other cell types Y’s, then the major cell type of this 
sample would be assigned with X.

The result of the benchmark analyzing the pure-type 
immune cell samples is summarized in Table 5. It is noted 
that HASCAD achieved 100% accuracy for the four cell 
types in this benchmark. By contrast, CIBERSORTx did 
not perform well on the pure-type immune cell samples 
of DC cells; many pure DC cell samples were predicted 
as monocytes, and some pure DC cell samples were even 
predicted as CD8 T cells, B cells, NK cells, and Mas cells. 
QuanTIseq performed well on the pure-type immune cell 
samples of monocytes and CD4 T cells, but its accuracies 
were lowered to 45% and 52% for the cases of B cells and 
DC cells, respectively. Therefore, HASCAD outperforms 
CIBERSORTx and quanTIseq in the cell fraction predic-
tion of RNA-seq samples, each consisting of only a pure 
type of immune cells.

The benchmark using human bulk RNA‑seq datasets
Before we assessed the performances of HASCAD 
and other two CCD methods by using the human 
PBMC RNA-seq dataset, NCBI GEO GSE107572, we 
first evaluated if a pre-processing of the input data by 
applying the Harmony-Symphony correction might 
benefit the task of CCD. To prepare the reference data 
to analyze this PBMC RNAseq set, VST was used to 
select genes shared by the three PBMC scRNA-seq 
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datasets and GSE107572. Thus, a set of 1,158 VST fil-
tered genes was used in this benchmark of HASCAD 
(Additional file 1: Figure S1).

Interestingly, our result suggests that HASCAD has a 
better performance when the input data has been nor-
malized by applying the H–S correction approach (Fig. 7). 

When the input data has been pre-processed, the mean 
PCC of HASCAD was around 0.8 (Fig. 7A, "Symphony"), 
higher than that (mean PCC =  ~ 0.6) of the model in 
analyzing the non H–S corrected input data (Fig.  7A, 
"TPM"). In addition, there were a higher mean PCC and a 
lower MSE when the HASCAD model analyzed the H–S 

Fig. 4 The curves of Pearson’s correlation coefficients and losses in the training of the HASCAD models. Each model was trained by using a set 
of 8000 simulated RNA‑seq samples, and was validated by using another set of 8000 simulated RNA‑seq samples. (A) and (B): The training data were 
simulated from the 3’v1 (threepv1) and 3’v2 (threepfresh) sets. The validation data were simulated from the 5’(fivePrime) set. (C) and (D): The training 
data were simulated from the 3’v1 (threepv1) and 5’ (fivePrime) sets. The validation data were simulated from the 3’v2 (threepfresh) set. (E) and (F): 
The training data were simulated from the 3’v2 (threepfresh) and 5’ (fivePrime) sets. The validation data were simulated from the 3’v1 (threepv1) set. 
In (A), (C), and (E), the scRNA‑seq data were normalized by harmony. In (B), (D), and (F), the scRNA‑seq data were not normalized by Harmony. The 
training was stopped when the model was not improved in loss function for the evaluation after 20 epochs
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Fig. 5 The Pearson’s correlation coefficients between the predicted cell fractions and the ground truths, using a tenfold cross validation approach

Fig. 6 The Pearson’s correlation coefficients between the predicted cell fractions and the ground truths from gene expression with/without 
Harmony‑Symphony correction, which were analyzed (A) CIBEROSRTx and (B) quanTIseq
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corrected input data (Fig.  7B, "With Symphony" versus 
"Without Symphony").

In addition, HASCAD model is an ensemble of three 
subnetworks, namely M1, M2, and M3 (Fig. 2), where the 
three sets of output values were averaged to give the pre-
dicted cell fractions. It was noted that the performance 

of each individual subnetwork was more varied than 
the ensemble model, and there were also higher MSEs 
and lower PCCs (Fig.  7B), no matter whether the input 
data has been normalized by using the H–S correc-
tion approach. This result suggests that the usage of the 
ensemble of the three subnetworks can improve the 
robustness of HASCAD to predict immune cell fractions 
in bulk RNA-seq samples.

In the final benchmark, we compared the performance 
of HASCAD with those of two widely used models, 
CIBERSORTx and quanTIseq, in predicting the frac-
tions of immune cells of real tissue samples. Hence, 
nine bulk RNA-seq datasets of human PBMC samples, 
GSM2871599-GSM2871607, were downloaded from 
NCBI GEO. The fractions of seven cell types in these 
datasets have been experimentally determined, and 
the cell-type mapping between the predictions and the 
ground-truth is listed in Table 6.

From the distributions of Pearson’s correlation coef-
ficients (Fig.  8A), the correlation between the ground 
truth and predictions made by HASCAD might be bet-
ter, though the p-value was not significant due to the 
small sample size. As mean square error (MSE) was 
used as the performance metrics, it is obvious that the 
performance of CIBERSORTx was worse than those of 
HASCAD and quanTIseq (Fig. 8B). The result suggests 
that the performance of HASCAD is at least compara-
ble to that of quanTIseq, and HASCAD is able to pre-
dict the cell fractions of six additional cell types.

In addition, in three out of the nine samples the PCCs 
of CIBERSORTx predictions were lower than 0.7, and 
the lowest value was only 0.24. By contrast, by using 

Table 4 Mapping the ground‑truth cell types in GSE141498 to 
the immune cell types predicted by different CCD methods

HASCAD CIBERSORTx quanTIseq

B cells bnaive
bmem

B.cells.naive
B.cells.memory

B.cells

CD4 T cells cd4mem
cd4naive
treg

T.cells.CD4.naive
T.cells.CD4.memory.rest‑
ing T.cells.CD4.memory.
activated
T.cells.regulatory..Tregs

T.cells.CD4
Tregs

Dendritic cells pdc
adc

Dendritic.cells.resting
Dendritic.cells.activated

Dendritic.cells

Monocytes mono14
mono16

monocytes Monocytes

Table 5 The accuracies of HASCAD, CIBERSORTx, and quanTIseq 
in analyzing the pure‑type immune cell samples in NCBI GEO 
GSE141498

B cells CD4 T cells Dendritic cells Monocytes

HASCAD 100% 100% 100% 100%

CIBERSORTx 98% 96% 0% 98%

quanTIseq 45% 100% 52% 96%

Fig. 7 The performance of HASCAD assessed by using Symphony‑corrected and non‑Symphony corrected (TPM) data as the input to predict cell 
fractions. Pearson’s correlation coefficients and mean squared errors between the predicted cell fractions and the ground truths were calculated. 
M1, M2, and M3 refer to the three subnetworks in the ensemble architecture of HASCAD model
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HASCAD, all of the PCCs of the HASCAD predictions 
were higher than 0.6 (Additional file  1: Figure S2—Fig-
ure S4). The standard deviations (SDs) of the prediction-
ground truth differences for HASCAD, CIBERSORTx, 
and quanTIseq were 0.07, 0.12, and 0.08, respectively, 
and the mean and SD values for each cell type are pre-
sented in Bland–Altman plots (BA plots, Additional 
file 1: Figure S5—Figure S7).

By using the same datasets of the nine human PBMC 
bulk RNA-seq samples, we additionally assessed xCell 
(Additional file  1: Table  S1), which is a CCD method 
based on ssGSEA. It turns out that all of the PCCs 
of xCell predictions were lower than 0.23, and some 
were even negative values (Additional file  1: Figure S8), 

suggesting that xCell is unsuitable for the deconvolution 
of these human PBMC bulk RNA-seq samples.

Survival analysis of TCGA-LIHC samples with HAS-
CAD-predicted high/low immune cell abundances.

By applying our HASCAD model trained on the H–S 
normalized data of three PBMC scRNA-seq datasets, 
we investigated the association of cancer patients’ sur-
vival with the predicted immune cell abundance. The 
gene expression data of the bulk RNA-seq of 364 TCGA-
LIHC patients and 50 normal tissue samples, and their 
clinical data were downloaded from NCI Genomic Data 
Commons (NCI GDC, https:// gdc. cancer. gov/). Using 
the HASCAD predicted cell proportions as the features, 
the distribution of the samples was visualized by PCA. 

Table 6 Cell‑type mapping of CIBERSORTx, quanTIseq, and HASCAD to the cell types investigated in GSE107572

X: no this cell type in the resource

GSE107572 CIBERSORTx HASCAD quanTIseq

NK NK cells resting
NK cells activated

NK NK.cell

B cell B.vaive bnaive, bmem B.cells

DC Dendritic cells resting Dendritic cells activated pdc, adc Dendritic.cells

monocyte monocyte mono14, mono16 Monocytes

CD8 T.cells.CD8 dd8naive, cd8eff, cd8mem T.cells.CD8

CD4 T.cells.CD4.naïve c4naive, cd4mem T.cells.CD4

Treg T.cells.regulatory..Tregs treg Tregs

neutrophils X X X

X X hsc, mk X

Fig. 8 (A) The Pearson’s correlation coefficients and (B) The mean square errors (MSE) of the predicted cell fractions made by CIBERSORTx, HASCAD, 
and quanTIseq, by analyzing the nine human PBMC RNA‑seq datasets. A bigger blackish dot is to indicate a MSE greater than 0.02

https://gdc.cancer.gov/
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Clearly there are two distinct clusters, the normal cluster 
and the tumor cluster, suggesting that the immune cell 
compositions of tumor samples are very different from 
those of normal samples (Fig. 9).

After excluding the ones that do not have the records 
of overall survival status, 359 bulk tumor RNA-seq sam-
ples remained for the survival analysis (Additional file 1: 
Figure S10). The results of the survival analysis revealed 
that there is a positive association of the HASCAD-pre-
dicted abundance of effector memory CD8 T cells and 
memory CD8 T cells with TCGA-LIHC patients’ prog-
nosis (Additional file 1: Figure S11, S12). On the other 
hand, there is a negative association of the HASCAD-
predicted abundance of naïve CD8 T cells and hemat-
opoietic stem cells with patients’ prognosis (Additional 
file 1: Figure S13, S14).

Effector CD8 T cells is essential in the anti-tumor 
immune response, whereas regulatory T cells (Treg) 
are involved in tumor development and progression by 
inhibiting antitumor immunity [23]. To explore the asso-
ciation of the abundance of these two cell types with 
TCGA-LIHC patients’ prognosis, we divided the patients 
into four groups: 1) High effector CD8 T cells-High Treg; 
2) High effector CD8 T cells-Low Treg; 3) Low effector 
CD8 T cells-High Treg; 4) Low effector CD8 T cells-Low 
Treg. The result of the log rank test revealed that there 

was significant difference in the overall survival time of 
the four patient groups (p value = 0.019, Fig.  10). The 
group that has the best overall survival time is High effec-
tor CD8 T cells-low Treg (Fig. 10, the green line), and the 
group with the worse survival is “Low effector CD8 T 
cells-High Treg” (Fig. 10, the blue line).

Discussion
HASCAD is a cell composition deconvolution (CCD) 
method we designed to predict the immune cell fractions 
in bulk RNA-seq samples. HASCAD has been imple-
mented by using a deep neural network architecture, 
and it has been trained by using the reference cell-spe-
cific gene expression signatures derived from scRNA-seq 
data. Unlike regression-based CCD methods that have 
assumed a linear relation between bulk gene expression 
profiles and the fractions of various cell types, HASCAD 
takes advantage of the non-linear property of neural net-
work, which might improve the robustness for the pre-
diction of immune cell fractions. Compared to a previous 
DNN model designed for CCD, Scaden, which could 
analyze only five immune cell types, HASCAD could pre-
dict the cell fractions of as many as 15 immune cell types. 
To reduce the overfitting that might be caused by using 
scRNA-seq data containing batch variations, the training 
and validation data for optimizing HASCAD have been 
prepared by applying a batch-effect removal approach, 
the Harmony-Symphony correction. We note that by 
using the training data in which the batch variations have 
been removed to a certain extent, HASCAD is likely to 
have robust performance. Besides, the performance of 
HASCAD might be further improved if the input RNA-
seq data could be pre-processed by using the Harmony-
Symphony correction strategy.

In the benchmark using human PBMC RNA-seq data-
sets, the performance of HASCAD is similar to that of 
quanTIseq, better than CIBERSORTx. HASCAD is supe-
rior to quanTIseq in that it can prediction the fractions 
of more cell types. With the fast and wide application 
of the scRNA-seq technology in various studies, it can 
be expected that there will be more scRNA-seq datasets 
that can be used to optimize CCD methods in the future. 
HASCAD, a DNN based method, could be readily tuned 
by using new datasets.

On the other hand, we notice that analyzing the RNA-
seq sample with a highly skewed distribution of cell 
fractions can be very challenging to CCD methods. For 
example, HASCAD usually gave a predicted cell fraction 
very deviated from 100% when analyzing the RNA-seq 
samples consisting of only the pure-type immune cells. 
Other two CCD methods, CIBERSORTx and quanTIseq 
also have such a limitation. We therefore adopted an 
alternative approach to assess the three methods, where 

Fig. 9 A PCA plot showing distinct clustering of 50 normal samples 
and 364 tumor samples of TCGA‑LIHC, using the cell compositions 
predicted by HASCAD as the features
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the cell type predicted to have the highest fraction value 
was assigned as the major cell type of such pure-type 
RNA-seq samples. In the 209 pure-type RNA-seq sam-
ples, HASCAD is able to correctly identify the major 
type of immune cells, whereas CIBERSORTx and quan-
TIseq does not perform well in the cases of at least one 
cell types.

We used HASCAD to estimate the immune cell com-
positions in TAGA-LIHC samples, and performed sur-
vival analysis to explore the association between immune 
cell abundance and patients’ prognosis. Interestingly, 
the log-rank tests revealed significant associations with 
patients’ overall survival in the immune-cell abundance 
groups of hematopoietic stem cells (HSC) and three sub-
types of CD8 T cells (Additional file 1: Figure S11-S14). 
Our finding is consistent with those of previous studies 
about the type-specific impact of immune cells on cancer 
prognosis. For example, Lu et. al. reported that glioblas-
toma patients with higher levels of HSCs had poor prog-
nosis [24]. Consistently, we found a negative relationship 
between survival and HSC abundance in liver cancer. 

In addition, our result is consistent with the findings 
supporting that Treg cells can suppress the anti-tumor 
function of effect CD8 T cells, and thus Treg cells can 
promote the growth of cancer cells [25].

Tumor is a complex ecosystem and TME consists of 
various cell types. Members of each cell type might be 
further regulated to differentiate into functionally dis-
tinct cell subtypes due to their varied positioning in 
TME. Although scRNA-seq and spatial transcriptom-
ics are able to provide a more comprehensive view of 
TME, in large-scale cancer studies they are usually 
not the first choice for analyzing the transcriptomic 
changes of many samples due to their high costs. Alter-
natively, using scRNA-seq datasets as the reference to 
perform cell type deconvolution of bulk tissue RNA-
seq is likely to be a more affordable approach to explore 
the cell compositions in TME. To cover the diverse cell 
types in TME in CCD, one plausible approach is to 
integrate multiple scRNA-seq datasets as the reference. 
In this study, we demonstrate that, on a limited scale, 
the data pre-processing strategy, Harmony-Symphony 

Fig. 10 A Kaplan–Meier curve plot showing overall survival for four immune‑abundance groups from TCGA‑LIHC by HASCAD (log‑rank test, 
p‑value = 0.019). High Effector CD8 T cells‑High Treg (cd8eff‑h‑treg‑h), High Effector CD8 T cells‑Low Treg (cd8eff‑h‑treg‑l), Low Effector CD8 T 
cells‑High Treg, (cd8eff‑l‑treg‑h) and Low Effector CD8 T cells‑Low Treg (cd8eff‑l‑treg‑l)



Page 15 of 16Chiu et al. BMC Medical Genomics          (2023) 16:272  

correction, can be applied to integrate three scRNA-
seq datasets in the training of a CCD method. A future 
direction is to integrate more scRNA-seq datasets that 
might consist of different cell types, which might be 
derived from different tissue sources and studies, in 
order to create a more robust CCD method. Therefore, 
we expect that pre-processing strategies of scRNA-seq 
data that can remove technical biases and batch effects 
could play important roles in the future improvement 
of CCD methods.

Conclusion
We developed a new deep neural network model, HAS-
CAD, to perform the task of cell composition deconvo-
lution (CCD) of bulk RNA-seq data. HASCAD has been 
trained by using the synthetic bulk RNA-seq data that 
were simulated by using three scRNA-seq datasets con-
sisting of 15 immune cell types. To mitigate the batch-
specific variations that may cause model overfitting, the 
scRNA-seq datasets are preprocessed by using a novel 
normalization approach, the Harmony-Symphony cor-
rection. We show that, in the benchmarks, the HASCAD 
model that is trained based on the Harmony-Symphony 
normalized scRNA-seq datasets can really achieve a bet-
ter cross-dataset performance. HASCAD has a perfor-
mance that is at least comparable to those of two widely 
used CCD methods, and it can predict more cell types 
than the other methods that were built based on the 
RNA-seq or scRNA-seq data.

Abbreviations
HASCAD  HArmonized single‑cell RNA‑seq Cell type Assisted 

Deconvolution
CCD  Cell composition deconvolution
DNN  Deep neural network
TIICs  Tumor‑infiltrating immune cells
M1  Classically activated macrophages
M2  Activated macrophages
Tregs  Regulatory T cells
IHC  Immune‑histochemistry
aDC  Activated dendritic cell
pDC  Plasmacytoid dendritic cell
bmem  Memory B cells
bnaive  Naïve B cells
cd4mem  Memory CD4 T cells
cd4naive  Naïve CD4 T cells
cd8eff  Effector CD8 T cells
cd8mem  Memory CD8 T cells
cd8naive  Naïve CD8 T cells
HSC  Hematopoietic stem cell
MK  Megakaryocyte
mono14  CD14 monocyte
mono16  CD16 monocyte
NK  Nature killer cells
RNA‑seq  RNA sequencing
GEP  Gene expression profiles
TME  Tumor microenvironment
refGEP  Reference GEP
ssGSEA  Single‑sample gene set enrichment analysis
PBMC  Peripheral blood mononuclear cell

PCA  Principal component analysis
VST  Variance stabilizing transform
TPM  Transcripts‑per‑millions
MSE  Mean square error
PCC  Pearson’s correlation coefficient
H–S correction  Harmony‑Symphony correction
TCGA‑LIHC  The Cancer Genome Atlas Liver Hepatocellular Carcinoma
GDC  Genomic Data Commons
SDs  Standard deviations

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12920‑ 023‑ 01674‑w.

Additional file 1: Figure S1. Venn diagram showing the number of 
genes in the reference and GSE data. Figure S2. The scatter plots of the 
ground‑truth and predicted cell abundance made by HASCAD for the 
nine human PBMC bulk RNA‑seq samples. Each point corresponds to a 
cell type in each sample. R^2 refers to Pearson’s correlation coefficient 
(PCC). Figure S3. The scatter plots of the ground‑truth and cell abun‑
dance predictions made by CIBERSORTx for the nine human PBMC bulk 
RNA‑seq samples. Each point corresponds to a cell type in each sample. 
R^2 refers to Pearson’s correlation coefficient (PCC). Figure S4. The 
scatter plots of the ground‑truth and cell abundance predictions made 
by quanTIseq for the nine human PBMC bulk RNA‑seq samples. Each 
point corresponds to a cell type in each sample. R^2 refers to Pearson’s 
correlation coefficient (PCC). Figure S5. The Bland‑Altman plots (BA plots) 
of the cell type‑specific differences between the ground‑ truth and the 
predictions made by HASCAD for the nine PBMC bulk RNA‑seq samples. 
Each point corresponds to one of the nine PBMC bulk RNA‑seq samples. 
Figure S6. The BA plots of the cell type‑specific differences between the 
ground‑truth and the predictions made by CIBERSORTx for the nine PBMC 
bulk RNA‑seq samples. Each point corresponds to one of the nine PBMC 
bulk RNA‑seq samples. Figure S7. The BA plots of the cell type‑specific 
differences between the ground‑truth and the predictions made by quan‑
TIseq for the nine PBMC bulk RNA‑seq samples. Each point corresponds 
to one of the nine PBMC bulk RNA‑seq samples. Figure S8. The scatter 
plots of the ground‑truth and cell abundance predictions made by xCell 
for the nine human PBMC bulk RNA‑seq samples. R^2 refers to Pearson’s 
correlation coefficient (PCC). Each point corresponds to one of the nine 
PBMC bulk RNA‑seq samples. Figure S9. The Venn diagram showing the 
number of genes reference scRNA‑seq data and TCGA‑LIHC bulk RNA‑seq 
data. Figure S10. The barplot showing HASCAD‑predicted proportions of 
various cell types in 364 TCGA‑ LIHC bulk RNA‑seq samples. Figure S11. A 
Kaplan–Meier plot showing the difference in overall survival of TCGA‑LIHC 
patients between the high and the low groups of HASCAD‑predicted pro‑
portions of effector CD8 T cells. Figure S12. A Kaplan–Meier plot showing 
the difference in overall survival of TCGA‑LIHC patients between the high 
and the low groups of HASCAD‑predicted proportions of memory CD8 T 
cells. Figure S13. A Kaplan–Meier plot showing the difference in overall 
survival of TCGA‑LIHC patients between the high and the low groups of 
HASCAD‑predicted naïve CD8 T cells. Figure S14. A Kaplan–Meier plot 
showing the difference in overall survival of TCGA‑LIHC patients between 
the high and the low groups of HASCAD‑predicted proportions of hemat‑
opoietic stem cells. Table S1. Cell‑type mapping of xCell to the cell types 
investigated in GSE107572.

Acknowledgements
We thank the Genomics Center for Clinical and Biotechnological Applications 
funded by the Ministry of Science and Technology, Taiwan (MOST 107‑2319‑
B‑010‑002) for their technical support for the microarray data analysis. We 
would like to thank National Core Facility for Biopharmaceuticals (NCFB, MOST 
108‑2319‑B‑492‑001) and National Center for High‑performance Comput‑
ing (NCHC) of National Applied Research Laboratories (NARLabs) of Taiwan 
for providing computational resources and storage resources. We thank the 
anonymous reviewers for their careful reading of our manuscript, and for their 
constructive comments and suggestions, which have greatly helped us to 
improve the original version of this paper.

https://doi.org/10.1186/s12920-023-01674-w
https://doi.org/10.1186/s12920-023-01674-w


Page 16 of 16Chiu et al. BMC Medical Genomics          (2023) 16:272 

About this supplement
This article has been published as part of BMC Medical Genomics Volume 
16 Supplement 2, 2023: The 21st International Conference on Bioinformatics 
(InCoB2022): medical genomics. The full contents of the supplement are avail‑
able online at https:// bmcme dgeno mics. biome dcent ral. com/ artic les/ suppl 
ements/ volume‑ 16‑ suppl ement‑2.

Authors’ contributions
Conceptualization, YHH and YJC. Data curation, YJC. Formal analysis, YJC. Fund‑
ing acquisition, YHH. Investigation, YHH and YJC. Methodology, YHH and YJC. 
Project administration, YHH and YJC. Resources, YJC. Software, YJC. Supervision, 
YHH. Validation, YHH, YJC and CEN. Visualization, YJC. Writing—original draft, 
YHH and YJC. Writing—review & editing, YHH and YJC. All authors read and 
approved the final manuscript.

Funding
This work was supported by the grants from the Ministry of Science and 
Technology (MOST), Taiwan (MOST108‑2320‑B‑010–041, MOST109‑2221‑E‑010–
017‑MY3), National Science and Technology Council, Taiwan (NSTC 112‑2222‑E‑
130‑003 ‑), and the Higher Education Sprout Project by the Ministry of Education 
(MOE), Taiwan (108AC‑D102). The funding bodies had no role in the design of the 
study, collection, analysis, interpretation of data, or the writing of the manuscript.

Availability of data and materials
The datasets of this article were downloaded from the GEO database. 
GSE141498 is downloaded from https:// www. ncbi. nlm. nih. gov/ geo/ query/ 
acc. cgi? acc = GSE141498. GSE107572 is downloaded from https:// www. 
ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE10 7572. PBMC scRNA‑seq 
datasets is downloaded from https:// github. com/ immun ogeno mics/ 
symph ony.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no conflicts of interest.

Author details
1 Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, 
Taipei 112, Taiwan. 2 Department of Biomedical Engineering, Ming Chuan 
University, Taoyuan 333, Taiwan. 3 Center for Systems and Synthetic Biology, 
National Yang Ming Chiao Tung University, Taipei 112, Taiwan. 

Received: 11 October 2022   Accepted: 27 September 2023

References
 1. Hrdlickova R, Toloue M, Tian B. RNA‑Seq methods for transcriptome analysis. 

Wiley Interdiscip Rev RNA. 2017;8(1):e1364.
 2. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 

2001;357(9255):539–45.
 3. Tu JF, Ding YH, Ying XH, Wu FZ, Zhou XM, Zhang DK, Zou H, Ji JS. Regulatory 

T cells, especially ICOS(+) FOXP3(+) regulatory T cells, are increased in the 
hepatocellular carcinoma microenvironment and predict reduced survival. 
Sci Rep. 2016;6:35056.

 4. Horning SJ. A new cancer ecosystem. Science. 2017;355(6330):1103.
 5. Noy R, Pollard JW. Tumor‑associated macrophages: from mechanisms to 

therapy. Immunity. 2014;41(1):49–61.
 6. Dong P, Ma L, Liu L, Zhao G, Zhang S, Dong L, Xue R, Chen S. CD86(+)/

CD206(+), Diametrically Polarized Tumor‑Associated Macrophages, 
Predict Hepatocellular Carcinoma Patient Prognosis. Int J Mol Sci. 
2016;17(3):320.

 7. Zhang M, He Y, Sun X, Li Q, Wang W, Zhao A, Di W. A high M1/M2 ratio of 
tumor‑associated macrophages is associated with extended survival in 
ovarian cancer patients. J Ovarian Res. 2014;7:19.

 8. Collier JL, Weiss SA, Pauken KE, Sen DR, Sharpe AH. Not‑so‑opposite ends 
of the spectrum: CD8(+) T cell dysfunction across chronic infection, cancer 
and autoimmunity. Nat Immunol. 2021;22(7):809–19.

 9. Shimizu S, Hiratsuka H, Koike K, Tsuchihashi K, Sonoda T, Ogi K, Miyakawa A, 
Kobayashi J, Kaneko T, Igarashi T, et al. Tumor‑infiltrating CD8(+) T‑cell den‑
sity is an independent prognostic marker for oral squamous cell carcinoma. 
Cancer Med. 2019;8(1):80–93.

 10. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn 
M, Alizadeh AA. Robust enumeration of cell subsets from tissue expression 
profiles. Nat Methods. 2015;12(5):453–7.

 11. Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl H, Krogsdam A, 
Loncova Z, Posch W, Wilflingseder D, et al. Molecular and pharmacological 
modulators of the tumor immune contexture revealed by deconvolution of 
RNA‑seq data. Genome Med. 2019;11(1):34.

 12. Menden K, Marouf M, Oller S, Dalmia A, Magruder DS, Kloiber K, Heutink P, 
Bonn S. Deep learning‑based cell composition analysis from tissue expres‑
sion profiles. Sci Adv. 2020;6(30):eaba2619.

 13. Dong M, Thennavan A, Urrutia E, Li Y, Perou CM, Zou F, Jiang Y. SCDC: bulk 
gene expression deconvolution by multiple single‑cell RNA sequencing 
references. Brief Bioinform. 2021;22(1):416–27.

 14. Tsoucas D, Dong R, Chen H, Zhu Q, Guo G, Yuan GC. Accurate estima‑
tion of cell‑type composition from gene expression data. Nat Commun. 
2019;10(1):2975.

 15. Wang X, Park J, Susztak K, Zhang NR, Li M. Bulk tissue cell type deconvolu‑
tion with multi‑subject single‑cell expression reference. Nat Commun. 
2019;10(1):380.

 16. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, 
Khodadoust MS, Esfahani MS, Luca BA, Steiner D, et al. Determining cell type 
abundance and expression from bulk tissues with digital cytometry. Nat 
Biotechnol. 2019;37(7):773–82.

 17. Vallania F, Tam A, Lofgren S, Schaffert S, Azad TD, Bongen E, Haynes W, Alsup 
M, Alonso M, Davis M, et al. Leveraging heterogeneity across multiple data‑
sets increases cell‑mixture deconvolution accuracy and reduces biological 
and technical biases. Nat Commun. 2018;9(1):4735.

 18. Tran HTN, Ang KS, Chevrier M, Zhang X, Lee NYS, Goh M, Chen J. A bench‑
mark of batch‑effect correction methods for single‑cell RNA sequencing 
data. Genome Biol. 2020;21(1):12.

 19. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, Baglaenko Y, 
Brenner M, Loh PR, Raychaudhuri S. Fast, sensitive and accurate integration 
of single‑cell data with Harmony. Nat Methods. 2019;16(12):1289–96.

 20. Kang JB, Nathan A, Weinand K, Zhang F, Millard N, Rumker L, Moody DB, 
Korsunsky I, Raychaudhuri S. Efficient and precise single‑cell reference atlas 
mapping with Symphony. Nat Commun. 2021;12(1):5890.

 21. Martin‑Gayo E, Gao C, Chen HR, Ouyang Z, Kim D, Kolb KE, Shalek AK, Walker 
BD, Lichterfeld M, Yu XG. Immunological Fingerprints of Controllers Devel‑
oping Neutralizing HIV‑1 Antibodies. Cell Rep. 2020;30(4):984‑996 e984.

 22. Cancer Genome Atlas Research Network. Weinstein JN, Collisson EA, Mills 
GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart 
JM: The Cancer Genome Atlas Pan‑Cancer analysis project. Nat Genet. 
2013;45(10):1113–20.

 23. Ohue Y, Nishikawa H. Regulatory T (Treg) cells in cancer: Can Treg cells be a 
new therapeutic target? Cancer Sci. 2019;110(7):2080–9.

 24. Lu IN, Dobersalske C, Rauschenbach L, Teuber‑Hanselmann S, Steinbach 
A, Ullrich V, Prasad S, Blau T, Kebir S, Siveke JT, et al. Tumor‑associated 
hematopoietic stem and progenitor cells positively linked to glioblastoma 
progression. Nat Commun. 2021;12(1):3895.

 25. Liu S, Zhou B, Wu L, Sun Y, Chen J, Liu S. Single‑cell differential splicing 
analysis reveals high heterogeneity of liver tumor‑infiltrating T cells. Sci Rep. 
2021;11(1):5325.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-16-supplement-2
https://bmcmedgenomics.biomedcentral.com/articles/supplements/volume-16-supplement-2
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE107572
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE107572
https://github.com/immunogenomics/symphony
https://github.com/immunogenomics/symphony

	HArmonized single-cell RNA-seq Cell type Assisted Deconvolution (HASCAD)
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 

	Introduction
	Materials and methods
	The workflow
	Preprocessing and normalization of scRNA-seq datasets
	The architecture of our deep learning model
	The preparation of the simulated bulk RNA-seq data for model training
	Benchmarks to assess the performance of HASCAD and other CCD methods
	Preprocessing of the bulk gene expression profiles of TCGA-LIHC samples

	Results
	Training the HASCAD model
	Preparation of the training data

	Training of HASCAD model and the initial assessment

	Benchmarks
	The benchmark using the RNA-seq of pure-type immune cells
	The benchmark using human bulk RNA-seq datasets

	Discussion
	Conclusion
	Anchor 24
	Acknowledgements
	References


